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Abstract 
The problem of series two-block disjoint decomposition of completely specified 

Boolean functions is considered. Analysis and investigation of such systems are very 
important in logical design context. Recently, a good method for solving this 
problem was suggested which has been based on the ternary matrix cover approach. 
Using this method a computer program was developed. This paper is focused on 
decomposability of a system of Boolean functions. The experiments were done on 
generated systems and standard benchmarks. In decomposable systems, the total 
number of solutions and the time elapsed to achieve them are inspected. The total 
number of solutions among all partitions for investigated systems, ranged between 
3% and 87% in generated systems and also, 1% and 96% in standard benchmarks. 
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1. Introduction 

The problem of decomposition of Boolean functions is one of the most important 
problems of logical design that makes it an object of great attention by many researchers 
in this field. It has been shown in [9] a considerable number of papers are already 
published on this topic and still it is interesting for the research [4, 6, 7]. It is important 
to find a successful solution for this problem because it has a direct influence on the 
quality and cost of digital devices designed. Functional decomposition relies on 
breaking down a complex system into a network of smaller and relatively independent 
co-operating subsystems, in such a way that the original system's behavior is perceived. 
A system is decomposed into a set of smaller subsystems, such that each of them is 
easier to analyze, understand and synthesize. Decomposition-based synthesis methods 
are not limited only to logic synthesis of logic circuits. The strong motivation for 
developing decomposition techniques comes recently from modern research areas such 
as pattern recognition, knowledge discovery and machine learning in artificial 
intelligence [15]. 

The problem of decomposition of a system of Boolean functions can be considered in 
the following statement. A system of completely specified Boolean functions y = f(x)is 
given where y = (y1, y2, …, ym), x = (x1, x2, …, xn), f(x) = (f1(x), f2(x), …, fm(x)). The 
superposition y = ϕ (w, z2),w = g (z1) where z1 and z2 are vector variables whose 
components are Boolean variables in the subsets Z1 and Z2 respectively that form a 
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partition of the set X = {x1, x2, …, xn} of arguments. At that, the number of components 
of the vector variable w must be less than that of z1. Such a kind of decomposition is 
called two-block disjoint decomposition [8, 10]. The subsets Z1 and Z2 are called bound 
and free sets respectively. Only a few papers deal with the search for the partition 
{Z1, Z2}, at which this problem has a solution[2-8]. 

Searching for a solution of this kind is NP-hard problem because it has been proved 
that this problem is equivalent to the well-known set covering problem [4]. To be aware 
of decomposability of a given system of Boolean functions, finding only one such a pair 
is satisfying. But, due to analysis of the task and to be prepared to search for the best 
solution,it is useful to find all possible solutions. For that, it is usedthe ternary matrix 
cover approach[1] in this paper. Using a compact table one can find rather easily the 
existence of a solution of the problem for a given system of functions, and if it does 
exist, the corresponding superposition can be easily found. 

2. Definitions and Setting the Problem 

Let a system of completely specified Boolean functions y = f(x), where 
y = (y1, y2, …, ym), x = (x1, x2, …, xn) and f(x) = (f1(x), f2(x), …, fm(x)), be given by 
matrices U and V that are the matrix representation of the system of disjunctive normal 
forms (DNFs) of the given functions [10]. Matrix U is a ternary matrix of l × n 
dimension where l is the number of terms in the given DNFs. The columns of U are 
marked with the variables x1, x2, … , xn, and the rows represent the terms of the DNFs 
(the intervals of the space of the variables x1, x2, … , xn). The matrix V is a Boolean 
matrix. Its dimension is l × т , and its columns are marked with the variables 
y1, y2, … , ym. The ones in this columns point out the terms in the given DNFs. A row u 
in Uabsorbs a Boolean vector a if a belongs to the interval represented by u. 

The task considered is set as follows. Given a system of completely specified 
Boolean functions y = f(x), the superposition y = ϕ (w, z2),w = g (z1) must be found 
where z1 and z2 are vector variables whose components are Boolean variables in the 
subsets Z1 and Z2 of the set X = {x1, x2, …, xn}, respectively such that X = Z1 ∪ Z2 and 
Z1 ∩ Z2 = ∅. At that, the number of components of the vector variable w must be less 
than that of z1. The main attention is paid to the search for subsets Z1 and Z2 such that 
the task would have a solution. It is clear that the subset Z1 should have at least two 
members while the subset Z2 may have only one. 

3. Cover Map and Compact Table 

Any family π of different subsets (blocks) of a set L whose union is L, is called a 
cover of L. Let L = {1, 2, ... , l} be the set of numbers of rows of a ternary matrix U. A 
cover π of L is called a cover of the ternary matrix U if for each value x* of the vector 
variable x there exists a block in π containing all the numbers of those and only those 
rows of U, which absorb x*. Block ∅ corresponds to the value x*, which is absorbed by 
no row of U. Other subsets are not in π. Let t(x*, U) be the set of numbers of those rows 
of U, which absorb x*. For every block πj of π, the Boolean function πj(x) is defined 
and it is assumed that πj(x*) = 1 for any x* ∈ {0,1}n if t(x*, U) = πj, and πj(x*) = 0 
otherwise. 
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Let an operation ∨(πi, V) is defined over the rows of a binary matrix V, the result of 
which is the vector y* (y* = ∨(πi, V)) obtained by component-wise disjunction of rows 
V whose numbers are in the block πi. If πi = ∅, all the components of y* are equal to 0. 
It is shown in [1] that f(x*) = y* = ∨(πi, V) if πi(x*) = 1. 

There is a convenient way to construct the cover of a ternary matrix U when the 
number of arguments is not large. This technique uses the cover map that has the 
structure of the Karnaugh map. In any cell of a cover map of U corresponding to a 
vector x*, there is the set t(x*, U), which is a block of the cover of U. 

Let a pair of matrices, U and V, give a system of completely specified Boolean 
functions y = f(x), and let the matrix U1 be composed of the columns of U, marked with 
the variables from the set Z1 and the matrix U2 from the columns marked with the 
variables from Z2. The covers of U1 and U2 are π1 = {π1

1, π1
2, … , π1

r} and 
π2 = {π2

1, π2
2, … , π2

s}. Let a table Mis construct. Assign the blocks π1
1, π1

2, … , π1
r 

and the Boolean functions π1
1(z1), π1

2(z1), … , π1
r(z1) to the columns of M, and 

π2
1, π2

2, … , π2
s and π2

1(z2), π2
2(z2), … , π2

s(z2) to the rows of M. At the intersection of 
the i-th column, 1 ≤ i ≤ r and the j-th row, 1 ≤ j ≤ s, of M, the value 
y* = ∨(π1

i ∩ π2
j, V)is defined. The table M is called the compact table. It gives the 

system of Boolean functions y = f(x) in the following way: the value of the Boolean 
vector function f(x*) is ∨(π1i ∩ π2j, V) at any set argument values x*, for which 
π1i(z1) ∧ π2j(z2) = 1. 

Having the compact table for a system of functions y = f(x), it is easy to construct the 
desired systems y = ϕ (w, z2) and w = g (z1). The columns of the compact table are 
encoded with binary codes; equal columns may have the same codes. The length of the 
code is equal to log2r′  where r′ is the number of different columns of the table and 
ais the least integer, which is not less than a. So, the system of functions w = g (z1) is 
defined. The value of the vector variable w at any set of values of the vector variable z1 
turning the function π1

i(z1) into 1 is the code of the i-th column, 1 ≤ i ≤ r. Naturally, 
there is no solution to this task at the given partition {Z1, Z2} of the set X of arguments if 
the length of the code is not less than the length of z1. Otherwise, the compact table 
whose columns are assigned with the values of the variable w can be considered as a 
form of representation of the other desired system of functions y = ϕ (w, z2). The value 
of y at the value of w assigned to the i-th column, 1 ≤ i ≤ r, and at any value of z2 
turning π2

j(z2) into 1, 1 ≤ j ≤ s, is the vector that is at the intersection of the i-th column 
and the j-th row. 
Example 1. Let a system of completely specified functions y = f(x) was given by the 
following pair of matrices: 

U= 

7
6
5
4
3
2
1

1

1

1

1
1
0
0
0
0
1

0

0

0
0

1
1
0

1
1
0

1
1
0
0
0
0
0

54321













−

−

−
−

−

−

−
−












xxxxx

,V = 

7
6
5
4
3
2
1

1
1
1
1
0
0
0

0
0
0
0
1
1
1

21
























yy

. 

For the partition of the set of arguments into subsets Z1 = {х1, х2, х3} and 
Z2 = {х4, х5}, the following matrices are obtained: 
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U1= 

7
6
5
4
3
2
1

0

0

0
0

1
1
0

1
1
0

1
1
0
0
0
0
0

321













−

−

−
−












xxx

,      U2 = 

7
6
5
4
3
2
1

1

1

1

1
1
0
0
0
0
1

54













−

−

−
−












xx

. 

To find the length of w in the superposition y = ϕ (w, z2),w = g (z1) where 
z1 = (х1, х2, х3) and z2 = (х4, х5), the covers of the ternary matrices U1 and U2are 
constructed: π1 = {∅, {3}, {5}, {7}, {6, 7}, {1, 4, 5}, {2, 3, 4}} and π2 = {{1, 6}, 
{2, 4}, {1, 6, 7}, {2, 3, 4, 5}} (In examples 2 and 3, these covers will be obtained in 
details). The corresponding compact table is represented in Table 1 that has seven 
different columns. Clearly, this task has no solution at the given subsets Z1 and Z2, 
because to encode the columns of the compact table with the values of w, three variables 
are needed that is not less than the length of z1. 

Table 1. The compact table for the system of functions in Example 1 
 ∅ 3 5 7 6,7 1,4,5 2,3,4 

1,6 00 00 00 00 01 10 00 
2,4 00 00 00 00 01 01 11 

1,6,7 00 00 00 01 01 10 00 
2,3,4,5 00 10 01 00 00 11 11 

4. Search for Appropriate Partition 

To search for an appropriate partition of the set of arguments the ternary matrix 
covers and compact tables induced by the mare used. Let a few free variables be to find 
that constitute the set Z2 (then the set of bound variables would be Z1 = Х \ Z2). To do 
this, the operation of dividing a ternary matrix cover by the cover of a column of the 
matrix is used. Let the operation is determine to divide the cover π of a ternary matrix U 
by the cover πi of its i-th column as π / πi = π1 × π2 × … × πi – 1 × πi + 1 × … × πп. This 
operation can be easily fulfilled using the cover map, which, as well as Karnaugh map, 
has the lines of symmetry related to the variables of the Boolean space represented by 
this map [5]. To transform the cover map of a ternary matrix U into that of the matrix 
obtained from U by deleting the i-th column, one should superpose pair-wise the entries 
that are symmetric with regard to the lines relative to xi, and put the unions of the 
superposed entries into the obtained entries. The obtained cover map would represent 
the desired cover [1]. 
Example 2. Figure 1 shows the cover map of the ternary matrix U from Example 1. The 
cover of U isπ = {∅, {1}, {3}, {4}, {5}, {6}, {7}, {2, 4}, {4, 5}, {6, 7}, {2, 3, 4}}. As 
it can be seen from Figure 2 the division of π by the cover of the column х4 will be {∅, 
{3}, {5}, {6}, {7}, {1, 4}, {2, 4}, {6, 7}, {1, 4, 5}, {2, 3, 4}}. Having transformed this 
map by the described way with regard to x5, the set{∅, {3}, {5}, {7}, {6, 7}, {1, 4, 5}, 
{2, 3, 4}} as a result of dividing π by the covers of the columns x4 and x5is obtained(see 
Figure 3). 
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         х5 
       х4   
        х3  
 4 ∅ ∅ 1 1 ∅ 5 4,5  
 2,4 ∅ ∅ ∅ ∅ ∅ 3 2,3,4  
 ∅ ∅ ∅ 6 6,7 7 ∅ ∅  
х2 ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅  
х1          

Figure 1.The cover map of the matrix U from Example 1 

The method used to search for an appropriate partition consists in fulfilling the 
lexicographical enumeration and testing by the above way every variant of the set Z2 if 
it would provide a solution of the task. 

     х5 
    х3  
 1,4 ∅ 5 1,4,5  
 2,4 ∅ 3 2,3,4  
 6 ∅ 7 6,7  
х2 ∅ ∅ ∅ ∅  
х1      

Figure 2.The cover map obtained by dividing π by the cover of the column 
   х3 
 1,4,5 5  
 2,3,4 3  
 6,7 7  
х2 ∅ ∅  
х1    

Figure 3.The cover map obtained by dividing π by the covers of the columns x4 and x5 

Example 3. Let the system of completely specified Boolean functions from Example 1 be 
given. Consider this variant that Z2 = {x2, x4}, Z1 = {x1, x3, x5}. For that, with the cover 
map in Figure 1, the cover map shown in Figure 4 is obtained and then Figure 5 from 
Figure 4 is also obtained. 

         х5 
       х4   
        х3  
 2,4 ∅ ∅ 1 1 ∅ 3,5 2,3,4,5  
 ∅ ∅ ∅ 6 6,7 7 ∅ ∅  

х1          

Figure 4.The cover map obtained by dividing π by the cover of the column x2 
     х5 
    х3  
 1,2,4 ∅ 3,5 1,2,3,4,5  
 6 ∅ 7 6,7  
х      

Figure 5.The cover map obtained by dividing π by the covers of the columns x2 and x4 

The compact table for the covers π1 = {∅, {6}, {7}, {3, 5}, {6, 7}, {1, 2, 4}, {1, 2, 3, 
4, 5}} and π2 = {{1}, {4, 5}, {6, 7}, {2, 3, 4}} is represented by Table 2 that have four 
different columns. To encode these columns, two variables are sufficient. The codes of 
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the columns are shown at the bottom of Table 2. To construct the system of functions 
y = ϕ (w, z2) and w = g (z1) that are the solution of the task, the functions connected with 
the blocks of the covers obtained must be constructed. 

Table 2.The compact table for the partition from Example 3 
 ∅ 6 7 3,5 6,7 1,2,4 1,2,3,4,5 

1 00 00 00 00 00 10 10 
4,5 00 00 00 01 00 01 01 
6,7 00 01 01 00 01 00 00 

2,3,4 00 00 00 10 00 11 11 
 00 01 01 10 01 11 11 

The DNFs of the functions connected with the blocks of π1 can be obtained from the 
cover map in Figure 5: π1

1(z1) = х3х5, π1
2(z1) = х1х3х5, π1

3(z1) = х1 х3 х5, 
π1

4(z1) =х1 х3 х5, π1
5(z1) = х1х3 х5, π1

6(z1) =х1х3х5, π1
7(z1) =х1х3 х5. Similarly, the 

DNFs π2
1(z2) =х2 х4, π2

2(z2) =х2х4, π2
3(z2) = х2 х4, π2

4(z2) = х2х4 are obtained. As a 
result of simple minimization, the following matrices are obtained which are 
representing the desired superposition y = ϕ (w, z2), w = g (z1): 











−
−
−











0
0
0
1
1

0
1
1
0

1

1
1

1
1
1
0
1

4221 xxww

,  





















1
1
0
1
0

0
0
1
0
1

21 yy

;        





−

−





−

1
00

0

1

0
531 xxx

,  














1
1
0

0
0
1

21 ww

. 

5. Implementation and Results.  

The special computer program in C++ was designed and developed to find all the 
solutions of systems of Boolean functions. The program is based on using the ternary 
matrix cover approach and the general scheme of implemented algorithm is summarized 
in Figure 7.This algorithm is also applied to evaluation of the standard benchmarks with 
small modifications. The experiments run on a Pentium 2.26GHz CPU with 3 GByte of 
main memory. 

Due to evaluation of explained approach, three types of benchmarks were utilized. At 
first the systems of completely specified Boolean functions were generated using a 
prepared library which has been explained in [11, 12].Then the standard benchmarks 
were used which are well-known in the literature, both industrial and mathematical 
benchmarks [13]. Three parameters for the all evaluated systems were considered; the 
number of rows of matrix U that indicate the number of conjunctions, the number of 
columns of matrix U or the number of arguments and the number of columns of matrix 
V or the number of functions. In generated systems, the matrices U and V as SOP (Sum 
of Product) were prepared. After providing these matrices, first of all, the matrix U is 
expanded to obtain the corresponding matrix without don't cares. The rows which have 
don’t cares will be replaced with several suitable rows. 

Then the cover map will be provided; for that Gray code encoding system was used. 
On contrary to the examples in section 4 that cover map is a two dimensional table, due 
to simplicity to store in computer memory and also for the future calculations of 
compact table, it was implemented as a one dimensional array. An example of this 
approach with three variables is represented in Figure 6. The order of replacement of the 
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-Algorithm for one system of Boolean 
functions 

Ø Con ← ConValue 
Ø Arg ← ArgValue 
Ø Fun ← FunValue 
Ø Generate SOP(Con,Arg,Fun) 
(i.e. Matrices U and V) 
Ø Expand Matrix U 
(Removing don't cares in Matrix U and 
replacing these rows with suitable ones) 
Ø Compute Cover Map 
(Generate Gray Codes with Length 2n and 
fill out the Cover Map Array According to 
the Algorithm Rules) 
Ø C ← 0 (To Count Number of all Solutions) 
Ø for k ← 2 to n-1 
»Combination Generator(n,k) 
    »for each combination of      
        Check the Current Partition 

1-Divide Cover Map Over Z1 
2-Divide Cover Map over Z2 
3-Compute Compact Table (CT) 
4-Compute Different Columns (r) of CT 
5-Encode the Columns of CT 
6-if r ≤ 2k-1 then 

  Solution Founded 
 (Calculate Matrices ϕ,w,y andx) 

»if Solution Founded then 
         Add this partition to the set 

of Solutions and C ← C + 1 
Ø if C=0 then 
Declare the system is not decomposable 
Ø else  
 Declare the system is decomposable and  
 Print C  

variables in the array is important and this can be extended for any number of variables. 
In the array the values explained in section 4 is stored and Gray codes in the array of 
Figure 6 are symbolically shown to represent the correctness of the approach, but Gray 
codes in the other l is t is also saved. 

        х1 
      х2   
       х3  
000 001 011 010 110 111 101 100  

Figure 6.The cover map model for three variables using Gray code encoding system 

 
Figure 7.The implemented algorithm for determining decomposability of a system of Boolean 

functions and to find all solutions of the system on generated benchmarks 
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In fact, the way of storing information in the mentioned array is as follows. Each row 
in matrix U, numbered with integers started from one. The value of each row with Gray 
codes list is compared until the equal value to be founded. Then the row number of 
compared row in corresponding element of the array is added. This manner is continued 
until all the rows to be compared and the row numbers to be added to the array 
elements. At the end, the array is swept and it is put the empty set to the elements with 
no value added. 

To find all solutions of the task anyone should enquire into all possible partitions 
which are constructing Z1 and Z2. The relatively simple method to address the 
appropriate partition can be done by lexicographical enumeration. After computing 
cover map of the current system of Boolean functions, in each stage Knuth algorithm 
[14] was used to generate all combinations of the arguments and of course for each 
partition it is checked whether it is a solution of the task or not. To obtain all k-element 
subsets of an n-element set, this algorithm is one of the fastest ones. Each k-element 
subsets is used to construct Z1 elements and the rest of the arguments will be the 
elements of the Z2. 

If a partition as a solution is found, the program will keep it and will calculate four 
matrices; matrix Φ, matrix Y, matrix X and matrix W. These matrices are a solution of 
the task. In fact the current system of Boolean functions converts to two new systems 
with less arguments; matrices Φand Y as U and V respectively, for the first system and 
also matrices X and W as U and V respectively, for the second system. 

This method is repeated for all partitions and if appropriate partition is not found, the 
program declares the current system of Boolean functions is not decomposable; 
otherwise the program prints the number of solutions for the current system. Now, the 
experimental results for the explained approach in decomposition of Boolean functions 
are reported which is described in the previous sections. Due to space and time 
limitations, the results are shown refer only to the decomposition of systems with few 
arguments and few functions as well. The results are summarized in Tables 3a, 3b and 
3c. 

The results show that more than 95% of generated systems are decomposable and all 
of them have several solutions when the system is decomposable. The first three 
columns in Tables 3 represent the number of conjunctions (Con), the number of 
arguments (Arg) and the number of functions (Fun) respectively and these informs the 
parameters of a generated system of Boolean functions. The total number of partitions 
(TNP) are counted when 2 ≤ |  | ≤  − 1. So it implies that the total partitions will be ∑            which it is equal to 2 − ( + 2). 

The Number of Solutions (NS) is part of the results which is found after the program 
was executed and the percentage of the Solutions (PS) is percent of NS to NTP. The 
value of NS and PS are zero if the evaluated system of Boolean functions is not 
decomposable. The last column represents elapsed time (ET) which is the run time of 
the program for each system of Boolean functions during obtaining all solutions and it 
was calculated in seconds. 
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Table 3a.Experimental results on generated systems 

Con Arg Fun TNP NS PS ET 
8 5 2 25 21 84 <1 
10 6 2 56 49 87 4 
10 6 4 56 18 32 4 
15 6 8 56 26 46 5 
20 7 3 119 25 21 21 
20 7 10 119 15 13 25 
25 7 14 119 7 6 34 
15 8 4 246 40 16 134 
20 8 6 246 104 42 123 
40 8 10 246 8 3 201 
30 9 5 501 125 25 926 
25 9 9 501 30 6 650 
25 9 16 501 61 12 824 
30 10 3 1012 58 6 3634 
30 10 5 1012 55 5 3197 
30 10 8 1012 491 49 1362 
30 12 6 4082 673 16 20413 

Table 3b.Experimental results on Mathematical benchmarks 
Bench Con Arg Fun TNP NS PS ET 
rd53 31 5 3 25 15 60 1 

fsm.pla 15 5 7 25 7 28 1 
rd73 147 7 3 119 98 82.35 47 
z4 127 7 4 119 37 31.09 37 

log8mod 46 8 5 246 134 54.47 102 
Radd 120 8 5 246 59 23.98 253 
Root 255 8 5 246 40 16.26 285 
adr4 255 8 5 246 59 23.98 536 
Dist 256 8 5 246 6 2.44 345 
sqr6 63 6 12 56 0 0 6 

z5xp1 128 7 10 119 0 0 42 
f51m 256 8 8 246 0 0 362 

addm4 512 9 8 501 0 0 1268 
Table 3c.Experimental results on industrial benchmarks 

Bench Con Arg Fun TNP NS PS ET 
newapla2 7 6 7 56 34 60.71 2 

m1 32 6 12 56 12 21.43 3 
sqn 96 7 3 119 5 4.2 82 
dc2 58 8 7 246 3 1.22 166 
m2 96 8 16 246 80 32.52 178 
m3 128 8 16 246 59 23.98 195 
luc 27 8 27 246 43 17.48 84 

max512 512 9 6 501 24 4.79 1329 
sex 23 9 14 501 127 25.35 418 

newtpla1 4 10 2 1012 973 96.15 1604 
newtpla2 9 10 4 1012 967 95.55 3163 

clpl 20 11 5 2035 1095 53.81 6394 
newapla1 10 12 7 4082 3769 92.33 14917 
newapla 17 12 10 4082 3649 89.39 16935 
newcwp 11 4 5 10 0 0 <1 

dc1 15 4 7 10 0 0 <1 
prom2 287 9 21 501 0 0 337 
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6. Conclusion and Future Works 

A computer program as an application was developed to determine decomposability 
of a system of Boolean functions via ternary matrix cover approach. The ternary matrix 
cover and the representation of a system of Boolean functions in the form of compact 
table are simple to be realized. The several systems with different parameters were 
developed. The experimental results are interesting and show that usually a system has 
many solutions when it is decomposable. In the most cases a system has more solutions 
when the number of its functions is few or its conjunctions contain more don’t care 
values. 

As a future work, optimization in encoding of compact table is proposed, because it 
has direct influence on quality of the obtained solutions. It is also useful to find the best 
solution among the all solutions from the circuit size point of view which is useful in 
practical scenes. 
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