
Arc
hive

 of
 S

ID

63

Journal of Advances in Computer Research
Quarterly ISSN: 2008-6148
Sari Branch, Islamic Azad University, Sari, I.R.Iran
(Vol. 4, No. 2, May 2013), Pages: 63-73
www.jacr.iausari.ac.ir

A New Concurrency Control algorithm in Temporal
Database

Mirsaeid Hosseini Shirvani1*, Mehran Mohsenzadeh2, Seyed Majid Hosseini Shirvani3
1) Department of Computer Engineering, Sari Branch, Islamic Azad University, Sari, Iran

2) Department of Computer Engineering, Science and Research Branch, Islamic Azad University, Tehran,
Iran

3) Department of Computer Engineering, Sari Branch, Islamic Azad University, Sari, Iran
mirsaeid_hosseini@iausari.ac.ir; mohsenzadeh@srbiau.ac.ir; majid_hosseini_111@yahoo.com

Received: 2013/01/18; Accepted: 2013/02/25

Abstract
The large number of applications manages time varying data. Existing database

technology seldom supports temporal database, TDB, according to time aspects.
These intrinsic temporal database applications rely on such database which stores
and retrieves time referenced data. Moreover, applications need to be managed on
common data items access simultaneously and to be precluded from inconsistency
as soon as possible which is the main task of concurrency controller or CC in short.
The method used by CC in typical DB differs from its attitude with TDB. The variety
algorithms were proposed regarding to TDB properties by reduction of granule size
and decreasing the rate of conflicts to satisfy good performance, but none of them
has achieved robust results. There are two categories of CC such as pessimistic and
optimistic. In this paper new approach, with considering the TDB aspects, based on
optimistic method has been suggested. It reclines the size of granule as data item
appropriately and recognizes the conflicts swiftly. Consequently, we compare our
proposed algorithm with pervasive 2PL-pessimistic approach. The outcome shows
that new proposed algorithm has high degree of trade off with satisfying near
conflict time detection and high rate of parallelism metrics.

Keywords: Temporal Database, Concurrency controller, 2PL-pessimistic, time varying data

1. Introduction

The main goal of DBMS is to execute different transactions in which Atomicity,
Consistency, Isolation and Durability properties are preserved. For the sake of
conciseness we use ACID. Concurrency controller component or CC in short is one of
the most important elements of DBMS that its task is to execute all transactions, which
potentially have conflicts, according to serialisable theory that is the result of execution
is equivalent to serial execution of all transactions[1]. Moreover, for each two
transactions working on same data item simultaneously in which at least one of them
intends to write on determined data item conflict happens. Since variety execution of
transactions' operations has different results therefore CC component must interleave
operations and execute them in order to achieve parallelism and to reach the same result
as if transactions would be executed in serial. The object of interleaving is to run the
operations in parallel which do not have any conflict. In this way we can enhance the

www.SID.ir

Arc
hive

 of
 S

ID

A New Concurrency Control algorithm in … M. Mohsenzadeh, M. Hosseini Shirvani

64

rate of parallelism. In order to manage data which are associated to time and time
history for retroactive TDB is widely being used[2,3,4,5,6]. The large numbers of
database applications are temporal in nature such as financial applications like portfolio
management, banking, accounting, personnel record keeping and scheduling
applications like hotel reservation, airlines, trains and so on[7]. In the aforementioned
circumstances applications rely on such database which stores and retrieves time
referenced data. Concurrency controller's task is so sophisticated. There are two
categories for CC such as optimistic and pessimistic[8]. In optimistic approach,
requested resources are simply dedicated to transactions, before commit operation,
database soundness will be audited. On the other hand, allocating the resources will be
probed against requesting resources in pessimistic. Indeed, it will be investigated
whether in this moment is there any conflict or not. This work happens periodically
during time slice. Each approach has some merits and demerits. In optimistic method
with reduction of granule size, not only we can decline the rate of conflicts, but also we
can ameliorate the degree of parallelism[8]. Although its weakness is high rate of
abortion and long time that resources take to be locked during validation phase for the
sake of prevention of the other transaction access. On the other hand, pessimistic
method can recognize conflicts as soon as possible, but the sole shortcoming is low
degree of parallelism[9]. The aim of this paper is to represent a new method based on
optimistic approach in order to brisk conflict detection and enhancing the degree of
parallelism with appropriate decreasing of granule size. In this way we apply
serializable theory as strong formal verification tool[10]. The rest of this paper is
organized as follows. In section two, temporal database semantics is described.
Afterward in section three, new suggested algorithm is brought in details. Consequently,
noticeable results are elaborated in section four and remarkable sum up is taken into
account in conclusion section.

2. Temporal DB semantics

The main core of TDB concentrates on data independent modeling which associates
time and facts. Database which models and stores the portion of real world is so-called
modeled entities or micro real world[11]. Real world's aspects are represented with
different structures named by database entities. The term "fact" is used for each logical
statement that can be assigned by true or false. There are other features related to facts
like valid time and transaction time[12,13]. Valid time covers past, present and
future[11]. It is the time that the fact is true in real world. All facts have valid time and
it is usually defined by users and for the sake of some reasons it may not necessarily be
recorded in DB. The next is transaction time which the fact is current in database.
Despite valid time, transaction time of each database entity related to objects and values
is not necessarily logical statement. Transaction time is duration from insert to delete.
Consequently, this aspect makes the deletion to be completely logical rather physical. It
means physical deletion is not applied and the record stays in DB, but its belonging to
current state is ceased. Transaction time provides time varying state of DB whereas
keeping track and responsibility are important. Whenever data are facts transaction time
seems to be redundant and in this case valid time and transaction time are the same.
Anyway, we use both transaction time and valid time as bitemporal aspect[11]. Unlike
valid time, transaction time is determined by DBMS and includes begin of creation
through end of current time. Time has different aspects like current time that we

www.SID.ir

Arc
hive

 of
 S

ID

Journal of Advances in Computer Research (Vol. 4, No. 2, May 2013) 63-73

65

nominate it "now"[14]. The time "now" is unique and it does not have reuse property.
According to TDB features, usage of relational model for modeling, storing and
reporting is a daunting task[15]. In TDB another model is applied. Reference in [16]
implies several models. For instance, consider a video store that hires out video CDs
and customers have unique CustomerID and rented CD has TapeNum as unique key.
The aim is to store and retrieve the CDs rented during May 2007. On second of May
customer C101 rents CD T1234 for three days long. This CD returns on 5th. Also, on 5th
customer C102 rents CD T1245 for open ended return, but it returns on 8th. On 9th,
customer C102 rents CD T1234 to be returned on 12th. On 10th rental CD is extended to
13th, but it does not return until the 16th. Video store keeps the records of rental DCs in a
typical relation named by CheckedOut. Figure1 illustrates scenarios regarding to
Bitemporal Conceptual Design Modeling that for abbreviating we nominate it
BCDM[16].

Figure1. Bitemporal Conceptual CheckedOut

This model stamps tuples in the form of (tt, vt) which is correspondent to facts and

attribute T is used for it. Timestamps as ordered pairs (tt, vt) in T means that at the
current time tt represented fact is validated at time vt[17]. Special value "Until
Changed", UC, is the symbol that includes the related facts which remain as a portion of
DB in current state and appear in ordered pair of each time. Figure2 depicts three
timestamps graphically which are bitemporal elements.

www.SID.ir

Arc
hive

 of
 S

ID

A New Concurrency Control algorithm in … M. Mohsenzadeh, M. Hosseini Shirvani

66

Figure2. Time stamps value according to scenarios

In general, time domain is continuous, but in two dimensional space with transaction

time and valid time. Arrow direction toward right is used for UC. Although the relation
seen in figure1, which is in BCDM model, is in 1NF (First Normal Form) level, but if
the length and volume of tuples alternate then its management is impractical. There
arebetter representations for this goal. Figure3 presents diverse data modeling for same
temporal information.

www.SID.ir

Arc
hive

 of
 S

ID

Journal of Advances in Computer Research (Vol. 4, No. 2, May 2013) 63-73

67

Figure3. Two different data modeling for CheckedOut

In Figure3.a, it have used fix length for tuples whereas attributes , , and are

transaction start time, transaction end time, start of valid time and end of valid time
respectively[18]. In Figure3.b, the relation does not belong to 1NF level and has low
performance. In spite of BCDM model where relation must be updated for each clock
tick, relations remain updated in two last models with using the term "now". After
database introduction, we should specify concepts and operations in TDB. Concepts
include Generic Key (GK), every combinatorial of attributes, is unique without
temporal considerations[2]. For instance, in bitemporal relation in figure3.a for rental
videos the GK is combinatorial of CustomerID and TapeNum. The next concept is
General Tuple (GT). GT is every set of tuples with the same GK. In Temporal relation
CheckedOut of figure3.a the fourth tuple through the end pertain to the same GT.
Operations are Read, Insert, Delete and Update that are defined below:

Read(R, Sel_cond[, ts[, te]])
Insert(R, gk, vts[, vte][, attribute-name:data-value])
Delete(R, Sel_cond[, ts[, te]])
Update(R, Sel_cond[, ts , te] , attribute-name: data-value[,attribute-name: data-value])
In Read operation transaction requests to read from tuples of relation R that

satisfysel_condcondition during the interval [ts,te]. The concurrency controller receives
"Readmessage(i, , , ,)" for each selected valid tuple that has gk as its GK.
Moreover, the period [vts, vte] is the time overlap between read operation and valid
time of specified tuple. Insert operation details are the same as Read operation. In
Delete operation transaction requests to delete tuples from relation R whereas
sel_cond is satisfied and valid time belongs to interval [ts, te]. Concurrency controller

www.SID.ir

Arc
hive

 of
 S

ID

A New Concurrency Control algorithm in … M. Mohsenzadeh, M. Hosseini Shirvani

68

receives "Deletemessage(i, , , ,)" for every deleted generic tuple. Update
operation details are the same as delete operation.

3. Our New Suggested Algorithm

Inasmuch as both optimistic and pessimistic approaches have some weaknesses we
must opt the method that is compatible with time aspects and TDB features and has low
shortcoming. In optimistic method data item blocking technique is used for
inconsistency prevention. This technique decline degree of parallelism and makes
deadlock too, so for these reasons the optimistic method is more appropriate as seen in
delete and update operation details in the VTR and BTR case, only valid data during
valid time interval is changed. Moreover, since query is based on portion of time
therefore this interval should be considered for concurrency controller[19,20]. In this
case it is better to take into account time interval as granule rather tuples or other data
items. In this paper to cope on optimistic weakness we have applied end of transaction
marker technique, EOT technique, to release locked resources as soon as possible in the
validation phase. To preclude false conflict detection we use time interval for every GT
as granule and in this way we can decrease the rate of abortions. Granule state changes
are achieved according to portion of time. For instance, in relation CheckedOut after
execution of operation "Update(CheckedOut, "CustomerID=C102", 2, 4, TapeNum:
T1245)" only valid data during [2, 4] interval are updated thus interval [2, 4] is
considered for concurrency controller. So, in BTR case, granule is defined as Granule:
(R, gk,) whereas R is relation name, gk is generic key and includes time interval.
Optimistic concurrency controller should define four different sets for each operation in
Bitemporal Relation Model, one for read set and three for write sets. The sets are
RSi(), ISi(),USi() DSi(Delete set of)[9a,10a,21a]. According to this method, every transaction passes three phases. The
first is the time between the read phase which contains the time of requesting data item
from DB and the time of coping on local space that is not accessible with other
transactions. The second phase is validation time when conflict auditing starts as the
method is optimistic. It starts after for each . The third is write phase when real
manipulation is done on DB. Afore-mentioned phases make critical section. As each
transaction which is executing its last command , concurrency controller must check
whether has conflict with other or not. If so, transaction with low priority
timestamp should be aborted. For the sake of performance amelioration, validation
phase will be commenced right after exiting critical section and end of transaction
marker technique, EOT, should be applied to set free locked granule as soon as possible
to enhance degree of parallelism. When transaction passes its certification test,
concurrency controller marks the last command in RSj where are transactions not
validated yet. To find out conflict detection between and , not validated yet, we use
RSj() whereas RSj is limited to objects read by from beginning to the end of
transaction mark. After receiving messages correspondent to their operations, data item
will be eked out to their correspondent set by concurrency controller. Likewise, after
receiving suitable message correlated to Rollback() operation data item will be deleted
from RSi, ISi, USi and DSi. Finally, after receiving suitable message correlated to
Commit() concurrency controller must check whether has conflict with , not yet
validated, or not.

www.SID.ir

Arc
hive

 of
 S

ID

Journal of Advances in Computer Research (Vol. 4, No. 2, May 2013) 63-73

69

3.1 Proof of Conflict Recognition

To prove the conflict detection, formal technique is needed and it is serializable
theory [1]. Assume for each transaction , algorithm constructs set of operation .
There are four operations on granule x like Read: () , Insert: () , Delete: () ,Update: () and
end of transaction operations either Commit: or Rollback: . Moreover, transaction operations
belong to partial order (, <) so that :

1. ⊆ ;that is, all the execution operations should be considered.
2. ∈ iff ∉ ; that is, contains either or .
3. If ∈ { , } then for each ∈ then < .
4. If there is conflict between and then either () < ()or () < ().
If = { , , … , } is the set of all transactions and H is a complete history on T then

H is partial order < that is :
1. =∪
2. < ⊇ ∪ <
3. For each two conflicting operations p , q ∈ either < or < .
Suppose that and are separate transactions which access to common resource

concurrently and is high priority in contrast to (TS()< TS()). Only conditions
in \ , \ , \ and \ can constitute conflict situation [R].

Claim: Assume and that can be update and delete with TS(())<TS(())
and have conflict on common data item x. To guarantee for keeping consistency when
concurrency controller receives message correlated to operation it should be checked
intersection between specified operation set and operation set related with all operations
pertained to , not to be validated, that have conflict with whether intersection is
empty or not. If any, the transaction with low priority must be aborted. For instance, if ()is delete on data item x and ()is update on x, whenever concurrency controller
is checking valid phase for when is not validated yet and has conflict with too
then ⋂ = should be checked. If it is true then soundness is guaranteed
otherwise transaction , with low priority, has to be aborted.

Proof: Let be a transaction to be validated and is not validated yet whereas ⋂ ≠ and is a complete history of transactions and is serial too that is all
operations of , that have conflict with operations of , are before all operations of .
A commited history ofH, which all active and aborted transactions to be neglected
nominated C(H), is serializable if it is equivalent to (()). Note that is the first
transaction to be validated and is not still aborted. For each operations ∈ and ∈ in conflict if < then < () . As operations in and are in conflict
and should be validated sooner then we must have < () . The last point implies is executed sooner than because it was assumed that is not validated until right
now therefore < () whereas it is apparent contradiction that is , serializable
graph is not acyclic and the history is not serializable. Consequently, the intersection of and has to be empty[21,22].

Our proposed algorithm is Optimistic_ConcurrencyController,Optimistic_CC in
short, receives messages accordance to operation and react appropriately. It is presented
with details in pascal pseudo code. Moreover, this algorithm guaranteesto be
serializable, consistent and validated. MocrosRDM, ISM, DLM, UDM, RBM and CMM

www.SID.ir

Arc
hive

 of
 S

ID

A New Concurrency Control algorithm in … M. Mohsenzadeh, M. Hosseini Shirvani

70

are messages for Read, Insert, Delete, Update, Rollback and Commitoperations
respectively. The functions that have term "EkeOut" in the first of them during calling
the function eke out data item to the relevant set of operation. For example, when
function EkeOutRead(, Granule); is called then during the execution data item
granule will be eked out to RS set. Moreover, Rollback() deletes all data items from
all sets and Commit() does validation phase of [21]. Procedure
Optimistc_Concurrency Controller and sub procedures are shown below:

ProcedureOptimistic_Concurrency Controller;
Begin
 While there is more messageDo
ReceiveMessage;
 Case Message of
RDM: ReadMessage (T , Granule);
EkeOutRead(T , Granule);
 ISM:InsertMessage(T , Granule);
EkeOutInsert(T , Granule);
DLM:DeleteMessage(T , Granule);
EkeOutDelete(T , Granule);
 UDM:UpdateMessage(T , Granule);
EkeOutUpdate(T , Granule);
RBM:RollbackMessage(T);
Rollback(T);
 CMM:CommitMessage (T);
Commit(T);
End{Case}
End{While}
End;{ Optimistic_CC }
Procedure Commit();
Begin
Validation(T);
Convert the state of T from Active to Commited;
 Add T to commited list;
 Drop T from Active list;
End;{ Commit }
Procedure Validation(T)
Begin
Send “Ok Message" to transaction manager;
(* It is used to distribute the writings on DB *)
 Debut for critical section of T .
j := timestamp of the next transaction immediately arriving after T .
While j <> "!" Do
 Add the macro "EOT " to RS , USj and IS .
j := timestamp of the next transaction immediately arriving after T .
End{While }
Send an appropriate message to transaction manager
(* This message indicates the end of critical section for T provided all T writings
on DB are achieved. *)

www.SID.ir

Arc
hive

 of
 S

ID

Journal of Advances in Computer Research (Vol. 4, No. 2, May 2013) 63-73

71

j := timestamp of the next transaction immediately arriving afterT .
While j<> "!" Do
If(Conflict(T ,T) is True) Then
 Delete all items from o RS , USj, DSj and IS .
 Send abort command aj for j to transaction manager and re-execute Tj.
End{If }
j := timestamp of the next transaction immediately arriving afterT .
End{While }
End{ Validation }
Function Conflict(T , T): Boolean;
Begin
OutCome:= False;
 (* () contains the objects manipulated by T until EOT *)
 If (⋂ (T) ≠) OR
 (⋂ (T) ≠) OR
 (⋂ (T) ≠) OR
 (⋂ (T) ≠) OR
 (⋂ (T) ≠) then OutCome := True;
EndIf;
Conflict :=OutCome;
End;

4. Performance Assessment OfOptimistic_CC Versus 2PL-pessimistic

To evaluate our suggested algorithm versus pervasive and standard pessimistic 2PL
that is being used in existing DBMS applications, we should define our experimental
data structure[23]. Our proposed data structure and value range is brought on figure4.

Arrival Rate Data item

frequency
DB location Transaction

size
Read size Write size R/W ratio

20 tr. Per
sec.
To 50 tr. Per
sec.

1000 items

RAM to
Hard Disk

5 to 10
operations

2 to 100

1 to 50

0.2 to 0.5

Figure4. Experimental data structure

Arrival time is the rate of transaction execution from transaction manager and data
item frequency is the number of data item in DB and R/W ratio is a proportion of read
operations in contrast to write operations. For example, if T contains five operations
and one of them is Read and the rest are Write then R/W ratio is 0.2. To simulate exact
execution, we consider three events working on hard disk DB and the rate of events will
be increased gradually to reach stable results. Figure5 illustrates three events.

www.SID.ir

Arc
hive

 of
 S

ID

A New Concurrency Control algorithm in … M. Mohsenzadeh, M. Hosseini Shirvani

72

Events Arrival rate Mean Read Size Mean Write Size
Event1 20 tr./sec. 20 10
Event2 40 tr./sec. 25 15
Event3 50 tr./sec. 30 20

Figure5. Events for DB on Disk

Figure6 depicts outcome of two executions Optimistic_CC as our suggestion and

2PL-Pessimistic working on data item of Figure1 in BTR case when it reaches to stable
point, i.e., event3. The result shows that with increasing the rate of transactions and
R/W ratio the execution time in 2PL-pessimistic is approximately growing
exponentially, but execution in Optimistic_CC is almost rising linearly.

Metric/Algorithm

2PL-Pessimistic

Optimistic_CC

Number of
transactions that
makes
multiprogramming

2

4

6

8

10

2

4

6

8

10

Execution Time 5 10 50 120 500 5 10 15 25 30

Figure6. Execution time regarding to event3(stable point)

5. Conclusion

An Optimistic_Concurrency Controller procedure has been applied accordance to
time aspects and temporal database properties containing time referenced data.
Moreover, it has been proved that the new algorithm guarantees to be serializable,
consistent and validated and detects conflicts in validation phase as soon as possible and
releases locked resources by using EOT marker techniques and enhances parallelism by
considering time interval as granule rather tuples. Although 2PL-pessimistic uses
locking resources technique and our optimistic version uses abortion technique, but
result implies that according to low rate of abortion in optimistic method, our Optimistic
_CC has high performance. The next generation algorithm must have good trade off
provided these algorithms opt suitable granule size and detect conflicts as soon as
possible.

6. References

[1] P. A. Bernstein, V. Hadzilacos, and N. Goodman, (1987) “Concurrency control and recovery in
BDS”, ADDISON-WESLEY Edition.

[2] A.Makani and R.Bouaziz, (2010) "Concurrency Control For Temporal Database",The
International Journal of Database Management Systems(IJDMS),2(1)

[3] C. S. Jensen, & al., (1998) “The Consensus Glossary of Temporal Database Concepts”––
February 1998 Version, O.Etzion, S.Jajodia, S.Sripada, (Eds.), Temporal Databases––Research
and Practice,Lecture Notes in Computer Science, Vol. 1399, Springer-Verlag, Berlin, pp. 367–
405.

[4] C. Zaniolo, S. Ceri, C. Faloutsos, R. T. Snodgrass, V. S. Subrahmanian, and R. Zicari. Advanced
Database Systems.Morgan Kaufmann Publishers 1997.

[5] S. Abiteboul, R. Hull, and V. Vianu.Foundations of Databases. Addison-Wesley 1995.
[6] J. Celko. Joe Celko’s Data and Databases: Concepts in Practice. MorganKaufman Publishers

1999.

www.SID.ir

Arc
hive

 of
 S

ID

Journal of Advances in Computer Research (Vol. 4, No. 2, May 2013) 63-73

73

[7] J. Clifford and A. Tuzhilin (eds.). Recent Advances in Temporal Databases:Proceedings of the
International Workshop on Temporal Databases. Workshopsin Computing Series.Springer-
Verlag 1995.

[8] D. Menasce, and T. Nakanishi, (1982) “Optimistic vs Pessimistic control mechanism in
databasemanagement systems”, International Journal of Information Systems, Vol. 7(1).

[9] A. Makni, R. Bouaziz, and F. Gargouri, (2006) “A New Optimistic Concurrency Control
Algorithmfor Valid-Time Relations”, Proc. of the 10th IASTED International Conference on
SoftwareEngineering and Applications, November 13-15, Dallas, TX, USA, pp. 117-126.
Published byACTA Press, Paper n° 514-143, 2006.

[10] A. Makni, R. Bouaziz, et F. Gargouri, (2007) “Formal Verification of a new Optimistic
ConcurrencyControl Algorithm for Temporal Databases”, Proc. of the 16th ISCA International
Conference onSoftware Engineering and Data Engineering, Las Vegas, Nevada, USA, July 9-
11, pp. 235-242.ISBN 978-1-880843-63-5.

[11] [11] C. S. Jensen and C. E. Dyreson (eds.). A Consensus Glossary of Temporal Database
Concepts—February 1998 Version. [21, pp. 367–405].

[12] C. Bettini, X. S.Wang, and S. Jajodia.A General Framework for Time Granularityand Its
Application to Temporal Reasoning.Annals of Mathematics andArtificial Intelligence, 22(1–
2):29–58, 1998.

[13] [13] C. E. Dyreson and R. T. Snodgrass.Supporting Valid-Time Indeterminacy. ACM
Transaction on Database Systems, 23(1):1–57, 1998.

[14] J. Clifford, C. E. Dyreson, T. Isakowitz, C. .S. Jensen, and R. T. Snodgrass.On the Semantics of
‘Now’ in Databases.ACM Transactions on DatabaseSystems, 22(2):171–214, June 1997.

[15] C. De Castro, (1998) “On concurrency management in temporal relational databases”, Proc. of
theSymposium on SEBD, pp. 189-202.

[16] C. S. Jensen and R. T. Snodgrass.Semantics of Time-Varying Information.Information Systems,
21(4):311–352, 1996.

[17] C. S. Jensen, and D. B. Lomet, (2001) “Transaction timestamping in (temporal) databases”,
Proc.Ofthe Conference on Very Large Databases, Roma, Italy, pp. 441-450.

[18] R. T. Snodgrass. The Temporal Query Language Tquel.ACM Transactions on Database Systems,
12(2):247–298, June 1987.

[19] M. Finger, and P. McBrien, (1996) “On the semantic of ‘current time’ in temporal databases”,
Proc.of the Symposium on Databases, Sao Carlos, Brasil, pp. 324-337.

[20] M. Finger, and P. McBrien, (1997) “Concurrency Control for Perceivedly
InstantaneousTransactions in Valid-Time Databases”, Proc. Of the Conference on Temporal
Representation andReasoning, pp. 112-118,.

[21] E. Brinksma, A. Mader, and A. Fehnker, (2002) “Verification and Optimization of a PLC
ControlSchedule”, International Journal on Software Tools for Technology Transfer, Vol. 4(1),
pp. 21-33.

[22] A. Makni, R. Bouaziz, and F. Gargouri, (2006) “A New Optimistic Concurrency Control
Algorithmfor Valid-Time Relations”, Proc. of the 10th IASTED International Conference on
SoftwareEngineering and Applications, November 13-15, Dallas, TX, USA, pp. 117-126.
Published byACTA Press, Paper n° 514-143, 2006.

[23] A. Makni, R. Bouaziz, et F. Gargouri, (2007) “Performance Evaluation of an
OptimisticConcurrency Control Algorithm Ensuring Strong Consistency for Transaction Time
Relations”,Proc. of the International Conference on Enterprise Information Systems and Web
Technologies,Orlando, FL, USA, July 9 - 12, pp. 258-265.

www.SID.ir

Arc
hive

 of
 S

ID

A New Concurrency Control algorithm in … M. Mohsenzadeh, M. Hosseini Shirvani

74

www.SID.ir

