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Abstract 
This paper presents a new observer-based control scheme for a class of 

nonlinear systems. In the proposed method, nonlinear observer and twisting 
algorithm controller are employed to realize a sensor-less control strategy for 
complex systems which makes use of non measurable process information instead of 
installing as many sensors as possible. Due the to lack of availability of the complex 
system states, controlling of them will be faced with  undesirable performance. This 
deficiency can be solved with adding observer in the control strategy. In order to 
estimate unavailable states, an adaptive neural network observer is considered in 
the present article. This observer is tuned online and no exact information of the 
nonlinear function in the observed system is required. Also, to realize control 
purpose, 2nd order sliding mode controller called twisting algorithm is located in 
the close loop structure. This control strategy is implemented on the modified 
Duffing chaotic system and the simulation results confirm the capability of this 
method. 
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1. Introduction 

The control of nonlinear system with complex dynamic has attracted extensive 
interest from different fields of science and engineering. One of the most popular of 
them is chaotic system. The main characteristic of chaotic system is that the reaction of 
the initial condition affects the response extensively. Due to the unpredictable behavior 
of chaotic state especially in physical systems, chaos control is an important task. 
Various controllers based on both feedback and without feedback are proposed to 
control this phenomenon [1-2], such as controller with adaptive structure [3-4] or using 
back-stepping technique [5]. The most common performance of these different controls 
method is that the internal state variable is assumed to be available to construct the 
control forces; however, due to the complexity of the systems, limited state information 
may be available and only the process output can be measured. Under this circumstance, 
an observer with desirable performance in nonlinear system must be employed to 
estimate unavailable states. In this letter, a new observer-based approach is presented to 
control a class of chaotic systems. To control the unpredictable behavior of chaotic 
system, a 2nd order sliding mode controller is employed. This controller is based on a 
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kind of robust control method that is suitable for controlling uncertainty of systems [6, 
7]. In first order sliding mode, the sliding variable is chosen such that it has relative 
degree of one with respect to the control. The first derivative of the sliding variable ( )s
keeps the system trajectory in the sliding set 0s = . As expected, the relative degree 
restriction of the first order sliding mode causes analysts to improve this method. 
Therefore, the higher sliding mode methods were presented to control some higher-
relative degree systems [8, 9]. Among them a 2nd order sliding mode is more popular 
which includes twisting algorithm, super twisting algorithm, drift algorithm and 
suboptimal algorithm [10-13]. Second order sliding mode reduce a chattering 
phenomenon by the second derivative of sliding variable ( )s  to keep the system 
trajectory in the sliding mode set 0s s= = . In this study, we will discuss the twisting 
algorithm. 

To estimate the unavailable states of system, a nonlinear observer is considered. 
Since the 1960’s, many papers have been developed to overcome the problem of state 
estimation. Therefore, several nonlinear state estimation schemes have been presented 
to improve the accuracy of designing the control systems, such as extended Kalman 
filter and unscented Kalman filter. The literatures about these observers are extensive so 
that we refer the reader to [14-17]. A bunch of the observers that have been proposed is 
adaptive observer. The first nonlinear adaptive observer was presented in [18]. 
According to different circumstances, several observers were proposed in [19-21]. In 
this study, we use the adaptive neural network observer in which the neural network 
weights are tuned online [22].  

The neural network can estimate any nonlinear system. The training process of 
neural network is implemented online and offline, but online weight adjusting is so 
useful and can be implemented in experimental projects. Online training has been used 
in nonlinear modeling, estimating and identification. 

The rest of this paper is organized as follows: 
In section 2, the performance of twisting algorithm is presented. In section 3, 

the characteristic of proposed observer is rendered. In the next section, the 
Modified Duffing chaotic system is given. The simulation results are demonstrated 
in section 5 and in the last section, the conclusion of this paper is presented. 

2. Twisting Algorithm 

This algorithm is a systematic algorithm to apply for dynamic with relative degree 
two. The dynamic is represented in the following state space format: 

( ) ( ) , ,x Ax t Bu t y Cx e r y= + = = −  (1) 

where nx R∈ , 1u R∈ , r are state, control effort and the command signal respectively. 
The output is denoted by y and e stands for the error signal. The control signal u, of the 
twisting algorithm is presented as follows [23]: 

( ) .sgn( ) sgn( )1 2u t c e c e= +   (2) 

Where 1 2,c c are positive coefficients, the block diagram of twisting algorithm is as 
follows: 

 

www.SID.ir



Arc
hive

 of
 S

ID

 

Journal of Advances in Computer Research  (Vol. 4, No. 4, November  2013) 83-91 
 
 

85 

 
Figure 1. Block diagram of twisting algorithm 

 

3. Adaptive Neural Network Observer 

Consider the following single input-single output system assuming that pair of 
( , )A C is observable i.e. of a canonical observer form [22]: 

[ ( ) ( ) ( )]x Ax b f x g x u d t
Ty C x

= + + +

=


 (3) 

That , , ,n nx R y R u R b R∈ ∈ ∈ ∈ and ( )d t  is the unknown disturbance with known 
upper bound and    , : nf g R R→ unknown smooth function. 

The linear system is defined as an observer canonical form if A and C are given 
as follows: 

0 1 0 ... 0 1
0 0 1 ... 0 0

.

.
0 0 ... 1 0 0
0 0 0 0 0 0

x Ax
Ty C x

A C

   
   
   
   
   
   
   
   
   
      

=

=

= =



 (4) 

 
However there is no restriction on the input matrix coefficient i.e. b . The 

observer dynamic as a replica of the system states but includes a correction term 
which is considered as follows: 

ˆ ˆˆ ˆ ˆ ˆ ˆ[ ( ) ( ) ( )] [ ]

ˆ

Tx Ax b f x g x u v t k y C x
Ty C x

= + + − + −

=


 (5) 

That x̂ denotes the estimates of state x and 1 2[ ......... ]TnK k k k= is the observer 
gain chosen where ( )TA KC− is strictly Hurwitz. ( )v t is robustifying term to  control 
disturbance. 

 
The neural network equation that used in this observer is as follows: 
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( ) ( )

( ) ( )

Tf x W xf ff
Tg x W xg g g

σ ε

σ ε

= +

= +
 (6) 

Where consist of two layers, the weight of the first layer will be V I= but the 
second layer weight must be tuned. 

 
One of the advantages of neural network that is used in this paper is that no data 

is needed for training. In fact, in [22]; an equation is proposed for training the 
network using the equations correspondent to the stability of system and provides 
the value of network weight for system at each moment. Training of this neural 
network for two nonlinear terms is achieved from the following differential 
equation: 

ˆˆ

ˆˆ

W F y k F y Wf f f f f f
W F y u k F y Wg g g g g g

σ

σ

= −

= −

  
  

 (7) 

Where σ denotes the activation function and ˆy y y= − .Activation function is 
applied in the neural networks in different ways. In this observer, the activation 
function for the first layer is chosen sigmoid and for the second layer is chosen 
purline. 

4. Modified Duffing system 

The modified Duffing system is derived from Metamorphic shape-changing 
Underwater autonomous vehicle (MUV). The MUV can imitate the swimming of 
amoebae, hence the noise generated by propulsion system is reduced by the 
performance of the vehicle. Numerous experiments denote that the equation (8) can 
represent actual MUV system with desirable approximation [24]. 

3( cos ) ( , , , )x a b wt x p x q x f t x x u u+ + + + + ∆ =    (8) 

Where f∆ denotes the un-modeled parts and u denotes the control action. Obviously, 
the corresponding nominal system of equation (8) can be described as follows [24]:  

1 2
3 ( cos( )) ( )2 1 1 2

x x

x p x q x a b t x d tω

=

= − − − + +




 (9) 

Where ( )d t  stands for the disturbance. The system will be of chaotic 1p = − , 1q = ,
1b = − , 1ω = , 0.001a = −  where  can be seen is the phase portrait in Figure 2. 
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Figure 2. Chaotic behavior of modified Duffing system in 250 sec. 

 
In Figure 1 the chaotic trajectory of this system is rendered. Due to the destructive 

behavior of chaotic systems, controlling of modified Duffing system can be very 
important in MUV. 

5. Simulation result 

In this case, it is assumed that just state 1x can be measured. This means that another 
state  2x   must be estimated in a closed loop observer structure.  

 
According to the observer in (5), the overall closed loop control block diagram using 

the lower  
order estimator is as follows: 

Twisting Algorithm plant

Adaptive neural network 
observer

Y(t)
R(t)

-
+

 
Figure 3. Block diagram of proposed control scheme 

 
 The error is defined on 1x surface to design the twisting algorithm controller. But 

real states i.e. 2x are replaced with the estimated ones i.e. 2x̂ . Therefore the error for the 
zero tracking tasks ( 0r ≡ ) can be written as follows:  

1e r y e y x= − ⇒ = − = −  (10) 
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So the control signal u, of the twisting algorithm is defined as follows [23]: 
(11)  1 2 1 1 2 2ˆ( ) .sgn( ) sgn( ) .sgn( ) sgn( )u t c e c e c x c x= + = +  

According to (11) the twisting algorithm controller is designed and applied on the 
chaotic system.  The simulation results are shown in the following figures. The 
trajectories of states are depicted in Figure 4 & 5. 

 

Figure 4. State 1x  after applying controller input 

 
The convergence of first state is acceptable and the simulation section will be 

followed for the second state. 

 

Figure 5. State 2x  after applying controller input and its estimation 

 
Although most of nonlinearity of the chaotic system arises in the second state 

dynamic the control strategy could effectively cope with to make the system state to 
converge to zero. Indeed the observer proposes a good estimation of the state after one 
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second with a small estimation error. The estimation error of state 2x is presented as 
follows: 

 

Figure 6. Estimation error of 2x   

 
A phase portrait of dynamic (9) using the twisting algorithm controller is depicted in 

Figure 7. 

 
Figure 7. Modified Duffing behavior after applying twisting algorithm controller input 

 
The control effort of the proposed method is demonstrated in Figure 8.the trajectory 

of control effort is desirable and can be implemented in the practical case. 
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Figure 8. Control effort 

6. Conclusion 

In this paper, a novel control scheme has been presented for a class of nonlinear 
systems. In the proposed method, a new combination of the twisting algorithm and 
adaptive observer has been   utilized to control the nonlinear system in the presence of 
disturbances and uncertainty. Due to the online performance of adaptive neural network 
observer, this strategy can be implemented on the practical case. This sensor-less 
method has been implemented on the modified Duffing chaotic system and the 
trajectory of the states after applying the control effort of twisting algorithm, endorses 
the accuracy of this method.  
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