

75

Journal of Advances in Computer Research
Quarterly ISSN: 2008-6148
Sari Branch, Islamic Azad University, Sari, I.R.Iran
(Vol. 4, No. 2, May 2013), Pages: 75-85
www.jacr.iausari.ac.ir

Analyzing Decompositions of a System of Boolean
Functions Using the Ternary Matrix Cover Approach

Saeid Taghavi Afshord1*, Yuri Pottosin2

(1) Computer EngineeringDepartment, Shabestar Branch, Islamic Azad University, Shabestar, Iran
(2)United Institute of Engineering Cybernetics, National Academy of Sciences of Belarus,Minsk, Belarus

taghavi@iaushab.ac.ir; pott@newman.bas-net.by

Received: 2013/02/17; Accepted: 2013/04/11

Abstract
The problem of series two-block disjoint decomposition of completely specified

Boolean functions is considered. Analysis and investigation of such systems are very
important in logical design context. Recently, a good method for solving this
problem was suggested which has been based on the ternary matrix cover approach.
Using this method a computer program was developed. This paper is focused on
decomposability of a system of Boolean functions. The experiments were done on
generated systems and standard benchmarks. In decomposable systems, the total
number of solutions and the time elapsed to achieve them are inspected. The total
number of solutions among all partitions for investigated systems, ranged between
3% and 87% in generated systems and also, 1% and 96% in standard benchmarks.

Keywords: Boolean functions, Decomposition, Cover map, Compact table, Logic synthesis

1. Introduction

The problem of decomposition of Boolean functions is one of the most important
problems of logical design that makes it an object of great attention by many researchers
in this field. It has been shown in [9] a considerable number of papers are already
published on this topic and still it is interesting for the research [4, 6, 7]. It is important
to find a successful solution for this problem because it has a direct influence on the
quality and cost of digital devices designed. Functional decomposition relies on
breaking down a complex system into a network of smaller and relatively independent
co-operating subsystems, in such a way that the original system's behavior is perceived.
A system is decomposed into a set of smaller subsystems, such that each of them is
easier to analyze, understand and synthesize. Decomposition-based synthesis methods
are not limited only to logic synthesis of logic circuits. The strong motivation for
developing decomposition techniques comes recently from modern research areas such
as pattern recognition, knowledge discovery and machine learning in artificial
intelligence [15].

The problem of decomposition of a system of Boolean functions can be considered in
the following statement. A system of completely specified Boolean functions y = f(x)is
given where y = (y1, y2, …, ym), x = (x1, x2, …, xn), f(x) = (f1(x), f2(x), …, fm(x)). The
superposition y = ϕ (w, z2),w = g (z1) where z1 and z2 are vector variables whose
components are Boolean variables in the subsets Z1 and Z2 respectively that form a

Archive of SID

www.SID.ir

Analyzing Decompositions of a System … S. Taghavi Afshord, Y. Pottosin

76

partition of the set X = {x1, x2, …, xn} of arguments. At that, the number of components
of the vector variable w must be less than that of z1. Such a kind of decomposition is
called two-block disjoint decomposition [8, 10]. The subsets Z1 and Z2 are called bound
and free sets respectively. Only a few papers deal with the search for the partition
{Z1, Z2}, at which this problem has a solution[2-8].

Searching for a solution of this kind is NP-hard problem because it has been proved
that this problem is equivalent to the well-known set covering problem [4]. To be aware
of decomposability of a given system of Boolean functions, finding only one such a pair
is satisfying. But, due to analysis of the task and to be prepared to search for the best
solution,it is useful to find all possible solutions. For that, it is usedthe ternary matrix
cover approach[1] in this paper. Using a compact table one can find rather easily the
existence of a solution of the problem for a given system of functions, and if it does
exist, the corresponding superposition can be easily found.

2. Definitions and Setting the Problem

Let a system of completely specified Boolean functions y = f(x), where
y = (y1, y2, …, ym), x = (x1, x2, …, xn) and f(x) = (f1(x), f2(x), …, fm(x)), be given by
matrices U and V that are the matrix representation of the system of disjunctive normal
forms (DNFs) of the given functions [10]. Matrix U is a ternary matrix of l × n
dimension where l is the number of terms in the given DNFs. The columns of U are
marked with the variables x1, x2, … , xn, and the rows represent the terms of the DNFs
(the intervals of the space of the variables x1, x2, … , xn). The matrix V is a Boolean
matrix. Its dimension is l × т , and its columns are marked with the variables
y1, y2, … , ym. The ones in this columns point out the terms in the given DNFs. A row u
in Uabsorbs a Boolean vector a if a belongs to the interval represented by u.

The task considered is set as follows. Given a system of completely specified
Boolean functions y = f(x), the superposition y = ϕ (w, z2),w = g (z1) must be found
where z1 and z2 are vector variables whose components are Boolean variables in the
subsets Z1 and Z2 of the set X = {x1, x2, …, xn}, respectively such that X = Z1 ∪ Z2 and
Z1 ∩ Z2 = ∅. At that, the number of components of the vector variable w must be less
than that of z1. The main attention is paid to the search for subsets Z1 and Z2 such that
the task would have a solution. It is clear that the subset Z1 should have at least two
members while the subset Z2 may have only one.

3. Cover Map and Compact Table

Any family π of different subsets (blocks) of a set L whose union is L, is called a
cover of L. Let L = {1, 2, ... , l} be the set of numbers of rows of a ternary matrix U. A
cover π of L is called a cover of the ternary matrix U if for each value x* of the vector
variable x there exists a block in π containing all the numbers of those and only those
rows of U, which absorb x*. Block ∅ corresponds to the value x*, which is absorbed by
no row of U. Other subsets are not in π. Let t(x*, U) be the set of numbers of those rows
of U, which absorb x*. For every block πj of π, the Boolean function πj(x) is defined
and it is assumed that πj(x*) = 1 for any x* ∈ {0,1}n if t(x*, U) = πj, and πj(x*) = 0
otherwise.

Archive of SID

www.SID.ir

Journal of Advances in Computer Research (Vol. 4, No. 2, May 2013) 75-85

77

Let an operation ∨(πi, V) is defined over the rows of a binary matrix V, the result of
which is the vector y* (y* = ∨(πi, V)) obtained by component-wise disjunction of rows
V whose numbers are in the block πi. If πi = ∅, all the components of y* are equal to 0.
It is shown in [1] that f(x*) = y* = ∨(πi, V) if πi(x*) = 1.

There is a convenient way to construct the cover of a ternary matrix U when the
number of arguments is not large. This technique uses the cover map that has the
structure of the Karnaugh map. In any cell of a cover map of U corresponding to a
vector x*, there is the set t(x*, U), which is a block of the cover of U.

Let a pair of matrices, U and V, give a system of completely specified Boolean
functions y = f(x), and let the matrix U1 be composed of the columns of U, marked with
the variables from the set Z1 and the matrix U2 from the columns marked with the
variables from Z2. The covers of U1 and U2 are π1 = {π1

1, π1
2, … , π1

r} and
π2 = {π2

1, π2
2, … , π2

s}. Let a table Mis construct. Assign the blocks π1
1, π1

2, … , π1
r

and the Boolean functions π1
1(z1), π1

2(z1), … , π1
r(z1) to the columns of M, and

π2
1, π2

2, … , π2
s and π2

1(z2), π2
2(z2), … , π2

s(z2) to the rows of M. At the intersection of
the i-th column, 1 ≤ i ≤ r and the j-th row, 1 ≤ j ≤ s, of M, the value
y* = ∨(π1

i ∩ π2
j, V)is defined. The table M is called the compact table. It gives the

system of Boolean functions y = f(x) in the following way: the value of the Boolean
vector function f(x*) is ∨(π1i ∩ π2j, V) at any set argument values x*, for which
π1i(z1) ∧ π2j(z2) = 1.

Having the compact table for a system of functions y = f(x), it is easy to construct the
desired systems y = ϕ (w, z2) and w = g (z1). The columns of the compact table are
encoded with binary codes; equal columns may have the same codes. The length of the
code is equal to log2r′ where r′ is the number of different columns of the table and
ais the least integer, which is not less than a. So, the system of functions w = g (z1) is
defined. The value of the vector variable w at any set of values of the vector variable z1
turning the function π1

i(z1) into 1 is the code of the i-th column, 1 ≤ i ≤ r. Naturally,
there is no solution to this task at the given partition {Z1, Z2} of the set X of arguments if
the length of the code is not less than the length of z1. Otherwise, the compact table
whose columns are assigned with the values of the variable w can be considered as a
form of representation of the other desired system of functions y = ϕ (w, z2). The value
of y at the value of w assigned to the i-th column, 1 ≤ i ≤ r, and at any value of z2
turning π2

j(z2) into 1, 1 ≤ j ≤ s, is the vector that is at the intersection of the i-th column
and the j-th row.
Example 1. Let a system of completely specified functions y = f(x) was given by the
following pair of matrices:

U=

7
6
5
4
3
2
1

1

1

1

1
1
0
0
0
0
1

0

0

0
0

1
1
0

1
1
0

1
1
0
0
0
0
0

54321













−

−

−
−

−

−

−
−












xxxxx

,V =

7
6
5
4
3
2
1

1
1
1
1
0
0
0

0
0
0
0
1
1
1

21
























yy

.

For the partition of the set of arguments into subsets Z1 = {х1, х2, х3} and
Z2 = {х4, х5}, the following matrices are obtained:

Archive of SID

www.SID.ir

Analyzing Decompositions of a System … S. Taghavi Afshord, Y. Pottosin

78

U1=

7
6
5
4
3
2
1

0

0

0
0

1
1
0

1
1
0

1
1
0
0
0
0
0

321













−

−

−
−












xxx

, U2 =

7
6
5
4
3
2
1

1

1

1

1
1
0
0
0
0
1

54













−

−

−
−












xx

.

To find the length of w in the superposition y = ϕ (w, z2),w = g (z1) where
z1 = (х1, х2, х3) and z2 = (х4, х5), the covers of the ternary matrices U1 and U2are
constructed: π1 = {∅, {3}, {5}, {7}, {6, 7}, {1, 4, 5}, {2, 3, 4}} and π2 = {{1, 6},
{2, 4}, {1, 6, 7}, {2, 3, 4, 5}} (In examples 2 and 3, these covers will be obtained in
details). The corresponding compact table is represented in Table 1 that has seven
different columns. Clearly, this task has no solution at the given subsets Z1 and Z2,
because to encode the columns of the compact table with the values of w, three variables
are needed that is not less than the length of z1.

Table 1. The compact table for the system of functions in Example 1
 ∅ 3 5 7 6,7 1,4,5 2,3,4

1,6 00 00 00 00 01 10 00
2,4 00 00 00 00 01 01 11

1,6,7 00 00 00 01 01 10 00
2,3,4,5 00 10 01 00 00 11 11

4. Search for Appropriate Partition

To search for an appropriate partition of the set of arguments the ternary matrix
covers and compact tables induced by the mare used. Let a few free variables be to find
that constitute the set Z2 (then the set of bound variables would be Z1 = Х \ Z2). To do
this, the operation of dividing a ternary matrix cover by the cover of a column of the
matrix is used. Let the operation is determine to divide the cover π of a ternary matrix U
by the cover πi of its i-th column as π / πi = π1 × π2 × … × πi – 1 × πi + 1 × … × πп. This
operation can be easily fulfilled using the cover map, which, as well as Karnaugh map,
has the lines of symmetry related to the variables of the Boolean space represented by
this map [5]. To transform the cover map of a ternary matrix U into that of the matrix
obtained from U by deleting the i-th column, one should superpose pair-wise the entries
that are symmetric with regard to the lines relative to xi, and put the unions of the
superposed entries into the obtained entries. The obtained cover map would represent
the desired cover [1].
Example 2. Figure 1 shows the cover map of the ternary matrix U from Example 1. The
cover of U isπ = {∅, {1}, {3}, {4}, {5}, {6}, {7}, {2, 4}, {4, 5}, {6, 7}, {2, 3, 4}}. As
it can be seen from Figure 2 the division of π by the cover of the column х4 will be {∅,
{3}, {5}, {6}, {7}, {1, 4}, {2, 4}, {6, 7}, {1, 4, 5}, {2, 3, 4}}. Having transformed this
map by the described way with regard to x5, the set{∅, {3}, {5}, {7}, {6, 7}, {1, 4, 5},
{2, 3, 4}} as a result of dividing π by the covers of the columns x4 and x5is obtained(see
Figure 3).

Archive of SID

www.SID.ir

Journal of Advances in Computer Research (Vol. 4, No. 2, May 2013) 75-85

79

 х5
 х4
 х3
 4 ∅ ∅ 1 1 ∅ 5 4,5
 2,4 ∅ ∅ ∅ ∅ ∅ 3 2,3,4
 ∅ ∅ ∅ 6 6,7 7 ∅ ∅
х2 ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅
х1

Figure 1.The cover map of the matrix U from Example 1

The method used to search for an appropriate partition consists in fulfilling the
lexicographical enumeration and testing by the above way every variant of the set Z2 if
it would provide a solution of the task.

 х5
 х3
 1,4 ∅ 5 1,4,5
 2,4 ∅ 3 2,3,4
 6 ∅ 7 6,7
х2 ∅ ∅ ∅ ∅
х1

Figure 2.The cover map obtained by dividing π by the cover of the column
 х3
 1,4,5 5
 2,3,4 3
 6,7 7
х2 ∅ ∅
х1

Figure 3.The cover map obtained by dividing π by the covers of the columns x4 and x5

Example 3. Let the system of completely specified Boolean functions from Example 1 be
given. Consider this variant that Z2 = {x2, x4}, Z1 = {x1, x3, x5}. For that, with the cover
map in Figure 1, the cover map shown in Figure 4 is obtained and then Figure 5 from
Figure 4 is also obtained.

 х5
 х4
 х3
 2,4 ∅ ∅ 1 1 ∅ 3,5 2,3,4,5
 ∅ ∅ ∅ 6 6,7 7 ∅ ∅

х1

Figure 4.The cover map obtained by dividing π by the cover of the column x2
 х5
 х3
 1,2,4 ∅ 3,5 1,2,3,4,5
 6 ∅ 7 6,7
х

Figure 5.The cover map obtained by dividing π by the covers of the columns x2 and x4

The compact table for the covers π1 = {∅, {6}, {7}, {3, 5}, {6, 7}, {1, 2, 4}, {1, 2, 3,
4, 5}} and π2 = {{1}, {4, 5}, {6, 7}, {2, 3, 4}} is represented by Table 2 that have four
different columns. To encode these columns, two variables are sufficient. The codes of

Archive of SID

www.SID.ir

Analyzing Decompositions of a System … S. Taghavi Afshord, Y. Pottosin

80

the columns are shown at the bottom of Table 2. To construct the system of functions
y = ϕ (w, z2) and w = g (z1) that are the solution of the task, the functions connected with
the blocks of the covers obtained must be constructed.

Table 2.The compact table for the partition from Example 3
 ∅ 6 7 3,5 6,7 1,2,4 1,2,3,4,5

1 00 00 00 00 00 10 10
4,5 00 00 00 01 00 01 01
6,7 00 01 01 00 01 00 00

2,3,4 00 00 00 10 00 11 11
 00 01 01 10 01 11 11

The DNFs of the functions connected with the blocks of π1 can be obtained from the
cover map in Figure 5: π1

1(z1) = х3х5, π1
2(z1) = х1х3х5, π1

3(z1) = х1 х3 х5,
π1

4(z1) =х1 х3 х5, π1
5(z1) = х1х3 х5, π1

6(z1) =х1х3х5, π1
7(z1) =х1х3 х5. Similarly, the

DNFs π2
1(z2) =х2 х4, π2

2(z2) =х2х4, π2
3(z2) = х2 х4, π2

4(z2) = х2х4 are obtained. As a
result of simple minimization, the following matrices are obtained which are
representing the desired superposition y = ϕ (w, z2), w = g (z1):











−
−
−











0
0
0
1
1

0
1
1
0

1

1
1

1
1
1
0
1

4221 xxww

,





















1
1
0
1
0

0
0
1
0
1

21 yy

;





−

−





−

1
00

0

1

0
531 xxx

,














1
1
0

0
0
1

21 ww

.

5. Implementation and Results.

The special computer program in C++ was designed and developed to find all the
solutions of systems of Boolean functions. The program is based on using the ternary
matrix cover approach and the general scheme of implemented algorithm is summarized
in Figure 7.This algorithm is also applied to evaluation of the standard benchmarks with
small modifications. The experiments run on a Pentium 2.26GHz CPU with 3 GByte of
main memory.

Due to evaluation of explained approach, three types of benchmarks were utilized. At
first the systems of completely specified Boolean functions were generated using a
prepared library which has been explained in [11, 12].Then the standard benchmarks
were used which are well-known in the literature, both industrial and mathematical
benchmarks [13]. Three parameters for the all evaluated systems were considered; the
number of rows of matrix U that indicate the number of conjunctions, the number of
columns of matrix U or the number of arguments and the number of columns of matrix
V or the number of functions. In generated systems, the matrices U and V as SOP (Sum
of Product) were prepared. After providing these matrices, first of all, the matrix U is
expanded to obtain the corresponding matrix without don't cares. The rows which have
don’t cares will be replaced with several suitable rows.

Then the cover map will be provided; for that Gray code encoding system was used.
On contrary to the examples in section 4 that cover map is a two dimensional table, due
to simplicity to store in computer memory and also for the future calculations of
compact table, it was implemented as a one dimensional array. An example of this
approach with three variables is represented in Figure 6. The order of replacement of the

Archive of SID

www.SID.ir

Journal of Advances in Computer Research (Vol. 4, No. 2, May 2013) 75-85

81

-Algorithm for one system of Boolean
functions

Ø Con ← ConValue
Ø Arg ← ArgValue
Ø Fun ← FunValue
Ø Generate SOP(Con,Arg,Fun)
(i.e. Matrices U and V)
Ø Expand Matrix U
(Removing don't cares in Matrix U and
replacing these rows with suitable ones)
Ø Compute Cover Map
(Generate Gray Codes with Length 2n and
fill out the Cover Map Array According to
the Algorithm Rules)
Ø C ← 0 (To Count Number of all Solutions)
Ø for k ← 2 to n-1
»Combination Generator(n,k)
 »for each combination of
 Check the Current Partition

1-Divide Cover Map Over Z1
2-Divide Cover Map over Z2
3-Compute Compact Table (CT)
4-Compute Different Columns (r) of CT
5-Encode the Columns of CT
6-if r ≤ 2k-1 then

 Solution Founded
 (Calculate Matrices ϕ,w,y andx)

»if Solution Founded then
 Add this partition to the set

of Solutions and C ← C + 1
Ø if C=0 then
Declare the system is not decomposable
Ø else
 Declare the system is decomposable and
 Print C

variables in the array is important and this can be extended for any number of variables.
In the array the values explained in section 4 is stored and Gray codes in the array of
Figure 6 are symbolically shown to represent the correctness of the approach, but Gray
codes in the other l is t is also saved.

 х1
 х2
 х3
000 001 011 010 110 111 101 100

Figure 6.The cover map model for three variables using Gray code encoding system

Figure 7.The implemented algorithm for determining decomposability of a system of Boolean

functions and to find all solutions of the system on generated benchmarks

Archive of SID

www.SID.ir

Analyzing Decompositions of a System … S. Taghavi Afshord, Y. Pottosin

82

In fact, the way of storing information in the mentioned array is as follows. Each row
in matrix U, numbered with integers started from one. The value of each row with Gray
codes list is compared until the equal value to be founded. Then the row number of
compared row in corresponding element of the array is added. This manner is continued
until all the rows to be compared and the row numbers to be added to the array
elements. At the end, the array is swept and it is put the empty set to the elements with
no value added.

To find all solutions of the task anyone should enquire into all possible partitions
which are constructing Z1 and Z2. The relatively simple method to address the
appropriate partition can be done by lexicographical enumeration. After computing
cover map of the current system of Boolean functions, in each stage Knuth algorithm
[14] was used to generate all combinations of the arguments and of course for each
partition it is checked whether it is a solution of the task or not. To obtain all k-element
subsets of an n-element set, this algorithm is one of the fastest ones. Each k-element
subsets is used to construct Z1 elements and the rest of the arguments will be the
elements of the Z2.

If a partition as a solution is found, the program will keep it and will calculate four
matrices; matrix Φ, matrix Y, matrix X and matrix W. These matrices are a solution of
the task. In fact the current system of Boolean functions converts to two new systems
with less arguments; matrices Φand Y as U and V respectively, for the first system and
also matrices X and W as U and V respectively, for the second system.

This method is repeated for all partitions and if appropriate partition is not found, the
program declares the current system of Boolean functions is not decomposable;
otherwise the program prints the number of solutions for the current system. Now, the
experimental results for the explained approach in decomposition of Boolean functions
are reported which is described in the previous sections. Due to space and time
limitations, the results are shown refer only to the decomposition of systems with few
arguments and few functions as well. The results are summarized in Tables 3a, 3b and
3c.

The results show that more than 95% of generated systems are decomposable and all
of them have several solutions when the system is decomposable. The first three
columns in Tables 3 represent the number of conjunctions (Con), the number of
arguments (Arg) and the number of functions (Fun) respectively and these informs the
parameters of a generated system of Boolean functions. The total number of partitions
(TNP) are counted when 2 ≤ | | ≤ − 1. So it implies that the total partitions will be ∑ which it is equal to 2 − (+ 2).

The Number of Solutions (NS) is part of the results which is found after the program
was executed and the percentage of the Solutions (PS) is percent of NS to NTP. The
value of NS and PS are zero if the evaluated system of Boolean functions is not
decomposable. The last column represents elapsed time (ET) which is the run time of
the program for each system of Boolean functions during obtaining all solutions and it
was calculated in seconds.

Archive of SID

www.SID.ir

Journal of Advances in Computer Research (Vol. 4, No. 2, May 2013) 75-85

83

Table 3a.Experimental results on generated systems

Con Arg Fun TNP NS PS ET
8 5 2 25 21 84 <1
10 6 2 56 49 87 4
10 6 4 56 18 32 4
15 6 8 56 26 46 5
20 7 3 119 25 21 21
20 7 10 119 15 13 25
25 7 14 119 7 6 34
15 8 4 246 40 16 134
20 8 6 246 104 42 123
40 8 10 246 8 3 201
30 9 5 501 125 25 926
25 9 9 501 30 6 650
25 9 16 501 61 12 824
30 10 3 1012 58 6 3634
30 10 5 1012 55 5 3197
30 10 8 1012 491 49 1362
30 12 6 4082 673 16 20413

Table 3b.Experimental results on Mathematical benchmarks
Bench Con Arg Fun TNP NS PS ET
rd53 31 5 3 25 15 60 1

fsm.pla 15 5 7 25 7 28 1
rd73 147 7 3 119 98 82.35 47
z4 127 7 4 119 37 31.09 37

log8mod 46 8 5 246 134 54.47 102
Radd 120 8 5 246 59 23.98 253
Root 255 8 5 246 40 16.26 285
adr4 255 8 5 246 59 23.98 536
Dist 256 8 5 246 6 2.44 345
sqr6 63 6 12 56 0 0 6

z5xp1 128 7 10 119 0 0 42
f51m 256 8 8 246 0 0 362

addm4 512 9 8 501 0 0 1268
Table 3c.Experimental results on industrial benchmarks

Bench Con Arg Fun TNP NS PS ET
newapla2 7 6 7 56 34 60.71 2

m1 32 6 12 56 12 21.43 3
sqn 96 7 3 119 5 4.2 82
dc2 58 8 7 246 3 1.22 166
m2 96 8 16 246 80 32.52 178
m3 128 8 16 246 59 23.98 195
luc 27 8 27 246 43 17.48 84

max512 512 9 6 501 24 4.79 1329
sex 23 9 14 501 127 25.35 418

newtpla1 4 10 2 1012 973 96.15 1604
newtpla2 9 10 4 1012 967 95.55 3163

clpl 20 11 5 2035 1095 53.81 6394
newapla1 10 12 7 4082 3769 92.33 14917
newapla 17 12 10 4082 3649 89.39 16935
newcwp 11 4 5 10 0 0 <1

dc1 15 4 7 10 0 0 <1
prom2 287 9 21 501 0 0 337

Archive of SID

www.SID.ir

Analyzing Decompositions of a System … S. Taghavi Afshord, Y. Pottosin

84

6. Conclusion and Future Works

A computer program as an application was developed to determine decomposability
of a system of Boolean functions via ternary matrix cover approach. The ternary matrix
cover and the representation of a system of Boolean functions in the form of compact
table are simple to be realized. The several systems with different parameters were
developed. The experimental results are interesting and show that usually a system has
many solutions when it is decomposable. In the most cases a system has more solutions
when the number of its functions is few or its conjunctions contain more don’t care
values.

As a future work, optimization in encoding of compact table is proposed, because it
has direct influence on quality of the obtained solutions. It is also useful to find the best
solution among the all solutions from the circuit size point of view which is useful in
practical scenes.

7. Acknowledgement

This work was done in the logical design laboratory at the united institute of
informatics problems of the NAS of Belarus. The authors like to thank this laboratory
by its support in providing the benchmark source codes.

8. References

[1] Yu.V. Pottosin, and E. Shestakov, “Choice of Free Arguments in Decomposition of Boolean
Functions Using the Ternary Matrix Cover Approach,” In the 5th Int. Conf. on Neural Networks
and Artificial Intelligence (ICNNAI), Brest, Belarus, Jun. 2010, pp. 123-127.

[2] P.N. Bibilo, “Decomposition of Boolean Functions Based on Solving Logical Equations,”
Byelaruskaya Navuka, Minsk, Belarus, 2009, (In Russian).

[3] L. Jóźwiak, and A. Chojnacki, “An Effective and Efficient Method for Functional
Decomposition of Boolean Functions Based on Information Relationship Measures,” In 3rd
Design and Diagnostics of Electronic Circuits and Systems Workshop (DDECS). Bratislava,
Slovakia, Apr. 2000, pp.242-249.

[4] A. Martinelli, “Advances in Functional Decomposition: Theory and Applications,”Doctoral
Dissertation, Royal Institute of Technology (KTH), Stockholm, Sweden, 2006.

[5] A.D. Zakrevskij, “Decomposition of Partial Boolean Functions: Testing for Decomposability
According to a Given Partition,” Informatika Journal, No. 1(13), 2007, pp. 16-21, (In Russian).

[6] M. Rawski, “Heuristic Algorithm of Bound Set Selection in Functional Decomposition for
Heterogeneous FPGAs,” In21st Int. Conf. on Systems Engineering (ICSEng), Las Vegas, USA,
Aug. 2011, pp. 465-466.

[7] V. Muthukumar, R. J. Bignall, and H. Selvaraj, “An efficient variable partitioning approach for
functional decomposition of circuits,” J. of Systems Architecture, vol. 53, (1), 2007, pp. 53-67.

[8] C. M. Files, and M. A. Perkowski, “New Mutivalued functional decomposition algorithms based
on MDDs,” IEEE Transactions on Computer-Aided Design of Integrated Ciruits and Systems,
vol. 19, (9), 2000, pp. 1081-1086.

[9] S. Hassoun, and T. Sasao, “Logic Synthesis and Verification,” The Springer Int. Series in
Engineering and Computer Science, Kluwer Academic Publishers, 2001.

[10] A. Zakrevskij, Yu. V. Pottosin, and L. Cheremisinova, “Optimization in Boolean Space,”
Tallinn, Estonia, TUT Press, 2009.

[11] V.I. Romanov, “Tools development for logic designing,” The 4th Int. Conf. on Computer-Aided
Design of Discrete Devices, Minsk, Belarus, 2001, pp. 151-170 (In Russian).

Archive of SID

www.SID.ir

Journal of Advances in Computer Research (Vol. 4, No. 2, May 2013) 75-85

85

[12] V.I. Romanov, “Tools for programming Boolean calculations,” InAbstracts of ECCO XVIII
Conf.; Combinatorics for modern manufacturing, logistics and supply chains, Minsk, Belarus,
May. 2005, pp. 57-58 (In Russian).

[13] Abailabe online at: http://www1.cs.columbia.edu/~cs4861/sis/espresso-examples/ex/
[14] D. E. Knuth, “The Art of Computer Programming,” First ed., vol. 4A, Combinatorial

Algorithms, part 1, Reading, Massachusetts, Addison-Wesley, 2011.
[15] M. Rawski, “Evalutionary Algorithms in Decomposition-based Logic Synthesis, Evalutionary

Algorithms” Prof. Eisuke Kita (Ed.), InTech Publisher, 2011.

Archive of SID

www.SID.ir

Analyzing Decompositions of a System … S. Taghavi Afshord, Y. Pottosin

86

 Archive of SID

www.SID.ir

