
Arch
ive

 of
 SID

13

Journal of Advances in Computer Research
Quarterly ISSN: 2008-6148
Sari Branch, Islamic Azad University, Sari, I.R.Iran
(Vol. 4, No. 1, February 2013), Pages: 13-29
www.jacr.iausari.ac.ir

Pre-scheduling and Scheduling of Task Graph on
Homogeneous Multiprocessor Systems

Marjan Abdeyazdan1, Saeed Parsa2, Amir Masoud Rahmani3

1,3) Department of Computer Engineering, Science and Research branch, Islamic Azad University, Tehran,
Iran

2) Department of Computer Engineering, Iran University of Science and Technology, Tehran, Iran
m.abdeyazdan@srbiau.ac.ir; parsa@iust.ac.ir; rahmani@srbiau.ac.ir

Received: 2012/09/13; Accepted: 2012/10/24

Abstract
Task graph scheduling is a multi-objective optimization and NP-hard problem.

In this paper a new algorithm on homogeneous multiprocessors systems is proposed.
Basically, scheduling algorithms are targeted to balance the two parameters of time
and energy consumption. These two parameters are up to a certain limit in contrast
with each other and improvement of one causes reduction in the other one. The
problem is to achieve the trade-off between these two parameters. Pre-scheduling
algorithms are mainly aimed at modifying the structure of task graph to gain
optimal scheduling.

In the proposed algorithm the suitable number of processors for scheduling the
task graph is computed. The idea of Nash equilibrium is mainly applied to compute
the appropriate number of processors in such a way that the idle time of the
processors is reduced while their processing power is increased. Also, considering
the communication costs and interdependencies, the tasks are merged as their
earliest start time is reduced. In this way, the length of the critical path is reduced
while the degree of parallelism is increased and ultimately the completion time is
reduced. Our experimental result on a number of known benchmark graphs
demonstrates the effect of our proposed algorithm.

Keywords: schedule, pre-schedule, task graph, game theory, optimization, Nash

equilibrium

1. Introduction

A scheduling system model consists of an application, a target computing system and
performance criteria for scheduling. An application program is represented by a
Directed Acyclic Graph (DAG), G =(V,E), where V is the set of v tasks nodes, and E is
the set of e directed communication edges between the tasks. Each edge ei,j represents
the precedence constraint that vj cannot be scheduled until task vi has been completed,
hence vi is a predecessor of vj and vj is a successor of vi. In a given task graph, a task
without any parent is called an entry task and a task without any child is called exit task.
Without loss of generality, it is assumed that there is one entry task to the DAG and one
exit task from the DAG. Task merging, clustering and duplication techniques
[5,7,8,16,20,30,40] have been widely applied to restructure task graphs for better
scheduling in step pre-scheduling. Task merging have been most often targeted at

www.SID.ir

Arch
ive

 of
 SID

Pre-scheduling and Scheduling of Task Graph … M. Abdeyazdan, S. Parsa, A.M. Rahmani

14

reducing the length of the critical path of the task graph by increasing the granularity.
Proposed algorithm can present suitable result.

The general task scheduling problem includes the problem of assigning the tasks of
an application to suitable processors and the problem of ordering task executions on
each resources. The problem of optimal scheduling of tasks with required precedence
relationship, in the most general case, has been proven to be NP-complete, and optimal
solutions can be achieved if adequate time is available for an exhaustive search. Then,
many heuristics have been proposed for giving an approximate optimization in
polynomial time. The characteristics of an application represented by a directed acyclic
graph (DAG) in which the nodes represent application tasks and edges represent inter-
task data dependencies. The objective of task scheduling is to map the tasks on the
processors and order their execution so that task precedence requirements are satisfied
and a minimum overall completion time is obtained [28]. Because of its key importance
on performance, this problem has been extensively studied and various algorithms have
been proposed in the literature, which are mainly for systems with homogeneous
processors. These heuristics are classified into a variety of categories such as list
scheduling algorithms [4], clustering algorithms, Genetic algorithms [17,25] and task
duplication based algorithms. In list scheduling algorithms, the tasks in a list are
assumed priorities and are assigned to the different processors based on descending
order of priorities. List scheduling algorithms are generally preferred since they
generate good quality schedule.

The multiprocessor task scheduling problem that is an NP-hard problem and multi
objective optimization (MOO) [22,35]. Although there are algorithms in the literature
for homogeneous processors, we present a novel heuristic scheduling algorithms for a
bounded number of homogeneous processors with an objective to simultaneously meet
high performance and fast scheduling time, which are called the Pre-scheduling and
Scheduling based on Game Theory (PSSGT) algorithm. Based on the schedule obtained
by the list algorithm, the PSSGT algorithm lessens the schedule length by inserting the
task in big list into the processor with earlier-start-time (EST) and inserting the task in
small list into the earlier slack (hole) to use the slack effectively. The algorithm moves
the slack upwards from the exit task by delaying the start times of some tasks. The
algorithm re-allocates the remaining tasks to the suitable processor that satisfies the
precedence sequence and has the minimum earliest-finish-time (EFT) of the task. By
using the slack time on the processors effectively, PSSGT algorithm has high
performance in terms of both performance metrics.

In the approach presented in this paper, a node is merged with a subset of its parents
only if the merge operation reduces the node’s earliest time to start. If the merge
postpones the execution of the other children of the parent node, the parent node is
duplicated. The duplication is performed to enhance the parallelism. However, if there
are not enough processors to execute the parallel tasks, the duplication may increase the
overall execution time of the tasks. In the task merging presented in this paper, before
each parent node can be duplicated, the maximum number of independent tasks within
the task graph is recomputed. If after the duplication, the number of independent tasks
gets above the number of available processors, the duplication is considered as an
opposing factor. In order to compute the number of available processors and benefit
merging and also determine the group of tasks. We have applied the game theory and
then we have determined the number of available processors where select aware and the

www.SID.ir

Arch
ive

 of
 SID

Journal of Advances in Computer Research (Vol. 4, No. 1, February 2013) 13-29

15

processors use to suitable and also we have determined the group of tasks in order to
schedule small task in idle time processors.

The appropriate number of processors for scheduling a given task graph could be
computed before scheduling the task graph. Considering each level of the task graph as
a player looking for appropriate number of processors to execute its independent tasks
addressed by its nodes, the Nash equilibrium idea of game theory could be applied to
compute the number of processors in order to minimize the idle time of the processors
and overall throughput of processors is maximized where the goal is to balance the
completion time of a parallel application with the overall energy consumption (CPU)
[6,23,26].

Equilibrium is a key concept in game theory. As optimization problems seek to
optimal solutions, a game looks for equilibrium [21]. Given a game with strategy sets
for players, Nash equilibrium is a strategy profile in which each player deterministically
plays her chosen strategy and no one has an incentive to unilaterally change her
strategy. Nash proved that every game with a finite number of players, each having a
finite set of strategies, always possesses a mixed Nash equilibrium [27]. The concept of
Nash equilibrium has become an important mathematical tool for analysing the
behaviour of selfish users in non-cooperative systems. The celebrated result of Nash
[32,33] guarantees the existence of Nash equilibrium in mixed strategies for every
(finite) strategic game and many algorithms have been devised to compute one [31].

Some research has been presented in the literature for energy aware scheduling of
tasks [19], Since finding an optimal schedule is an NP-complete problem in general,
researchers have resorted to devising a plethora of heuristics using a wide spectrum of
techniques, including branch-and-bound, integer programming, searching, graph-theory,
randomization, genetic algorithms, and evolutionary methods [35,37]. Some research
has been presented in the literature for energy aware scheduling of tasks with
precedence constraints [36,38], and without precedence constrains [34] for parallel
machines.

The remaining parts of this paper are organized as follows: Firstly, in Section 2,
motivation and related work is presented. In Section 3, a new algorithm is presented.
This algorithm uses equations which are fully described in subsections 3.1 to 3.5. In
Section 3.1, selecting number of suitable processor, in section 3.2, merging tasks, in
section 3.3, grouping of tasks, in sections3.4, 3.5 scheduling of the list big and small is
presented. In section 4, the results of applying our algorithm to some benchmark task
graphs is compared with the results of applying some known scheduling algorithms.
Finally, in Section 5, conclusion is presented.

2. Motivation and related work

Pre-scheduling techniques are mainly applied to reshape task graphs in a form
suitable for scheduling. To reshape a task graph, task merging [1], clustering [2] and
duplication [3] techniques are most commonly applied. Chou Lai and Yang [20] have
proposed a new duplication-based task scheduling algorithm for distributed
heterogeneous computing (DHC) systems. For such systems, many researchers have
focused on solving the NP-complete problem of scheduling directed acyclic task graphs
to minimize the makes pan. There are several non-deterministic approaches to solve the
multiprocessor task scheduling problem that is an NP-hard problem. The genetic
algorithm presented in [25], has provided relatively better scheduling in comparison

www.SID.ir

Arch
ive

 of
 SID

Pre-scheduling and Scheduling of Task Graph … M. Abdeyazdan, S. Parsa, A.M. Rahmani

16

with the other non-deterministic approaches. The algorithm is bipartite in a way that
each part is based on different genetic schemes, such as genome presentation and
genetic operators. In the first part, it uses a genetic method to find an adequate sequence
of tasks and in the second part it finds the best matching processors. However, these
non-deterministic approaches provide different scheduling for a given task graph in
different runs of their underlying algorithms. In order to cope with large scale task
graphs, a cluster-based search (CBS), for scheduling large task graphs in parallel on a
heterogeneous cluster of workstations connected by a high-speed network, is presented.

Programs using parallel tasks can be modeled as task graphs so that scheduling
algorithms can be used to find an efficient execution order of the parallel tasks. Static
scheduling has been well accepted for its predictability and online simplicity.
Traditional static schedule generation techniques are usually based on the assumption of
constant rate of resource supply known at design time. A pre-schedule is a static
schedule without assuming constant and completely predictable rate of resource supply.
The concepts of supply function and supply contract are introduced to define the actual
online resource supply rate and the constraints to this rate known off-line. Based on
these concepts, the pre-scheduling problem is defined and sound pre-schedulers are
presented [24].

3. New algorithm PSSGT

There are five major steps in our proposed algorithm, PSSGT. In the first step:
determining the appropriate number of processors for initial graph. Second step is
merging initial graph and making the last graph and third step is grouping of tasks.
Finally, last steps is scheduling of tasks. We are sure that the number of processors in
first step appropriate for second step. Because in merging step, the number of tasks in
the same level doesn’t increase and the criteria for choosing is according to the number
of task in the same level. Every task will be merged with its parents. The relationship
between parent and child are into two sequential levels. Therefore, the number of
parallel processors that chosen in first step are appropriate for merged graph in the
second step. Pre-scheduling and scheduling will be done in 5 steps in new algorithm
PSSGT:

Step 1: Selecting number of suitable processor
Step 2: Merging tasks
Step 3: Grouping of tasks
Step 4: Scheduling of the list big
Step 5: Scheduling of the list small

3.1 Selecting number of suitable processors (step 1)
Selecting number of processor is vital for entering graph in order to get the better use

out of the most important source which is processor (idle time of processor become
less). Therefore number of suitable processor for entering graph based on game theory
is computed by “G*” formula.

Consider a graph with n level, suitable choice for number of processor using game
theory. Processor number in ith level equals “gi

”. In other word, number of processors in
ith level is “gi

” that maximum needed number of processor in ith level is equal with
number of tasks at ith level. So average number of existing processor (for levels of

www.SID.ir

Arch
ive

 of
 SID

Journal of Advances in Computer Research (Vol. 4, No. 1, February 2013) 13-29

17

graph) or in the other word referable average number equals with needed processor
number in n level. As shown in equation(1):

 G = (g1+g2+…+gn)/n = (!"#$% i)/n (1)

Average number of all needed processor in graph is G. Number of needed processor
in first level is g1. Number of needed processor in nth level is “gn

”, where “G” is average
number of processors. We call each value the “V(G)”, every processor for having
economic value to remain needs task of exist. Task have fixed capacity, in other word
number of tasks in each level is fixed so maximum task number among all levels,
realizes maximum number of tasks and if the number of processor is more than
maximum number of tasks among level, It is wasted and has no economic value.“V(G)”
is economic value of each processor and “gmax

” is biggest value between “g1
” until “gn

”.
When average number of processor is low, adding another processor harms less to the
economic value of existing processor because there is enough of task but when the
number of existing processors is much, adding another processor, harms more to the
economic value of existing processors. Firstly, adding an extra processor reduces
economic value of existing processor. It means to get first offshoot as shown in equation
(2): &'()*&) = V'(G)<0 (2)

Secondly, the worth of economic processor will be decline of you add more
processor. To getting second offshoot as shown in equation (3): &+'()*&)+ , -.(/* 0 1 (3)

It means curve of the ramp “V(G)” is falling and increasing falling. Two features of
equations (2), (3) in curve are shown this way in figure 1.

V(G)

Figure 1. The curve of value processors [29]

The curve above is related to the part of kind parabola in first quarter because of the
falling ramp of the curve and its falling. It means the first offshoot is negative and also

gmax= b

 !"#$"

www.SID.ir

Arch
ive

 of
 SID

Pre-scheduling and Scheduling of Task Graph … M. Abdeyazdan, S. Parsa, A.M. Rahmani

18

cave is downward. It means the second offshoot is negative and it will be presented as
shown in equation (4):

 V=-aG2+vmax(V>=0,G>=0)(4) (4)

According to equation (4),kind parabola equation, we know a>0 and vmax> 0. So if
we want to know in which point of the curve “V(G)” equals zero:

V= -aG2+vmax 0= -aGmax
2+vmax aGmax

2= vmax a=(vmax / Gmax
2){vmax> 0 ,

Gmax
2> 0 a>0}

Also for getting maximum amount “V(G)” (maximum profit) “G” must be equal
zero. Because in the curve, highest amount for “V(G)” is the lowest amount in G. So:

V= -aG2+vmaxV= -a(0)2+vmaxV=0+vmaxV= vmax
It means the highest profit is in G=0. After getting the first offshoot we have to prove

the amount is negative.

{
dG

Gdv)(<0V= -aG2+vmax}{
dG

Gdv)(= -2aG, a > 0, G> 0, -2 < 0}{
dG

Gdv)(= -2aG < 0}

According to the curve, domain of “G” is positive and “−2aG” less than zero. So the
first offshoot result is negative. Also we have to prove the second offshoot is negative.
It means:

{2+3(4*24+ , 5.(6* 0 1,V= -aG2+vmax}{
dG

Gdv)(= -2aG, a > 0, G > 0}{
dG

Gdv)(= -

2aG<0} 7283(4*248 , 5.(6* , 9:; , a >0 , -2 < 0}  {2+3(4*24+ , 5.(6* , 9:;< 0}
Because “a” bigger than zero then “-2a”less than zero. So result of all phrases is

phrase negative and the result of second offshoot is negative. According to the curve if
ramp of the line be tangent on the negative curve, the first offshoot is negative and if
cave be downward the second offshoot is also negative. It has to making free decision in
each task graph. To know how many processors it has to have. Then with this thought
that the number of processors one able division. It means processor has to be shifty.
And strategy spaces of each point would be like these:

Gi=[1, <) gi є Gi , i є N
Extreme and more processor and one processor at least and strategy space ith level is

“Gi
”. To have so many processors or further than “gmax

” will be not except able and it
has no economic worth. The status of “gmax

” will be reconsideration under condition of:
Gi=[1, g max] gi є Gi ,i є N
Play form strategic according more information:
Collection of player: =N {1,2,…,n}
Players strategic: Gi=[1, g max] gi є Gi , i є NBecause we have V(G) < 0 ,
ifgi> Ggi– G > 0 Ui> 0 else gi– G < 0 Ui< 0
Therefore utility players (levels):

 U==(gi, g i)= (gi –G)V(G)= (gi V(G) – G V(G)) (5)

U== (gi,g>i)=gi V(g?+g@+…+gi>?+gi+giA?+…+gn) – G V(g?+g@+…+gi>?+gi+giA?+…+gn)
Where: g-i = (g1 + . . . + gi-1 + gi+1 + . . . + gn)
Strategic mixture G*=(g1*,g2*,…,gn*)/nG is call “Nash equilibrium” as we have

for each player : ui(gi*,g-i*) B ui(gi, g-i*) CgiD/i CiDN

www.SID.ir

Arch
ive

 of
 SID

Journal of Advances in Computer Research (Vol. 4, No. 1, February 2013) 13-29

19

In the word considering the belief of “i” player to choosing rivals “g-i*” that function
giGi player “i” must maximum function called G with maximum of giGi and that “g”
shows “gi

”. So the answer of suitable is: Max ui (gi, g-i*) CEDF giD/i
According to the function best answer we can say the “Nash equilibrium” in a G

game comes when we have: gi*D Bi (g-i
*) { gi*D/=G ui(gi*,g-i*) B ui(gi, g-i*)} CgiD/i

 =======CiDN
If in collection “Bi(g-i

*)” is one number of Nash equilibrium, this way Nash
equilibrium is “gi*”. Therefore in our sample to find the Nash equilibrium in the game
is mixture G* = (g1

*, g2
*,…,gn

*)/n. Nash equilibrium is game if we have:
Max ui(gi*,g-i*)=Max[(gi –G)V(gi + g-i*)]= Max[{gi V(gi + g-i*) – G V(gi + g-i*)}

giD/i]
The result f the first condition has gone like this:

dui(gi*,g-i*)/dgi=V(gi +g-i *) + gi V '(gi + g-i*) – (1/n) V(gi +g-i *) – G V '(gi + g-i*) = 0
dui(gi*,g-i*)/dgi= V(1-1/n) + V '(gi *–G)=0 , {assume (1-1/n)=1 because number of

processors is integer} 
dui(gi*,g-i*)/dgi= V+ V '(gi *–G)=0V'(gi*–G)= -V(gi*–G)= –(V/V')gi*= –

(V/V')+G
gi*= (– (– aG2+ vmax) / (–2aG)) + G  g*= ((–aG2) / (2aG) + (vmax) / (2aG)) + G
{ if V=0  G=gmax V= – aG2+ vmax 0 = – aG2+ vmaxvmax = agmax

2}
gi*=((– G/2) +((agmax

2)/(2aG))+G)=(gmax
 2 + G2)/(2G) , G*= gi* (G/gmax)

Equation (6) shows balance amount in Nash equilibrium for amount of processors in
all levels. As:

 G*=(gmax
2+G2)/(2gmax) (6)

Because for all level we have:G = (g1+g2+…+gn)/n = (!"#$% i)/n
So the suitable number of processor for per level became “G*”. Finally “α” is a

parameter that depends on the number of available processors and task graph structure.
If there are enough processors to execute parallel tasks within the task graph, “α” will
be equal to 100. Otherwise, if the number of available processors is less than the
number of parallel tasks within the task graph, “α” will be a integer number between 0
and 100. The value of “α” depends on the maximum number of tasks to be executed in
parallel, “gmax

”, and the number of available processors, “G*”. To estimate the value of
“gmax

”, the task graph is topologically sorted. “α” is number between 0 and 100 where
depended available processors and “α” represented percentage of exist processors and
As shown in equation (7):

 α=(G*/gmax)*100 {alwaysG*<=gmax} (7)

In equation (7), value of “G*” is the number of available processors suitable which
compute fully described.
3.2 Merging tasks (step 2)

A task within a task graph starts immediately after all of its parent nodes execution is
completed. Therefore, to compute the earliest start time, “ESTv”, of a task, “v” , the
earliest start time and the execution time of its parent nodes and the time it takes to
receive the results from its parent nodes are required. In order to compute “ESTv”, the
following equation can be used:

In equation (8), “Pi(v)” , indicates the set of the parent nodes of the task “v” . If a
node “v” , has no parent nodes its earliest start time will be zero.

www.SID.ir

Arch
ive

 of
 SID

Pre-scheduling and Scheduling of Task Graph … M. Abdeyazdan, S. Parsa, A.M. Rahmani

20

))v,p(c)p()p(EST(AXM=ESTv iii  (8)

In equation (8),“c(pi ,v)” is the size of the data to be received by the task “v” from
the parent “pi”. When combining a node “v” with one of its parents, “p1” to “pn”, the
start time of the siblings of “v” may be increased. The time, “Rpi,v”, at which the outputs
of each parent node, “pi”, can be collected by the child, “v” , is computed. In order to
compute the value of “Rpi,v” the following equation (9) is applied:

)v,p(c)p()p(ESTR iiiv,pi
  (9)

In equation (9), “c(pi , v)” indicates the size of the data that must be transmitted from
“pi” to “v” . After “Rpi,v” are computed, the parents are sorted in decreasing order of “Rpi,
”. Starting with the node with the highest value of “Rpi,v”, the benefit of merging “v”
with each of the parents, “pi”, on the earliest start time of “v” is computed. The node
“v” is merged with the subset of its parents, which reduce its earliest start time, the
most, and their number does not exceed the number of available processors.

To decide whether to merge a task with a subset or all of its parents, equation (10)
can be applied. This equation computes the benefit, “Q”, of combining a task with a
subset of its parents considering the amount of reduction in earliest start time of the
task, the execution time of the duplicated nodes and the number of parallel processors.

 Q=α*T–(1-α)*E (10) (10)

In equation (10), ∆T indicates the amount of reduction in earliest start time of the
node “v” , “∆E” is the sum of the execution time of the duplicated parents of “v” and
finally “α” is a parameter that depends on the number of available processors. If there
are enough processors to execute parallel tasks within the task graph, “α” will be equal
to 100, Otherwise if the number of available processors is less than the number of
parallel tasks within the task graph, “α” will be a number between 0 and 100. The
merging that amount of “T” is more than “ E ” are suitable merges and among them
maximum benefit is chosen.

The value of “HIJKLMis computed by applying equation (11):




 
k

k
Pp

vvP,v)p(ESTESTT  (11)

In equation (11), “Tv,Pk” indicates the reduced amount in earliest start time of the
node v, where Pk={p1,p2,…,pk} and “Ev,Pk” represents the total execution time of the
duplicated parents. In equation (11),“v” addresses the node created by merging v with
the parent nodes in “Pk” and “ESTv” indicates the earliest start time of the node, ”v” .

In order to compute the value of “Ev,Pk”, the set of siblings of “v” , “v,Pk”, whose
earliest start time increases after the merge is selected, firstly. Then, the nodes piPk
which are also parents of one or more nodes in “v,Pk” are duplicated. The value of
“Ev,Pk” is computed by applying equation (12) as the sum of the execution time of the
nodes “pi”.

Ev,Pk=  (pi) ,  pi {Pk Parents(v,Pk)} (12)
The proposed algorithm attempts to increase parallelism in the execution of a given

task graph by reducing the earliest start time of the tasks within the task graph. The

www.SID.ir

Arch
ive

 of
 SID

Journal of Advances in Computer Research (Vol. 4, No. 1, February 2013) 13-29

21

earliest start time of a task is dependent on the completion time of its parent nodes and
the time it takes to receive the results from the parents.

The propose algorithm attempts to increase parallelism in the execution of a given
task graph by reducing the earliest start time of the tasks within the task graph. The
earliest start time of a task is dependent on the completion time of its parent nodes and
the time it takes to receive the results from the parents. Merging tasks with one or some
parents happens, while it brings profit. While merging one task with one or some of
parents, duplicating parents merged for siblings, earliest starting time of executing
current task lessens, the merging is possible. Therefore profit riches when merging and
duplicating parents changing in earliest start time of current task be more than total time
of executing duplicated tasks.
3.3 Grouping of tasks (step 3)

In order to group tasks of each level in big and small group for scheduling, we use
the same formula “G*” that we had as result in step 1 and call it “T*” that “tmax” is the
maximum time of executing task in related level and T is the average time of executing
tasks of related level and will be computed as the follow in equation (13):

 T*=(Tmax
 2 + T2) / Tmax (13)

These concepts and equation (13) that we have told are used as the suitable choice in
grouping tasks in each task graph and considering having execution time of tasks in
each level. We group tasks in two different lists, big and small. Equation (13) is used for
tasks in every level in the followed way. Therefore the suitable for grouping in two
separate lists big and small for one level equals “T*”. In the way number of tasks in
each level equal n. “T” is the average time to run whole tasks in related level and “Tmax”
is the maximum time to execute among tasks.

Tasks assign in list big where that have higher executing or equal “T*”. Then big list
placed for initial scheduling and tasks with less executing time than “T*” assign in the
small list and then list small placed in order to schedule in slack (idle time of
processors) in order to lessen the idle time of processors and what if there is no
possibility of assigning in holes in the current task, in the small list, in the suitable place
regarding in order to executing of parents. The list big and small during these levels to
fill up and first schedule list big in per level and then schedule list small in per level.
3.4 Scheduling of the list big (step 4)

Regarding “EST(vi,pj)” in equation (8) is earliest starting time of task ith on the
processor jth and “Avail(vi,pj)” is available time for task ith to the processor jth, “EFT
(vk,pl)” is earliest finishing time parent i on the processor “L” and “Ci,k”is the cost of
common with the task “k”.Equation (15) illustrated “EFT(vk,pl)” where “Wi,j”is the
execution time for task ith to the processor jth.

 EST(vi,pj)=Max{Avail (vi,pj) ,EFT(vk,pl)+Ci,k } (14)

 EFT(vk,pl)= Wi,j+EST(vi,pj) (15)
3.5 Scheduling of the list small (step 5)

Existing tasks in the list small will be possibly placed in holes. Possibility of
inserting in earliest hole (slack) and idle time of processors between earliest scheduling
of task ith and the next task kth on the processor jth that while the following equation is

www.SID.ir

Arch
ive

 of
 SID

Pre-scheduling and Scheduling of Task Graph … M. Abdeyazdan, S. Parsa, A.M. Rahmani

22

on, Possibility of inserting in slack exists. Otherwise the current task in the list small in
the proper place be assigned after parents and shifts rest of the task on the current
processor. Equation (16) illustrated formula of inserting in slacks:

 Max { f(vk,pj) , EST(vi,pj) } + Wi,j S(vl,pj) (16)

The processor selection is to schedule the tasks “vi” onto processor “pj” that gives the
earliest finish time for the task. It uses an insertion based policy which considers the
possible insertion of task “vi” in an earliest idle time slack between the already
scheduled task “vi” and its immediate successor task “vk” on processor “pj”, if it
satisfies equation (16). “S(vl,pj)” is the start time of task “vl” onto processor “pj”,
“F(vk,pj)” is the finish time of task “vk” onto processor “pj”.

Delay calculation is to calculate the delay to all tasks. For avoiding increasing the
schedule length, the earliest finish time of the exit task, its latest finish time, and the
deadline for all the tasks are the same. The delay of a task is the difference between its
current finish time and its latest finish time which is the critical path of that task, the
maximize finish time starting from that task to exit task. The latest finish time is
calculated recursively by traversing the task graph upward. The delay time is calculated
as following:

 Delay(vi,pj) = LFT(vi,pj)-EFT(vi,pj) (17)

LFT(vi,pj) = Max vksucc(vi) (LFT (vk,pl) – ci,k) (18)Where LFT (vexit, pj)=EFT (vexit, pj)

4. Experimental Results

In this section, second step of our proposed algorithm (pre-scheduling), PSSGT, is
firstly compared with a known algorithm, GRS [7,8]. Then the length of the critical
paths and degree of parallelism in the resultant task graphs are compared. The
experiments have been carried out on a micro-computer with Intel(R) Core(TM) i5 CPU
M480, 4 GB of RAM (64-bit). All the programs are in C# and developed within the
Microsoft Visual Studio 2010.

Recently challenge is about the much number of tasks and processors. In order to be
sure that proposed algorithm presented a good result for much number of tasks and
processors. We have run all the ten algorithms on five instances of various sizes of both
the Gauss–Jordan elimination problem and the LU factorization problem. In our
simulation, we assume the number of processors is four. The problem sizes, the
computation and communication time considered were summarized in table 1.

Table 1: Experimental setup

Problem No. of tasksComputation time Communication time
Gauss–Jordan elimination 15, 21, 28, 36 (GJ) 40s/task 100s
LU factorization 14, 20, 27, 35(LU) 10s bottom layer task, plus 10s for every layer 80s

For the nondeterministic scheduling algorithms, the simulations were run 100 times

and the average values reported. The number of tasks we choose for LU and GJ
algorithms is based on their “layered” structure diagrams shown in figures2,3,
respectively. Let us explain the reasoning behind the number of tasks chosen for our
performance study. We use a number of dashed lines to help explain the chosen tasks’
numbers.

www.SID.ir

Arch
ive

 of
 SID

Journal of Advances in Computer Research (Vol. 4, No. 1, February 2013) 13-29

23

Figure 4 shows an example of GJ algorithm with 36 tasks. The numbers of tasks we
choose in GJ algorithm is straighter forward. Layers L0, L1, L2, L3, L4, L5, L6, L7,
contain 3, 6, 10, 15, 21, 28, and 36 tasks, respectively. Therefore, the total numbers of
tasks between layer L0 and L1, L2, L3, L4, L5, L6, and L7 are 3, 10, 15, 21, 28, and 36.

Also figure 5 is an example of LU algorithm with 35 tasks. Each layer starts with one
task followed by a number of tasks. The LU diagram increments from layer L1 into L2,
L3, L4, L5, and L6, thus the number of task increasing from 9 into 14, 20, 27, and 35,
respectively[1].

Figure2. The task graph for the Gauss–Jordan elimination algorithm (left side)

Figure3. The task graph for the LU decomposition algorithm (right side)

Figure4. The task graph for GJ algorithm with 36 tasks (left side)

Figure 5. The task graph for LU decomposition algorithm with 35 tasks(right side)

Considering our assumption of four processors, a number of tasks longer than 35
would not yield qualitative differences, especially considering that the additional tasks
are the same type as the previous ones. As discussed thus far, PSSGT is an effective
way to decrease a makes pan. We use elitist selection, meaning that the best individual

www.SID.ir

Arch
ive

 of
 SID

Pre-scheduling and Scheduling of Task Graph

always survives in one generation, to keep the best result in
GA parameters of this simulation are shown in table

Parameters Value
Population size
Mutation rate
Crossover rate

Stopping criteria: Stops when it converges in a prede
generation exceeds

The benchmark of task graphs FFT
[14,15,18].

Figure 6. Task graph (FFT

Figure8. Task graph (FFT

The benchmark of task graphs IRR,

scheduling and Scheduling of Task Graph … M. Abdeyazdan, S. Parsa, A.M

24

always survives in one generation, to keep the best result into the next generation. All
GA parameters of this simulation are shown in table 2.

Table 2. GA parameters

Parameters Value
Population size 30
Mutation rate 0.01
Crossover rate 0.7

Stopping criteria: Stops when it converges in a predefined threshold when the max. no.of
generation exceeds 6,000

The benchmark of task graphs FFT1, FF2, FFT3, FFT4are shown in figures 6

FFT1) Figure7. Task graph (FFT2)

FFT3) Figure9. Task graph (FFT4)

The benchmark of task graphs IRR, STD are shown in figures 10,11 [14,15,18].

M. Rahmani

to the next generation. All

fined threshold when the max. no.of

6, 7, 8, 9

].

www.SID.ir

Arch
ive

 of
 SID

Journal of Advances in Computer Research

Figure10. Task graph (IRR

4.1 First step of PSSGT (processors cost)
Figure 2 shows the GJ algorithm

straighter forward. Layers L0, L1
and 36 tasks. Also figure 3 shows the LU algorithm
followed by a number of tasks. The LU diagram
into 14, 20, 27, and 35, respectively

Table 3.The effect of applying PSSGT to estimate the appropriate number of processors for

Task Graph

Completion time with
Max. number of
processors are
available

Completion Time when
the number of
are computed by PSSGT

GJ_15 440, 5(cpu)

GJ_21 540, 6(cpu)

GJ_28 680, 7(cpu)

GJ_36 760, 8(cpu)

LU_14 350, 4(cpu)

LU_20 470, 5(cpu)

LU_27 650, 6(cpu)

LU_35 860, 7(cpu)

Research (Vol. 4, No. 1, February 2013

25

IRR)Figure 11. Task graph (STD)

First step of PSSGT (processors cost)
 shows the GJ algorithm. The numbers of tasks we choose in GJ algorithm is

1, L2, L3, L4, L5, L6, L7 contain 3, 6, 10, 15
 shows the LU algorithm. Each layer starts with one task

The LU diagram, the number of task increasing from
respectively.

The effect of applying PSSGT to estimate the appropriate number of processors for
graphs

Completion Time when
the number of processors
are computed by PSSGT

Percentage of
reduction in the
number of
processors

Percentage of
increase in execution
time of the task
graph

460, 4(cpu) 0.20 0.043

540, 5(cpu) 0.17 0

680, 5(cpu) 0.29 0

780, 6(cpu) 0.25 0.026

320, 3(cpu) 0.25 -0.086

530, 3(cpu) 0.40 0.113

680, 4(cpu) 0.34 0.044

930, 4(cpu) 0.43 0.075

2013) 13-29

The numbers of tasks we choose in GJ algorithm is
15, 21, 28,

Each layer starts with one task
the number of task increasing from 9

The effect of applying PSSGT to estimate the appropriate number of processors for 8 task

Percentage of
increase in execution
time of the task

0.043

0

0

0.026

0.086

0.113

0.044

0.075

www.SID.ir

Arch
ive

 of
 SID

Pre-scheduling and Scheduling of Task Graph … M. Abdeyazdan, S. Parsa, A.M. Rahmani

26

The applicability of PSSGT in predicting the appropriate number of processors
for scheduling 20 random task graphs and 20 new task graphs is shown in table 4. As
shown in table 4, in average the execution time of the task graphs are increased about
3.5% while the number of parallel processors is reduced by 29.5%.

Table 4.The effect of applying PSSGT to estimate the appropriate number of processors for different
graphs

Task Graph

Completion Time with
Max. number of
processors are
available

Completion Time when
the number of processors
are computed by PSSGT

Percentage of
reduction in the
number of processors

Percentage of
increase execution
time of the task
graph

20RandomGraphs 981 1020 0.31 0.04

20New Graphs 890 920 0.28 0.03

The applicability of PSSGT in predicting the appropriate number of processors for

scheduling 6 benchmark task graphs is shown in table 5. As shown in table 5, in
average the execution time of the task graphs are increased about 12% while the number
of parallel processors is reduced by 27.2%.

Table 5.The effect of applying PSSGT to estimate the appropriate number of processors for 6
benchmarks

Task Graph
Completion time with
Max. number of
processors are available

Completion Time when
the number of processors
are computed by PSSGT

Percentage of
reduction in the
number of processors

Percentage of
increase in execution
time of the task
graph

FFT1 120, 8(cpu) 144, 6(cpu) 0.25 0.16

FFT2 180, 8(cpu) 235, 6(cpu) 0.25 0.23

FFT3 1640, 8(cpu) 1924, 6(cpu) 0.25 0.15

FFT4 125, 8(cpu) 145, 6(cpu) 0.25 0.14

IRR 525, 7(cpu) 536, 5(cpu) 0.29 0.02

STD 38, 6(cpu) 39, 4(cpu) 0.34 0.02

4.2 PSSGT vs. other algorithms
The quality of results is measured by two metrics: makes pan and computational

cost. The makes pan is represented by the time required to execute all tasks, the
computational cost is the execution time of an algorithm. A good scheduling algorithm
should yield short makes pan and low computational cost. In our simulation, we
evaluate Gauss–Jordan elimination and LU factorization algorithms based on different
number of tasks, with the former increasing from 15, 21, 28 to 36 and the latter from14,
20, 27 to 35. Other parameters such as task computation time and intercommunication
delays are given in table 1. An ideal algorithm must perform well on different problems
with different sizes.

The makes pan of the obtained solutions are represented on figure 12 for the
Gauss–Jordan elimination and on figure 13 for the LU factorization.

www.SID.ir

Arch
ive

 of
 SID

Journal of Advances in Computer Research

Applying PSSGT algorithm to schedule five benchmark task graphs, the parallel
execution times of the resultant scheduling were compared with the execution times
resulted by applying 7 known scheduling algorithms
CLANS[9], DSC[10], MCP[11], LC
benchmark task graphs are FFT1
are presented.

Figure12.Makespan for Gauss Jordan elimination for variable task sizes and the scheduling

Figure13.Makespan for LU factorization

Table 6.The effect of PSSGT on preparing

MCPDSC CLANS Graph

148124 (4) 124 (4) FFT1

205205 (8) 200 (8) FFT2

23501860
(4)

1860
(4) FFT3

710710
(12) 405 (2) FFT4

605605
(12) 725 (7) IRR

5. Conclusion

Multiprocessors systems were start of a revolution in computation with high utility
and caused remarkable change in computation. Recently, researchers and workmen
despite of multiprocessor systems can reach to higher goals. Therefore the purpose of
pre-scheduling that is our suggested solution according to games theory and idea Nash
equilibrium is minimizing schedule length and determining number of processors for
minimizing idle processors.

%& '% '()

'))

*))

+))

())

%)))

%'))

%*))

,
"-
./
0"
1

 !"#$%&'()*%'+,-(.(/

GA
SA
Min-min
Chaining
A*

HLFET
ISH
DSH
Tabu
PSSGT

Research (Vol. 4, No. 1, February 2013

27

algorithm to schedule five benchmark task graphs, the parallel
execution times of the resultant scheduling were compared with the execution times

 known scheduling algorithms. These scheduling algorithms are
, LC[12], LAST[13], SR[14] and Genetic[17]
1-4[15] and IRR[14]. In table 6 the comparison results

Jordan elimination for variable task sizes and the scheduling
algorithms(left side)

Makespan for LU factorization for variable task sizes and the scheduling algorithms (right
side)

The effect of PSSGT on preparing 5 benchmark task graphs for optimal scheduling

PSSGTGA SR LAST LC MCP

120 (6) 173 (3) 146 146 (1) 127 (80 148 (8)

180 (6) 225
(20) 215 240 (8) 225 (8) 205 (8)

1640 (61992
(2) -- 2220 (2) 2838

(8) 2350 (8)

125 (6) 160 (8) 160 170 (8) 710 (8) 710 (8)

525 (5) 730 (3) 680 840 (3) 710 (8) 605 (7)

Multiprocessors systems were start of a revolution in computation with high utility
and caused remarkable change in computation. Recently, researchers and workmen
despite of multiprocessor systems can reach to higher goals. Therefore the purpose of

eduling that is our suggested solution according to games theory and idea Nash
equilibrium is minimizing schedule length and determining number of processors for

2+
 !"#$%&'()*%'+,-(.(/

%* ') '3)

'))

*))

+))

())

%)))

%'))

%*))

%+))

,
"-
./
0"
1

 !"#$%&'()*%'+,-(.(/

GA
SA
Min-min
Chaining
A*

HLFET
ISH
DSH
Tabu
PSSGT

2013) 13-29

algorithm to schedule five benchmark task graphs, the parallel
execution times of the resultant scheduling were compared with the execution times

These scheduling algorithms are
] and the

 the comparison results

Jordan elimination for variable task sizes and the scheduling

for variable task sizes and the scheduling algorithms (right

 benchmark task graphs for optimal scheduling

PSSGT

6)

Multiprocessors systems were start of a revolution in computation with high utility
and caused remarkable change in computation. Recently, researchers and workmen
despite of multiprocessor systems can reach to higher goals. Therefore the purpose of

eduling that is our suggested solution according to games theory and idea Nash
equilibrium is minimizing schedule length and determining number of processors for

2&

www.SID.ir

Arch
ive

 of
 SID

Pre-scheduling and Scheduling of Task Graph … M. Abdeyazdan, S. Parsa, A.M. Rahmani

28

Task graphs can be prepared for scheduling by minimizing their critical path length
and maximizing their parallelism before the scheduling. To achieve this, a task merging
and clustering algorithm can be applied. In this paper suggests merging each task with a
subset of its parents for better merging, provided that the earliest start time of the task
reduces and the start time of the siblings of the task does not increase after the merge.
To avoid any increase in the start time of the siblings those parent nodes which are
supposed to be merged with the child node, are duplicated. When duplicating a parent
node, the number of tasks apparently increases. Therefore, there should be enough
number of available processors to execute the parallel tasks, otherwise the duplication
and thereby the merge will not be beneficial.

Problem is to achieve the trade-off between two parameters energy consumption and
time (makespan). Our experimental result on a number of known benchmark graphs
demonstrates the effect of our proposed algorithm and it is to achieve the trade-off
between these two parameters.

6. References

[1] [1] Jin S, Schiavone G, Turgut D (2008) A performance study of multiprocessor task scheduling
algorithms. DOI10.1007/ s11227-007-0139-z, J Supercomput 43, pp 77–97.

[2] [2]ChoonLee Y, Zomaya A, Siegel H (2010) Robust task scheduling for volunteer computing
systems. DOI10.1007/ s11227-009-0326-1, J Supercomput 53, pp 163–181

[3] [3]Afgan E, Bangalore P, Skala T (2012) Scheduling and planning job execution of loosely
coupled applications. DOI10.1007/ s11227-011-0555-y, J Supercomput. 59, pp 1431–1454

[4] [4]Ababneh I, Bani-Mohammad S, Ould-Khaoua M (2010) An adaptive job scheduling scheme
for mesh-connected multi computers. DOI10.1007/ s11227-009-0333-2, J Supercomput. 53, pp
5–25

[5] [5]Niemi T, HameriA (2012) Memory-based scheduling of scientific computing clusters.
DOI10.1007/ s11227-011-0612-6, J Supercomput. 61, pp 520–544

[6] [6]Qureshi K, Majeed B, Kazmi J.H, Madani S.A (2012) Task partitioning, scheduling and load
balancing strategy for mixed nature of tasks. DOI10.1007/ s11227-010-0539-3, J Supercomput.
59, pp 1348–1359

[7] [7]Aronsson P, Fritzson P (2005) A Task Merging Technique for Parallelization of Modelica
Models. In : 4th International Modelica Conference Hamburg

[8] [8] Aronsson P, Fritzson P (2003) Task Merging and Replication using Graph Rewriting. In :
2nd International Modelica Conferenc Germany

[9] [9] Aronsson P, Fritzson P (2002) Multiprocessor Scheduling of Simulation Code from Modelica
Models.

[10] [10. Parsa S, Lotfi S, Lotfi N (2007) An Evolutionary Approach to Task Graph Scheduling.
Lecture notes in computer scince, 4431, pp 110

[11] [11] Kim S, Browne J (1988) A General Approach to Mapping of Parallel Computation upon
Multiprocessor Architectures. In : International Conference on Parallel Processing

[12] [12] McCreary C, Gill H (1989) Automatic determination of grain size for efficient parallel
processing. Communications of the ACM, 32(9), pp 1073-1078

[13] [13] Yang T, Gerasoulis A (1994) DSC: scheduling parallel tasks on an unbounded number of
processors. Parallel and Distributed Systems, IEEE Transactions on, 5(9), pp 951-967

[14] [14] Wu M, Gajski D (1990) Hypertool : A programming aid for message-passing systems.
Parallel and Distributed Systems, IEEE Transactions on, 1(3), pp 330-343

[15] [15] BAXTER J, PATEL J (1989) The LAST algorithm- A heuristic-based static task allocation
algorithm. In : International Conference on Parallel Processing

[16] [16]Parsa S, Reza Soltan N, Shariati S (2010) Task Merging for Better Scheduling. Lecture
Notes in Computer Science, pp 311-316

[17] [17]Abdeyazdan M, Rahmani A.M (2008) Multiprocessor Task Scheduling using a new
Prioritizing Genetic Algorithm based on Number of Task Children. Distributed and parallel
system, pp 105-114

www.SID.ir

Arch
ive

 of
 SID

Journal of Advances in Computer Research (Vol. 4, No. 1, February 2013) 13-29

29

[18] [18] Kwok Y. K, Ahmad I (1999) Benchmarking and Comparison of the Task Graph Scheduling
Algorithms. Journal of Parallel and Distributed Computing 59, pp 381-422

[19] [19]Ahmad I, Ranka S (2008) Using Game Theory for Scheduling Tasks on Multi-Core
Processors for Simultaneous Optimization of Performance and Energy. 978-1-4244-1694-3/08
IEEE, Volume 27, Number 2, pp 177-194

[20] [20]ChouLai K, Yang C.T (2008) A dominant predecessor duplication scheduling algorithm for
heterogeneous systems. DOI10.1007/ s11227-007-0152-2, J Supercomput. 44, pp 126–145

[21] [21]Gairing M, Lücking T, Mavronicolas M, Monien B (2010) Computing NashEquilibria for
Scheduling on Restricted Parallel Links. Theory of Computing Systems, Volume 47, Number 2,
pp 405-432

[22] [22]M.R.Garey, D.S.Johnson (1979), “Computers and Intractability: A Guide to the Theory of
NP-Completeness”, W.H. Freeman and Company

[23] [23]Baskiyar S Abdel-Kader R (2010) Energy aware DAG scheduling on heterogeneous
systems. Cluster Computing, Volume 13, Number 4, pp 373-383

[24] [24]Wang W, Mok A.K, Fohler G (2005) Pre-Scheduling. Real-Time Systems, Volume 30,
Numbers 1-2, pp 83-103

[25] [25]Bonyadi M.R, Moghaddam M.E (2009) A Bipartite Genetic Algorithm for Multi-processor
Task Scheduling. International Journal of Parallel Programming, Volume 37, Number 5, pp 462-
487

[26] [26]Li K (2012) Energy efficient scheduling of parallel tasks on multiprocessor computers. J
Supercomput, Volume 60, Number 2, pp 223-247

[27] [27]Thang N.K (2010) NP-hardness of pure Nash equilibrium in Scheduling and Connection
Games.In : Proc. of the 35th Int. Conf. on Current, Trends in Theory and Practice of Computer
Science (SOFSEM), 2009, Preprint submitted to Elsevier

[28] [28]Tosun S (2011) Energy- and reliability-aware task scheduling onto heterogeneous MPSoC
architectures. J Supercomput.The Journal of Supercomputing, Online First™

[29] [29] Nisan N, Roughgarden T, Tardos E, Vazirani V (2007) Algorithmic Game Theory.
Cambridge University, NY 10012-2473, Chapter 12 in Hand book, pp 301–330

[30] [30]Sinnen O, Sousa L (2004) On Task Scheduling Accuracy: Evaluation Methodology and
Results. J Supercomput.,Volume 27, Number 2, pp 177-194

[31] [31]McKelvey R.D, McLennan A (1996) Computation of Equilibria in Finite Games. Chapter 2
in Hand book of Computational Economics, Volume 1, pp 87–142

[32] [32] Nash J.F (1951) Non-Cooperative Games. Annals of Mathematics, Vol. 54, No. 2, pp 286–
295

[33] [33] Papadimitriou C.H (2001) Algorithms, Games and the Internet. Proceedings of the 33rd
Annual ACM Symposiumon Theory of Computing, pp 749–753

[34] [34]Aydin H, Melhem R, Moss D, Meja-Alvarez P (2004) Power-Aware Scheduling for Periodic
Real-Time Tasks. IEEE Trans on Computers, 53(5), pp 584-600

[35] [35] Deb K (2001) Multi-Objective Optimization using Evolutionary Algorithms. Wiley
[36] [36] Kang J, Ranka S (2008) Dynamic Algorithms for Energy Minimization on Parallel

Machines. Euromicro Int’l Conf. on Parallel, Distributed and Network-based Processing
[37] [37] Khan S.U, Ahmad I (2006) Non-cooperative, Semi-cooperative and Cooperative Games-

based Grid Resource Allocation. Int’l Parallel and Distributed Processing Symposium
[38] [38] Schmitz M.T, Al-Hashimi B. M (2001) Considering Power Variations of DVS Processing

Elements for Energy Minimisation in Distributed Systems. Int’l Symposium on System
Synthesis, pp 250-255

[39] [39]Weichen L, Zonghua G, Jiang X, Xiaowen W, Yaoyao Y (2010) Satisfiability Modulo
Graph Theory for Task Mapping and Scheduling on Multiprocessor Systems. Digital Object
Identifier 10.1109/TPDS.2010.204, IEEE

[40] [40]Agarwal A, Kumar P (2009) Economical Duplication Based Task Scheduling for
Heterogeneous and Homogeneous Computing Systems. WEE International Advance Computing
Conference (IACC)

www.SID.ir

