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Abstract 
This paper presents a new Modified Shuffled Frog Leaping Algorithm (MSFLA) 

applied to design simultaneous coordinated tuning of damping controllers to damp 
the power system low frequency oscillations. For this, a new frog leaping rule is 
proposed to improve the local exploration and performance of the original SFLA 
and the genetic mutation operator is employed for new frog generation instead of 
random frog generation to improve the performance and quicker algorithm 
convergence. In order to verify the effectiveness of the proposed method, a 2-area-4-
machine and a 5-area-16-machine power system are considered which two power 
system stabilizers (PSSs) are designed coordinately for the first system and one PSS 
for a generator and one supplementary controller for a Static Var Compensator 
(SVC) are designed simultaneously for the second system. To show the effectiveness 
of the designed controllers, study systems are tested under two different operating 
conditions and simulation studies are presented. 
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1. Introduction 

It is known that the Power System Stabilizers (PSSs) and the supplementary 
controllers of Flexible AC Transmission System (FACTS) devices are efficient tools for 
improving the stability of power systems through damping of low-frequency modes in 
the order of 0.2 to 2.5 Hz [1], [2]. Many control strategies, such as optimal control, 
robust control and adaptive control have been proposed to the PSS design problem. The 
works carried out in [3]-[7] are examples of such applied techniques. Among these, 
conventional PSS (CPSS) of the lead-lag compensation type is used by most utility 
companies because of its simple structure, flexibility and ease of physical realization 
[2]. 

In the last decade, meta-heuristic optimization techniques have gained an incredible 
recognition as the solution method for such type of designing damping controller 
problems. The Particle Swarm Optimization (PSO) method is one of the most used 
algorithms to optimal design of PSSs [8]. The authors in [9] presented an 
implementation using a genetic algorithm to seek the PSSs parameter. In [10], a 
procedure employing simulated annealing and particle swarm optimization is proposed 
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to search for the solution. Some other heuristic optimization techniques, such as 
Immune Algorithm (IA) [11], AINet algorithm [12], Shuffled Frog Leaping Algorithm 
(SFLA) [13], Imperialist Competitive Algorithm (ICA) [14], Artificial Bee Colony 
(ABC) algorithm [15] and Harmony Search Algorithm (HSA) [16] were applied to 
design power system damping controllers. 

This paper presents an alternative method to design stabilizing signals in power 
system based on an improved real version of Shuffled Frog Leaping Algorithm (SFLA). 
In fact since there are some shortcomings with the original SFL algorithm, a Modified 
SFL Algorithm (MSFLA) is introduced in this paper. To show the effectiveness, 
robustness and the optimization velocity of proposed MSFLA, numerical results are 
presented on two study systems: a 2-area 4-machine system by designing two PSSs and 
a 5-area 16-machine system by designing a PSS for a generator and a supplementary 
controller for the SVC. 

The effectiveness and robustness of the designed damping controllers are illustrated 
by considering various operating conditions.  The main Innovation of the paper are as 
follows: (i) presenting a modified SFL algorithm, (ii) introducing a new optimization 
formulation and cost function to design the robust coordinated PSS and supplementary 
controller for the SVC and finally proposing a new approach for power system 
stabilization.  

The paper is organized as follows: to make a proper background, the basic concept of 
the original SFLA and proposed modified SFLA are explained in Section 2. Section 3 
describes the study systems. In section 4, the design problem is formulated as a multi-
objective optimization problem and the simulation results of the SFLA and MSFLA on 
two case studies are given in Section 5. Finally, Section 6 concludes paper.  

2. Original SFL algorithm and proposed MSFL algorithm 

SFLA is a population based optimization algorithm inspired from the memetic 
evolution of a group of frogs when searching for food and proven its superior 
capabilities, such as faster convergence and better global minimum achievement [17]. 
The original SFLA and proposed MSFLA are explained below. 
2.1 Original SFL Algorithm Overview 

The SFL is derived from a virtual population of frogs in which individual frogs 
represent a set of possible solution. The term frog in SFLA is similar to chromosome in 
genetic algorithm. Each frog is distributed to a different subset of the whole population 
described as memeplexes. Different memeplexes are considered as different culture of 
frogs that are located at different places in a solution space (i.e. global search). Each 
culture of frogs performs simultaneously an independent deep local search using a 
particle swarm optimization like method. To ensure global exploration, after a pre-
defined number of memeplex evolution steps (i.e. local search iterations), information is 
passed among memeplexes in a shuffling process. Shuffling improves frog ideas quality 
after being infected by the frogs from different memeplexes; ensure that the cultural 
evolution towards any particular interest is free from bias. In addition, to improved 
information, random virtual frogs are generated and substituted in the population if the 
local search cannot find better solutions. Then a local search and shuffling processes 
(global relocation) will be continued until convergence is materialized. The flowchart of 
the SFLA is illustrated in Figure 1.  
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As it is shown in Figure 1, SFLA begins with an initial population of “N”  frogs, 
P={X1,X2,...,XN} that is created randomly within the feasible space Ω. For S-dimensional 
problems (S variables), the position of the ith frog is represented as Xi=[xi1,xi2,...,xis]T. A 
fitness function is defined to evaluate the frog’s position, while the performance value 
of each frog is computed based on its position and frogs will be sorted in a descending 
order according to their fitness values. The entire population is divided into m 
memeplexes, each of which consisting of n frogs (i.e. N=n×m). The division is done 
with the first frog goes to the first memeplex, the second frog goes to the second 
memeplex, mth frog goes to the mth memeplex, and the (m + 1)th frog backs to the first 
memeplex, etc. The local search block of Figure 1 is shown in Figure 2. 

According to Figure 1, during memeplex evolution, the position of ith frog (Di) is 
adjusted based upon the difference between the frog with the worst fitness (Xw) and the 
frog with the best fitness (Xb) as shown in (1). The worst frog Xw leaps toward the best 
frog Xb and the position of the worst frog is updated based on the leaping rule, as shown 
in (2): 

)(())(D changePosition i wb XXrand −×=  (1) 

)(,)( maxDDDXnewX ww <+=  (2) 

Where rand () is a random number in [0,1] and Dmax is the maximum allowed change of 
frog’s position in one jump. If this repositioning process produces a frog with a better 
fitness, it replaces the worst frog, otherwise, the calculation of (1) and (2) are repeated 
with respect to the global best frog (Xg), (i.e. Xg replaces Xb). If no improvement 
becomes possible, a new frog within the feasible space is randomly generated to replace 
the worst frog. Based on Fig. 1, the evolution process is continued until the termination 
criterion is met. The termination criterion could be the number of iterations or when a 
frog with an optimum fitness is found [17, 20]. 
2.2 Proposed Modified SFL Algorithm (MSFLA) 
According to the original frog leaping rule, the possible new position of the worst frog 
is restricted in the line segment between its current position and the best frog’s position, 
and the worst frog will never jump over the best one. As a result, this frog leaping rule 
limits the local search space during each memeplex evolution step.  
Also, according to (1) and (2), the worst frog is only affected by the best frog; therefore 
the best frog has less chance of evolution during the leaping process. These issues make 
the algorithm having an insufficient learning mechanism and cause premature 
convergence and lead the algorithm to be trapped in local optimum easily. To obviate 
these problems and increase the ability of algorithm in the search space exploration, a 
new method is presented for local search in the memeplexes. 

 Modification of the frog leaping rule: In the proposed method, the frog leaping rule and 
the process of learning by the worst frog from the best frog in a memeplex is defined 
using the sum of the Minkowski distance of each memeplex member (X(i)) from the 
worst frog (Xworst) and the one between the worst frog in the memeplex and the best frog 
of the whole population, i.e (Xg).  
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Figure 1. General principle of SFLA Figure 2. Local search block of Figure 1. 

The proposed frog leaping rule is expressed in the following equation. 

WXXcXiXMcrandiD worstgworst +−×+××= )()),(()( 21  (3) 

where, )(iX  and worstX  are the ith (i=1,…,n) and the worst member of each memeplex 
respectively. Also, rand is a random number with homogenous distribution in the range 
between 0 and 1.  1c  is learning factor of the worst solution from the rest of the 
solutions in each memeplex. Also, 2c  is learning factor of the worst solution in a 
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memeplex from the best solution in the whole population which is a random number 
between 0 and 2. Also, )),(( worstXiXM  stands for the Minkowski distance between 
the ith solution from the worst solution in a memeplex. The Minkowski-r-distance 
between X and Y is defined using the following equation: 

r
r

L

j
jj yxYXM ∑

=
−=

1
),(  (4) 

where, X=(x1, x2, … xL) and Y=(y1, y2, … yL). Finally, in (3), W is defined using the 
following equation [20]: 

T
SSwrwrwrW ],...,,[ max,max,22max,11=  (5) 

in which, r i ( Si ≤≤1 ) are uniformly distributed random numbers in the interval [-1, 1]. 
Wmax is the most allowed understanding and the uncertainty in the ith dimension of the 
search space, defined as follow:  

T
SwwwW ],...,,[ max,max,2max,1max =  (6) 

As shown in (3) the learning process of the worst frog from the best frog is not done 
only in a single memeplex; but the learning process of the worst frog in the proposed 
strategy is from all of the frogs in the same memeplex and the best frog of the whole 
population.  
The new frog leaping rule prevents trapping of the algorithm in the local optimum 
especially in more complex problems having high dimensions. Also, the convergence of 
the algorithm is improved by changing the learning process of the worst frog from the 
best frog in a memeplex to the best frog in the whole population. Moreover, using the 
Minkowski distance has caused the algorithm to be more powerful and precise in local 
search process around the worst frog. According to the new frog leaping rule, the new 
position of each frog is calculated using the following equation: 

)()()( iDoldXnewX worstworst +=  (7) 

In (7) if the position change of a frog leads to a better frog then the newly positioned 
frog will replace the old worst frog; otherwise, Xg will replace the X(i) in (3). If no 
improvements are made to the worst frog in the new frog generation process in (7), then 
a frog should be generated and replace the worst frog. In the original SFL algorithm, 
this new frog is generated randomly. 

Using the genetic mutation operator: One of the main drawbacks of the standard SFLA is 
generating a frog randomly and replacing it with the frog that is not improved. This 
replacement may lead the algorithm to premature convergence since the algorithm 
losses the population quality and the potential of those solutions that could reach the 
global optimum at the last iteration. To overcome the difficulties associated with this 
mechanism, the mutation operator is used for generating new frogs. Mutation is a 
powerful strategy which diversifies the SFLA population and improves the SFLA’s 
performance on preventing premature convergence to local minima [22]. In this paper 
the Cauchy distribution is used for applying the mutation operator to the worst frog.  
When a solution is chosen to be mutated, each component is then mutated or not with 
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probability S/1 , where S is the number of components in the vector. On average, one 
component is mutated. To mutate a component, a number is generated randomly using 
Cauchy distribution which the probability density function of the Cauchy distribution is 
given in [22] that is defined by: 

2.0,1)( 22 =
+

= a
ax

axf
π

 (8) 

The reason for using such a mutation operator is to increase the probability of escaping 
from a local optimum [22]. After generating new frog, Xi is leaped to explore the new 
positions as follows: 

WiXXMcrandiD g +××= ))(,()( 1  (9) 

Then, the new position of the frog is obtained based on following equation: 









>+

≤+

=
maxmax

max
)( DDifD

DD

DX

DDifDX
newX

i
i

T
i

i
i

iii

i
 (10) 

If the repositioning process produces a frog with better fitness, it replaces Xi.  
Otherwise, the algorithm goes to the next jump and the evolution process is continued 
until the termination criterion is met. The termination criterion could be the number of 
iterations or when a frog with minimum fitness is found.   

3. Case Studies 

Two power systems are used to demonstrate the design of damping controllers, a 2-
area-4-machine system and a 5-area-16-machine system: 
3.1 2-area-4-machine system 
This system is illustrated in Figure 3. The sub transient model for the generators, and 
the IEEE-type DC1 and DC2 excitation systems are used for machines 1 and 4, 
respectively. The IEEE-type ST3 compound source rectifier exciter model is used for 
machines 2 and 3.  Two PSSs are going to be designed simultaneously for machines 2 
and 3. Details of the system data are given in [23]. 
 

 
Figure 3.  Single-line diagram of a 2-area-4-machine study system. 
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3.2. 5-area-16-machine system 
This system is shown in Figure 4, consisting of 16 machines and 68 buses for 5 
interconnected areas. The first nine machines, G1 to G9, constitute the simple 
representation of Area 1. Next four machines G10 to G13 represent Area 2. The last 
three machines, G14 to G16, are the dynamic equivalents of the three large neighboring 
areas interconnected to Area 2. The sub-transient reactance model for the generators, the 
first-order simplified model for the excitation systems, and the linear models for the 
loads and ac network are used.  Details of the system data are given in [23]. Based on 
earlier studies in [24], a 546 MVar SVC is placed at bus 1 in the 5-area-16-machine 
system. The supplementary controller for the SVC and a PSS to be placed in machine 9 
are going to be designed simultaneously. 
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Figure 4.  Single line diagram of a 5-area-16-machine study system. 

4. Problem Formulation 

The structure shown in Figure 5 is used for both the PSS and the supplementary 
controller, where the generator speed (GS) is considered as input to the PSS and the 
input to the supplementary controller is the active power flow in line 1-27 for the 
second system.  

 
Figure 5.  Block diagram for PSS and supplementary controller of SVC. 
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hand side of S-plane as far as possible. The tuning of the PSS parameters for a multi-
machine power system is usually formulated as an objective function with constraints 
consisting of the damping factor and damping ratio.  
In the first study system (without lose of generality, the procedure can be applied to the 
second study system), the parameters to be tuned through the SFLA and MSFAL are 
PSSs parameters; i.e. [K, T, T1, T2, T3, T4; K, T, T1, T2, T3, T4]. In the SFL algorithms, 
each population (N frogs) represents a candidate solution for the problem. Thus, each 
frog is considered as [K, T, T1, T2, T3, T4; K, T, T1, T2, T3, T4] which determines the 
parameters of the PSSs. By placing each solution (PSS1 and PSS2) into the study 
system, related eigenvalues is obtained for the system. For each solution the worst 
eigenvalue is selected and the corresponding damping ratio (ξ ) is calculated.    
Now, two vectors are defined as follows: },...,{ 1 Nξξξ = and },...,{ 1 Nσσσ = as those 
elements are the damping ratio of the worst eigenvalue for each solution and the real 
parts of the eigenvalues with the damping ratios less than 0.36, respectively. With these 
two vectors the following objective functions are considered: 

)(min },...,1{1 inif ξ∈=  (11) 

)(min },...,1{2 inif σ−= ∈  (12) 

and the optimization problem can be formulated as maximize },{ 21 ff . According to 
these objectives function, the PSSs are designed so that the damping ratio of the close-
loop system is increased as well as shifting the eigenvalues of the close-loop system to 
the left hand side of S-plane.  In other words, this fitness function will place the system 
closed-loop eigenvalues in the D-shape sector characterized by  0σσ <i    and  0ξξ >i   
as shown in Figure 6.  

 
Figure 6. A D-shape sector in the s-plane. 

To implement the SFLA a weighted-sum-approach is used for (11) and (12).  The 
weighted-sum-approach considers the above two objective to a single objective 
function. Therefore to restrict the system closed-loop eigenvalues in the D-shape sector 
illustrated in Figure 6, the following objective function is defined: 

21max ffF +=  (13) 
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Furthermore, the design problem can be formulated as the constrained optimization 
problem, where the constraints are the bounds on the PSS parameters: 









=≤≤
≤≤
≤≤

4,3,2,1,20
101
501

iT
T
K

i

 (14) 

For the second study system, the bounds on the SVC supplementary controller 
parameters are the same as the bounds on PSS parameters, except the gain: 

1001 ≤≤ K  (15) 

5. Design of Power System Stabilizer and Supplementary Controller for SVC 

To provide a reasonable dynamic performance for the considered multi-machine power 
systems, damping controllers are designed using proposed approach. The results 
obtained by the proposed method are compared with conventional damping controller 
designed by SFLA.  
5.1. The 2-area-4-Machine System 
The goal of the optimization is to find the best value for the two PSSs in the 2-area-4-
machine system. Therefore, a configuration is considered for each solution as a vector 
[K, T, T1, T2, T3, T4; K, T, T1, T2, T3, T4]. According to the fitness function defined in 
(13), the two PSSs are designed simultaneously so that the damping ratio of the close-
loop system is increased as well as the eigenvalues of the close-loop system are shifted 
to the left-hand side. The boundary of D-shape sector for eigenvalues (see Figure 6) is 
chosen as 2.00 −=σ and 36.00 =ξ . 
In SFL algorithms, during each generation, the frogs are evaluated with some measure 
of fitness, which is calculated from the objective function defined in (13), subject to 
(14).  Then the best frogs are chosen. In the current problem, the best frog is the one that 
has minimum fitness. Based on Figure1 the local search and shuffling processes (global 
relocation) continue until the last iteration is met. The first step to implement the SFLA 
is generating the initial population (N frogs) where N is considered to be 100 (c.f. 
Figures. 1 and 2).  For both SFLA and MSFLA, the number of memeplex is considered 
to be 10 and the number of evaluation for local search is set to 10. The other initial 
parameters are obtained by try-and error and are same for both algorithms. Also, maxD  
is chosen as ∞=inf and the maximum number of iteration is set to be 100. Moreover, 
based on the author’s previous experience, 1C  is chosen as 1.5. 
To find the best value for the controller parameters, [K, T, T1, T2, T3, T4; K, T, T1, T2, T3, 
T4]; the algorithms are run for 10 independent runs under different random seeds.  The 
results obtained by the SFL algorithms are shown in Table 1. Also, Table 2 shows the 
system close-loop eigenvalue with minimum damping ratio for designed PSSs by SFLA 
and MSFLA. It shows that the MSFLA has better performance to move the worst 
eigenvalue to the D-shape sector. 
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Table 1. The results obtained by SFLA and MSFLA 

Algorithm PSSs K T T1 T2 T3 T4 

SFLA PSS1 48.81 4.67 0.613 0.252 1.769 0.521 
PSS2 48.98 4.563 1.943 0.426 0.671 1.023 

MSFLA PSS1 42.16 4.871 1.698 1.987 1.317 0.211 
PSS2 49.31 4.150 1.760 0.499 0.876 1.891 

 
Table 2. The system closed-loop eigenvalues with minimum damping ratio for designed PSSs by each 

algorithm 

Algorithm Low Frequency Mode Frequency Damping Ratio 
Without PSSs 0.165 ± 3.485i 0.555 -0.472 

SFLA -1.865 ± 5.78i 0.919 0.307 
MSFLA -2.401 ± 6.22i 0.969 0.361 

 
For the designed PSSs, the average best-so-far of each run are recorded and averaged 
over 10 independent runs. To have a better clarity, the convergence characteristics in 
finding the best values of PSSs parameters is given in Figure 7, where shows MSFLA 
performs better than SFLA at early iterations. 
 

 
Figure 7.  Convergence characteristics of SFLA and MSFLA on the average best-so-far function in 

PSSs design. 

The obtained PSSs by two algorithms are placed in the study system (Figure 3). To 
show the effectiveness of the designed controllers, a time-domain analysis is performed 
for the study system. A line-to-ground fault is applied in one of the tie lines at bus 3. 
The fault persisted for 70.0 ms. The behavior of the system was evaluated for 15 s. The 
machine angles, δ , with respect to a particular machine (machine 1), were computed 
over the simulation period and shown in  Figures. 8 and 9. These figures show that two 
controllers provide a good damping for the study system, but the one designed by 
MSFLA performs better. 
Once again to show the robustness of the designed controllers, a three-phase fault is 
applied in one of the tie circuits at bus 3. The dynamic behavior of the system was 
evaluated for 15 s. The machine angles, δ , were computed over the simulation period 
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and shown in Figures. 10 and 11.  These responses, similar to Figures 8 and 9, show the 
robustness of the designed controllers. 
 

  
Figure 8.The response of the generator 3 to a line-to- 

ground fault at bus 3. 
Figure 9.The response of the generator 3 to a 

line-to- ground fault at bus 4. 

 

  
Figure 10.The response of the generator 3 to a three-

phase fault at bus 3. 
Figure 11.The response of the generator 3 to a 

three-phase fault at bus 4. 

 
5.2. The 5-Area-16-Machine System 
The goal of the optimization is to find the best value for PSS and supplementary 
controller in the 5-area-16-machine system. Therefore, a configuration is considered for 
each solution as a vector , [K, T, T1, T2, T3, T4; K, T, T1, T2, T3, T4].The initial population 
(N frogs) is considered to be 200 (c.f. Figures 1 and 2).  For both SFLA and MSFLA, 
the number of memeplex is considered to be 15 and the number of evaluation for local 
search is set to 10. Also, maxD  is chosen as ∞=inf and the maximum number of 
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iteration is set to be 100. Moreover, based on the author’s previous experience, 1C  is 
chosen as 1.5. The results obtained for both algorithms are shown in Table 3. It should 
be noted that the boundary of D-shape sector for eigenvalues (Figure 6) is defined with 

16.00 −=σ and =0ξ 0.049. Table 4 shows the system close-loop eigenvalue with 
minimum damping ratio for designed controllers by each algorithm. It shows that the 
MSFLA performs better than original SFLA. 

Table 3. The Results Obtained By SFLA and MSFLA 

Algorithm PSSs K T T1 T2 T3 T4 

SFL PSS 30.41 2.446 1.126 0.965 1.786 0.959 
Supp-Controller 14.20 8.770 1.880 1.113 0.004 0.195 

MSFL PSS 33.60 5.838 1.638 0.552 1.735 0.508 
Supp-Controller 10.39 5.665 0.007 0.903 0.115 1.285 

 
Table 4. The system closed-loop eigenvalues with minimum damping ratio for designed damping 

controllers By Each Algorithm 

Algorithm Low Frequency Mode Frequency Damping Ratio 
Without PSS 0.01 ± 7.48i 1.2 -0.0013 

SFL -0.129 ± 3.21i 0.510 0.049 
MSFL -0.185 ± 3.78i 0.601 0.048 

 
To clarify performance of each of algorithms; especially the convergence characteristics 
in finding the best values of parameters, each algorithm are run 10 times independently 
and their average best so far is depicted in Figure 12.  
 

 
Figure 12.  Convergence characteristics of MSFL and SFLA on the average best-so-far function in 

PSS and supplementary controller design. 

The obtained PSS and supplementary controller by SFLA and MSFLA are placed in the 
5-area-16-machine system (Figure 4). To show the effectiveness of the designed 
controller, a time-domain analysis is performed for this system. A line-to-ground fault is 
applied in one of the tie lines at bus 26. The fault persisted for 70.0 ms. The behavior of 
the system was evaluated for 20 s. The machine angles, δ , with respect to a particular 
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machine (machine 13), were computed over the simulation period and shown in  
Figures 13-15. These figures show that both controllers provide a good damping for the 
study system, but the one designed by MSFLA performs better. 
 

 
Figure 13.  The response of generator 1 to a line-

to ground fault at bus 26. 
Figure 14.  The response of generator 3 to a line-

to-ground fault at bus 26. 

 

 
Figure 15.  The response of generator 9 to a line-to-ground fault at bus 26. 

Once again to show the robustness of the designed controllers for different operating 
conditions, a three-phase fault is applied in one of the tie circuits at bus 26. The 
dynamic behavior of the system was evaluated for 20 s. The machine angles, δ , were 
computed over the simulation period and is shown in Figures 16-18.  These responses 
show that the robustness of the designed controllers by MSFLA is better. 
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Figure 16. The response of generator 1 to a 
three-phase fault at bus 26. 

Figure 17. The response of generator 3 to a three-
phase fault at bus 26. 

 
Figure 18. The response of generator 9 to a three-phase fault at bus 26.Conclusion. 

6. Conclusion 

In this paper a modified shuffled frog leaping (MSFL) algorithm, is used to 
simultaneously design coordinated damping controllers. For this purpose, the 
parameters of the controllers are determined using an eigenvalue-based objective 
function.  In SFL, the local search is done through the evolution in memeplexes. The 
issue of exploration and exploitation is taken into account by a frog leaping rule for 
local search and a memetic shuffling rule for global information exchange. In this 
paper, learning mechanism is improved. To show the effectiveness and robustness of 
the designed controller, a line-to-ground fault and a three-phase fault are applied at a 
bus. The simulations studies show the designed controllers improve the stability of the 
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system. Also, the obtained results show that the MSFLA has better performance in 
compression to SFLA for the current problem. 
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