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Abstract

In this paper, an integration of Improve Particle Svarm Optimization (IPSO) in
combination with Successive Quadratic programming (SQP) so called 1PSO-SQP
algorithm is proposed to solve time optimal bang-bang control problems. The
procedure is found not sensitive to the initial guess of the solution. Due to random
selection in the first stage of the search process, the chance of ‘converging to the
global optimum is significantly increased, without sticking in a local optimum. The
combined technique gains both advantages of -its original algorithms. The 1PSO
directly minimizes the cost function without the need for gradient-based techniques.
The performance of the outcome will be increased when the SQP immediately
undertakes the optimization task. This.is.shown via applying those on some other
nonlinear systems. Consequently, the proposed algorithm is successfully applied on
a time optimal bang-bang control’ of an autonomous underwater vehicle. A pitch-
programming task is also investigated for the autonomous underwater vehicle by
designing an optimal PID controller.

Keywords: Autonomous Underwater Vehicle, IPSO-SQP Algorithm, Optimal PID Controller, Pitch
Programming, Time Optimal Bang-Bang Control

1. Introduction

One of the most-common types of control input is piecewise (constant) function
which consist of a sequence of (fixed) inputs that is applied to systems with appropriate
switching times. In many mathematical models of the mechanical systems, the control
input is of bang-bang type. The bang-bang solution may also be encountered in some
optimal control problems. A special situation arises when the Hamiltonian is linear in
terms of the control input and the response is a'so nonsingular [1]. Using the bang-bang
Controller changes the problem to finding the switching times [2], [3], [4], [5]. Mohler
in [5] and [6] presented a bang-bang control algorithm called switching time variation
method (STVM) that requires information of the number of switching and the switching
times as initial guesses. It generates a sequence of switching functions whilst computes
the gradient of the cost function with respect to the switching times. Using this gradient
information, the switching times are corrected at any iteration. During the correction
process, a careful selection of the step size is crucia because the Hessian of the cost
function is not estimated. In [7], the Switched Time Optimization (STO) agorithm is
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used for time optimal control of a two-linked manipulator. The STO algorithm needs a
good initial guess for the switching times to converge to a global minimum. In [8]
primarily the switching time computation (STC) method is proposed to assess the time
of the switching. The work was followed to minimize the final time in a time optimal
bang-bang control problems. In [9] a general agorithm for Time Optimal Switching
control (TOS algorithm) is proposed of nonlinear systems using a single control input.
Primarily the STC method is used to find a feasible switching control, then the TOS
algorithm uses this information as an initial guess to solve the time optimal bang-bang
control problem. In [10] a method is proposed to use a mathematical programming
formulation to solve the bang-bang constrained optimal control problems. This method
not only gives what STC and TOS agorithms can give together, but also assesses
sufficient conditions for a local minimum. Unfortunately, this agorithm needs a good
initial guess otherwise; the algorithm may converge to a local minimum. Generally,
gradient-based methods have the possibility of getting trapped at local optimum
depending on the initia guess of the solution. In order to achieve a good result, these
methods require very good initial guesses of the solution. Besides, as the complexity of
the system increases, the specification of a suitable initial guess can become
troublesome [11]. Thus global optimal control ‘methods such as genetic agorithm
(GA), particle swarm optimization (PSO), differential evolution (DE) and etc. can be
used to find the global optimum or a sufficiently close approximation. In the heuristic
algorithms, the cost function’s gradient is not required. They are not sensitive to initial
guess of the solution and they usually do not get stuck into alocal optimum. Based on
these advantages, they have been successfully applied in many optima control
problems [11], [12], [13]. In this paper, the IPSO-SQP agorithm is used to overcome
the shortages of traditional methods.in time optimal bang-bang control problems. First,
an improved PSO (IPSO) agorithm is proposed to enhance global search ability and
convergence speed of PSO. Second, to achieve faster convergence speed around global
optimum and higher convergence accuracy, the IPSO is combined with successive
quadratic programming (SQP) a gorithm.

In recent years, AUV's have become an intense area of oceanic research because of
their emerging applications, such as deep sea inspections, underwater pipelines tracking,
fish tracking and different application in military industry, etc [14], [15]. These vehicles
are controlled autonomously. The required energy, which is carried on board provides
wider scope of operation in comparison with the other type of underwater vehicles such
as ROVs. Despite of the complexity in the structure and the difficulty to control and due
to capability of the AUVs, these are still of the researcher’s interest. The task to be
controlled here is the trgjectory of an AUV from the depth lower than 50 meters towards
the surface. It is necessary that the AUV has to come back to the nest where is located
on the sea surface in minimum time. The work will be followed when a PID controller
with optimal coefficients gain is tuned for the pitch-programming task. This paper is
organized as follows:

In section2, a time optima bang-bang control problem is addressed and the
proposed IPSO-SQP agorithm for solving time optimal bang-bang control problem is
introduced. The application of this algorithm in a time optima bang-bang control of
three nonlinear systems (Van Der Pol, Rayleigh and F8 aircraft) is presented in
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section3. The advantage of the proposed method is discussed via a comparison study
with some other similar methods. A simulation study shows the significance of the
proposed 1PSO-SQP agorithm for solving time optimal bang-bang control problem. In
Section4 to assess the performance of the proposed method, it is used on atime optimal
bang-bang control of an AUV. Artificia tuning of a PID controller designation for pitch
programming is performed in section 5. Finally, the work will be closed by a conclusion
in section6.

1. IPSO-SQP ALGORITHM FOR SOLVING TIME OPTIMAL BANG-BANG
CONTROL PROBLEMS

In this paper, a configuration of IPSO and SQP agorithms —so caled IPSO-SQP, is
used in a time optimal bang-bang control problem. In which there isno need to a have
good initial guess of the solution. The IPSO is gained to solve nonlinear optimal control
problems [11]. This has shown to have rapid convergence to a near optimum solution.
In fact, the search process becomes very slow around the global optimum. On the other
hand, the SQP algorithm is weak to escape from the local optimum. Since the
convergence speed and the accuracy to reach to the global optimum are more
significant, it is meaningful to combine two describe techniques.’A combination process
of these two methods is as follows:

First, the IPSO algorithm is used to find a'near optimum solution. Thereafter the
search process immediately switches to the SQP algarithm to gain the higher converge
rate to achieve global optimum. More details are presented in the following sections.

2.11PSO algorithm

Particle swarm optimization (PSO), as an effective heuristic optimization technique,
is based on simulating of the mavement and flocking of birds. Eberhart and Kenedy first
improved this algorithm.in 1995 [16]. The PSO uses the concept of social mutual effect
to solve an optimization problem. In the PSO, particles move in the search space to find
best solution. Each particle is considered as a point in an N-dimensiona space. The
flight is updated according to the past experience of the particle and aso other birds

In the search space, each particle continues the flight according to the best solution
that has been achieved so far by this particle personally. This value is caled the
persona best (pbest). The other trajectory where the PSO follows is the best value that
has been achieved so far by each particle in the vicinity of that particle. This value is
caled the globa (or local) best (gbest or Ibest). The main concept of the PSO is
involved with the acceleration of each particle towards the pbest and the gbest (Ibest)
using an inertia weight. In the beginning of the search process initial population is
randomly created in the given search space. Each particle has its own velocity vector,
which is updated at any iteration. The updating velocity equation is as follows:

vt =+, ( poest - X' +cr, ( gest” - X°) (D)
where x¢ is the position of the i" particle in k™ iteration, w is the inertia weight.
Coefficients ¢, and c, are the acceleration multipliers, r is a random uniformly
distributed number in the range[01]. When the velocity is evaluated from (1) the
position of every particleis updated as follows:
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)§k+l - )ﬁk +Vik+l (2)
The update laws are repeated until a stopping criterion in the algorithm is met.
Preventing the PSO agorithm to stick in a local minimum, a weighting factor [11] is
proposed in Eq. (3) which is updated as follows:

W = 1

" (1+exp(-a F(pbest))) 3)
consideringa =1/F(gbest) where F(pbest/) and F(gbest) are the fitness value of the

personal and global best respectively. Therefore, the algorithm is ultimately called
IPSO.

2.2 SQP algorithm

SQP is an iterative analytical nonlinear programming method. This technique begins
from an initial point to find a solution using the gradient information. This optimization
method is faster than other population based search algorithms. Although the SQP
method is highly dependent on the initial estimate of the solution [17], [18], this has
successfully applied in some optimal control problems [19], [20]-

The SQP method is based on an iterative formulation together with the solution of
some other quadratic programming sub problems. The optimization problem in SQP
method is considered as follows:

i minimize: J(x)

1subjected tory | (x)£0, i =12,K,|I (4)
where J(X) is the cost function and y,(x) stands for the constraint. In this regard the
Lagrangian function L(x,I)is constructed in terms of the Lagrangian multiplier!,, the
cost function together with the constraint which is as follows:

L(x,|)=J(x)+iéjllliyi(x) 5)

In fact, the SQP consists of three main parts:
1- Update the Hessian of the Lagrangian function according to:

— GG HeHy
H,, =H -
<SS S, ©)
2-  Solve the quadratic programming sub-problem:

min %d;dek +RfF (%) d, 7)

Ny (x)"d, +y (%) =0 i=1K,m
Ny, (x)"d,+y(x)2 0 i=m,K,m
3- Apply alinear search to find a solution for the next iteration:
X = X, +ad, 8)
The agorithm is repeated until the stopping criterion (maximum iteration or
convergence criterion) is met. The step length parameter a, is determined via a linear
search procedure.

2.3 1PSO-SQP Algorithm for Solving Nonlinear Optimal Control Problems

In the following a brief review of the IPSO-SQP algorithm is expressed. For more
details, one may refer to [11]. In this method, primarily a group of particles is randomly
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initiated. The IPSO is executed to find a global kind best position. Then the routine is
switched to the SQP algorithm to search around the found global best. This is written
here:

Step 1. Initialize the position and velocities of particles, using uniformly distribution
random number.

Step 2: Evaluate the fitness value for each particle.

Step 3: If the maximum iteration is arrived, go to step7, else, go to step4.

Step 4. The global best is stored. If the change between the current global best fitness
value and its previous one is smaller than a predefined value, go to step7 else
continue.

Step 5: The velocities and position of all particles are updated according to Eq.(1) and

(2).

Step 6: The inertia weight for each particle is updated according to EQ.(3) and go to

step?2.

Step 7: Switch to the SQP algorithm to search around the global best, which is found
by IPSO. In this case, the best solution obtained by IPSO is considered as an
initial guess for the SQP algorithm.

2.4 Problem Statement

The task is to guide a system from a given initial state to a target in a minimum
time, using a bang-bang control. Consider the following nonlinear dynamic:

%= f (x(t),u(t)) 9)
where x(t)1 i" is the state vector, u:g0.t;§g®U 1 i is a finite time control input and
f:i""U® j isavector field. The goal is to steer the system to a desired target by
using some piecewise constant control, namely a finite sequence of constant input
{u,K,u,,.} where N is the number of switching. In other words, arcs are generated by
the given constant inputs. These arcs are to be concatenated in a prescribed order such
that to reach the target state. A bang-bang control input is defined as follows:

ut)=u inthei”.ac (10
where i arcuis the segment of the trajectory x(t) ti (t.,,t), i=LK,N and 1, is the
switching time. A concatenation of these arcs from xto a target state x, is
schematically shown in Figurel.

X(t,)

_-

g 0009 N\ fN*l
ZN+1
X
X(t,)
X
Figurel. A concatenation of arcsfrom X,to X
The time duration of each arc is defined as follows;
z =t-t,, i=01%,N+1 (11)
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wherez . is the time required to travel along with the i arc. The vector of zT R"" is
defined by:

z =[z,K .z, (12)
Given the number of switching and the magnitude of the control input for each arc, the
problem is reduced to final time (summation of the arc times) optimization subjected to
equality constraint x(t, ) = x, . By using the penalty method [21], the constraint is added

to the cost function as a penalty function. This changes the constrained problem to an
unconstrained one. Thus, the time optimal bang-bang control problem is reduced to:

i "t 3 2

Piminimize azi+aia(xj(tf)- xT) (13)
f) i=1 j=1 !

wherea,, i =12 K,N +1listhe weighting factors. x;(t;) and x , j=12K,n arethe actua

and desired value of the " state variable respectively. Now, the problem isto find:

- The number of switching N,

- The value of the control input in each arc

- andthetimeduration of each arcz,, i =1,2,K,N
such that the cost function in (13) is minimized. Thisis shown to be performed through
using IPSO-SQP method which is described in the fallowing.

2.51PSO-SQP Algorithm In Time Optimal Bang-Bang Control Problems

In this method by inspiring the concept in [7], the number of switching and the
magnitude of the control input for each arc are determined. The switching times will be
computed gaining the IPSO-SQP agorithm'to take the system to the target from a given
initial state in a minimum time. The discrepancy from the desired trgjectory is added as
a penalty function to the cost function (Eq.(13)). The particles in IPSO-SQP algorithm
are treated as arc times. Thus, the dimension of each particle is N+1, wheren is the
number of switching. For exampleif theinitial switching number is guessed N =3with
u(0) =u,,, then the arc.times and the control input will be of the form z ={z,,z,,z,,z,}

and u(t) ={u,..- Uz u..J respectively. Each dimension of a particle is bounded.

Since time is a nonnegative quantity, the lower bound of each dimension should be
considered zero. However, the value of zero yields numerical errors, thus preventing
such errors the lower bound is considered 10°° which is very close to zero. Determining
the upper bound value depends on designer. If a designer is familiar with the problem,
he or she can choose a value for the upper bound, which is very close to the real
solution. Otherwise, it is better to choose the upper bound large enough to annihilate the
guessing error through running the algorithm. It must be noticed that assigning a very
large value to the upper bound may lead the agorithm to converge through more
number of iterations. After determining the bounds, the velocity and the position of a
group of particles are randomly initialized. The IPSO agorithm is executed to search for
the global best position. The SQP algorithm is then used to search around the found
global best. In the following, the procedure of the IPSO-SQP agorithm for solving the
time optimal bang-bang control is presented.

Step 1: Guess the number of switching N.

Step 2: Set theinitial value of the control inputu(0) = +u,__,

u

mex ¥~
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Step 3: Find a possible solution with N times switching using the IPSO-SQP method
and seti =1.

Step 4: Find atime optimal solution forn+i and N-i switching using the IPSO-SQP
method.

Step 5: In the case of no improvement ont, , keep the obtained solution in step3 as a

possible optimal solution and let the algorithm continue. Otherwise, set i =i+1
and go to step4.
Step 6: if u(0)=-u,, assignalabel s, to the solution and continue; else, the label of the

solution will be assigned ass . Set u(0) =-u,, and go to step3.
Step 7: Among the sets of the solution s ands,, select the answer with the minimum
time t, and regard it as the desired solution and stop.

To use this procedure, primarily the value of the switching number is guessed. Then for
aninitial control input (u(0) =+u_, ), the agorithm is run to find the optimal arc times. If

for a special switching number N, the final time is improved then the algorithm searches
for the best solution for N+1 and N -1 switching. Again, the solution is checked to find
a possible improvement. Detecting any improvement, the algorithm is executed again
for N+2 and N- 2 switching. The procedure continues until-improvement in final time
is not detected. In this case, the best result that has been achieved so far is stored and the
algorithm isrun for the other initia control input (u(0) =-u,, ) and the same initial guess
of the switching number (N). Similarly, steps of the algorithm are repeated for the new
guess. Consequently, the best results achieved for each initia control input are
compared and the one, which yields less final time, is considered as the solution of time
optimal bang-bang control problem.

Through using the proposed 1PSO-SQP agorithm for solving time optimal bang-
bang control problems a good initial guess for starting the algorithm is prevented. In
contrast to STO method, there is no need to use any additional method to find a suitable
start point. Moreover, the IPSO-SQP agorithm has a simple code and it is very easy to
deal with aso, it can be applied for wider range of problems. The hybrid configuration
makes it a powerful algorithm, which rarely get stuck in the local optima. In the
following, to verify the performance of the proposed algorithm it is used in time optimal
bang-bang control of some nonlinear systems.

2. Application Of IPSO-SQP Algorithm In Time Optimal Bang-Bang Control Of
Some Nonlinear System
In this section, the IPSO-SQP algorithm is applied on a time optimal bang-bang
control of the Van Der Pol equation, Rayleigh system and an F8 aircraft model. The
results are compared with those of obtained in [9] and [10].
3.1 Van der Pol Equation
A controlled Van Der Pol equation with the effort u is expressed as follows:
% =%
% =-% - (x-1)x, +u
where u is assumed to be of the bang-bang, namely ui {-11 . The goal is to steer the
states from the initial point x, =[11]to the target point x, =[0,0] in minimum time. The

(14)
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STO method was priory used in time optima bang-bang control of Van Der Pol
equation in [9]. In the following the results obtained using STO method is presented
then the proposed IPSO-SQP method is aso used for time optimal bang-bang control of
Van Der Pol equation.

v STO Method

As it is mentioned in the introduction of this paper, The STO agorithm is very
sensitive to the initial guess of the solution thus, the STC method is used primarily to
assess an appropriate start point. The STC method set u(0) =1 and found the results as

follows[9]:
z =[3.92540, 0.43500, 3.28560] , t, = 7.64600

The distance from the origin was as00.00037 . Using the outcome of the STC technique
asan initia guess of the STO, the following result is achieved [9]:
z =[0.7230, 2.37220] , t, =3.09520

These results provide a fewer distance to the final states from the originof order10“. In
fact, the length of third arc was found zero which decreases the time significantly.
However, this agorithm [9] is found sensitive to the initial guess of the solution. A
misappropriate choose of the initial guess may lead the algorithm to converge to alocal
minimum. Thus, it needs an additional algorithm (STC method) to assess an appropriate
start point.

Vv IPSO-SQP Algorithm

The IPSO-SQP is implemented on Van Der Pol equations. To provide a chance for
the IPSO algorithm to converge, the size of the population of swarm is assumed 30
whilst both ¢, and ¢, are set to 2.1. The number of switching isinitially assumedN =4 .
Hence, the number of arcs has to be one more than the number of the switching.
Accordingly, the dimension of the optimization problem i.e. the number of arcsis equal
to five. In order to show that the agorithm is not sensitive to the initial guess, the range
of the arc timesin each dimension is assumedz; T g0° 10y, and initially the particles are

randomly distributed in this range. The lower bound is chosen as 10° not to be zero due
to numerical consideration. The IPSO search algorithm is switched to the SQP method,
when the change in the cost function value is achieved less than 0.0001 after 10
iterations.

The agorithm is run for the initial guess of N =4 while the initia control input is
assumedu(0) =1. In step4, the switching number N =3 and N =5isalso tried for possible
better solution. The improvement in final time is detected for N =3thusthe valueof i is
increased and the algorithm goes back to step4 to find the best solution for N =2 and
N =6. This time the value of fina time does not improve thus the algorithm goes to
step6 to repeat the same procedure for{u(0) =-1 N =4. In step3, the algorithm is run for

{uO)=-1, N=4. Then in step4, the agorithm is performed for{u(0)=-1, N=3 N=5.
Final timeisimproved for N =3 hence, the value of i isincreased and the algorithm goes
to stepd to search the solution for{u(0)=-1, N=2 N=6. Again, the fina time is

improved and as a result, the value of i isincreased. In step4, the best solution is search
for{u@=-1, N=1 N=7. Improvement in fina time for {u(0)=-1 N=1causes the

22


www.sid.ir

Journal of Advancesin Computer Research (Vol. 5, No. 2, May 2014) 15-36

agorithm to try {u(0)=-1, N =8 for possible better solution. However, for this value of

switching number, the final time does not improve and finally the algorithm goes to
step?7 for comparing the results obtained for u(0) =1 and u(0)=-1. Consequently, the

agorithm provides N =1 as aresult, which produces z =[0.7230, 2.3717] and t, =3.0947
while the control input isu(t) ={- 1.1} . In fact, the best result is as follows:
iN=1

ju®={-13
iz ={0.7230,2.3717}
{t, =3.047

The accuracy of reaching the origin is accessed by10“. The state trajectories can be seen
in Figure2.

1 T~
><H \
0.5 X: 3.095
™~~~ Y:2.001e-005
0 L \—l—.
0 0.5 1 15 2 2.5 3 3.5
1 ;
X: 3.095
Y:-0.0004984
S0 \\ /,I
-1
0 0.5 1 15 2 2.5 3 3.5
.2
53 |
Ez »
25 X:0.723
03 ° Y1
EE
5, |
0 0.5 1 1.5 2 2.5 3 3.5

time (s)

Figure2. x, andx, statetrajectory and time optimal bang-bang control input

It can be seen from these figure that reaching the target is possible for one switching of
the control input from its minimum value u(t) =-1to its maximum value u(t) =1at
t, =0.7230 seconds. The final value of the state variables are very close to zero and this
confirms the performance of the proposed method for solving time optimal bang-bang
control problems. Meanwhile, using this algorithm, there is no need to a good initia
guess of the solution, which is a troublesome task in the gradient based-methods such as
STVM [5], [6] STC [8], STO [9] or mathematical programming [10]. Applying an
additional initial algorithm is also prevented for preparing the start point through using
the proposed I1PSO-SQP algorithm. The quality of the work will be verified when the
Rayleigh problem is also solved.

3.2 Rayleigh System
Consider the following dynamic:
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X=X

% =%+ (L4- 014¢) +4u,  |u)£1 (15)

The objective is to minimize the following cost function, starting from X, =[-5,-5] to
the target x. =[0,0] :

I(u(®) =, +au2+><f)dt (16)

where c is a positive constant coefficient. A time optimal control that has been reported
for this system is of the bang-bang type [9]. Thus, the control input is set toul {-13} .
Substitution the input in (16) modifies the cost function to:

t

J(u(®)) = (1+c)t, + oyet (17)
The coefficient c is set to1/16 [9].

v Mathematical Programming Method

In [9] using a mathematical programming method time optimal bang-bang control
problem of the Rayleigh system is solved. The initial guess of the control input and the
arc times are assumed as u(0)=landz =[1.5, 2.1 0.5] respectively [9]. Results of

applying the method in terms of the arc time intervals and the final reaching time are
respectively reported as.
z =[147614, 1.76069, 1.76069, O] and t, =3.773841.

It can be seen that how the initial point is close to the real solution aso the time
duration of the last arc is found zero. It means that two switching performs reaching the
target. This algorithm is very sensitiveto the initial guess of the solution, and needs the
designer to be very familiar with the problem. It also needs many derivative information
of the cost function. These may cause troubles when the complexity of the system is
increased or when the designer is not very familiar with the problem to find a good
initial guess.
v IPSO-SQP Algorithm

The IPSO-SQP isimplemented for a swarm size of 30. Both ¢, and ¢, are set to 2.1.
An initia guess for the number of switching isassumedN = 4. In order to show that the
algorithm is not sensitive to the initial guess, the range of the arc times in each
dimension is assumedz, T §0°,10g, and initialy the particles are randomly distributed in
this range. The PSO search process agorithm switches to the SQP method, when the
change in the cost function value is found less than 0.0001 after 10 iterations.
In step3, the algorithm is run for{u(0)=1, N=4. In step4, N =3 and N =5are also tried.

The fina time improves for N =3and as a result, the value of i is increased. Then, the
algorithm goes to stepd4 to search the solution for{u(©)=1 N=2 N=6. Again, an

improvement in final time for N =2 causes the agorithm to increase the value of i and
look for possible better solution for{u(0) =1, N =1, N =7. However, the value of the final

time does not improve for N =1 and N =7 and the best results, which is obtained for
u(0) =1 is stored and the algorithm goes to step6. Similar procedure is performed for
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u(0) =- 1. Finaly, in step7 by comparing the results obtained for both initial value of the
control input, the best result is achieved as follows:

iN=2

ju® ={1-13

+z ={1.2772,1.9910,0.4208}

{t, =3.6890
The accuracy of the results is about10®. It can be seen that not only the fina time
obtained by this method is lower than what was achieved in [9] but also the algorithm is

not sensitive to initial guess of the solution. The state trgectories can be seen in
Figures.

0 [ .
< — X: 3.689
5 Y:-0.001424
-10 ‘ ‘
0 0.5 1 1.5 2 2.5 3 3.5 4
5 — i
\\ X: 3.689
~_ ¥:0.0004185
xN 0 \/’.7

S ‘ ‘
€ = i
IS 0 X:1.277 X: 3.268
% TB Y:1 Y:-1
EE [ ]
F8 | |
0 0.5 1 1.5 2 2.5 3 35 4
time (s)

Figure3. x, andx, state trajectory and time optimal bang-bang control input

It is obvious from Figure3 that the control input is switched two times at t, =1.2772 and
t, =3.2682. This control input steers the states from the initial point from x, =[-5,-5] to
the target x. =[0,0]in.3.6890 seconds. The final value of the states is very close to zero.

3.3 F8 Aircraft Model

The F8 aircraft model which is used in this paper is also used in many engineering
applications[10], [22]. The model is asfollows:

% =-0.877x +x, - 0.088x %, +0.47x° - 0.019%% - X*x, +3.846x° - 0.215u +0.28x’u +0.47xu* +0.63u°
%, =%, (18)
¥, = - 4.208x, +0.396%, - 0.47x’ - 3.56x - 20.967u + 6.265x U + 46x,U° +61.4U°

where x isthe angle of attack in radians, x,the pitch angle, x,the pitch ratein rad/s, and
u is the tail deflection angle as a control input. The aim is to steer the aircraft from the

initial statex, =->[26.7,0,0]" to the target x, =[0,0,0]" with appropriate switching of the
%~ 180 %

control input u=+3 in Minimum time.
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v Mathematical Programming Method

Time optima bang-bang control of the F8 aircraft model is solved in [10] using a
mathematical programming method. This algorithm is very sensitive to the initia guess
of the solution. In [10] the method is executed for different start points and as results
different results are achieved. For example for the initial guess of
z =[05, 1, 05,1 05, 05] with u(0)=+3the following result is obtained for the optimal
arc times and final time, whichisaloca minimum:

z =[0.102917, 1.927923, 0.166868, 2.743384,0.329923, 0.471162] t, =5.742177

and for the initial guess of z =[1, 1, 1, 1, 1, ]Jwith u(0)=+3 the result is achieved as

follows which is a global minimum:
z =[1.1327648, 0.3474915, 1.6088814, 0.2223491,0, 0.4700298] t, =3.781517

It can be seen that finding the global optima solution by this methed is highly
dependent to the initial guess.

Vv IPSO-SQP Algorithm

The IPSO-SQP algorithm is used for solving time optimal bang-bang control problem
of the F8 aircraft. First, the algorithm is initialized. The initial value of the switching
number is guessed N =4. The parameters ¢, and c, are set'to 2.1. The swarm size is
chosen s=30. The lower and upper bound of each dimension of particle is determined
z,1 g0°,108hence, the particles are initialy distributed randomly in this range. The
search process of 1PSO algorithm is switched to SQP method, when the change in cost
function value is smaller than 0.0001for 10 iterations.

In step3 of the proposed IPSO-SQP agorithm, {u(0)=+3,N =4 is executed. In step4,
{u©)=+3,N=3N=5 s aso tried..The fina time is improved for{u(0)=+3,N=3.
Thus, the value of i is increased and the algorithm goes to step4 to search for possible
better solution with {u(0) =+3,N=2,N =6. However, the final time does not improve for
these value of switching number and the algorithm goes to step6 to repeat similar
procedure for {u(0)=- 3. After executing the algorithm for different switching number,

in step7, the best results are compared and the global optimal solution is achieved as
follows:

IN=3

jut) ={z,-2,3,-3}

iz = [1.1348,0.3464,1.6083,0.6905]

it, =3.78
The state trajectories for the best result are depicted in the following figure.
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Figured. x ,x, and x,state trajectory and time‘optimal bang-bang control input

It can be seen from these figures that reaching the target from the initial point is
possible for 3 times switching of the control input at times: t =1.1348, t, =1.4812 and
t, =3.0895.

The fina values of the states are shown in the figure and are very close to zero. It
indicates that the algorithm is highly capable for solving time optimal bang-bang
control problems.

Besides, a practical time optimal control problem will be investigated here to verify the
quality of the work. The problem is concerned with an autonomous underwater vehicle
where is searching the seabed. The supply energy is maintained with carried on board
batteries. The problem is expressed in the next section.

3. Time Optimal Bang-Bang Control of An Autonomous Underwater Vehicle

The AUV is used to search the seabed in depth of lower than 50 meters. It is
necessary that the AUV to come back to the nest where is located on the sea surface in
minimum time. Besides the AUV has to have an angle of attack of about 10 degree
while comes out of the sea to successfully locate in the nest. The IPSO-SQP method is
used to control the vehicle. The AUVs general equation of motion is presented in
Appendix A. However, the equationsin xz plane are derived in the next section.

3.1 Equations of Motion In xz Plane

The F8 aircraf From Appendix A it can be easily seen that equations of motion of
the AUV's are nonlinear, coupled with six degree of freedom. Fortunately, they can be
shown in terms of six first order equations. On the other hand, the derivative of each
variable is a nonlinear function with respect of other variables. In this paper the motion
iIs assumed to take place only in the pure depth-plane. Thus u,w, q,q,%x z are
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considered whereas other variables are immediately neglected. In this case, the equation
of motion is expressed as follows:

8= a,sinq +a, cosq +a,ulul’” +a,qu +a,aw+ aguw+ a,d,u” +a,a|d) + aWw[w + a,,° +a, Thrust

W=D sing +h, cosq +byu|u/** +b,qu +b,qw+ byuw+b,d,u? +b,q|q| + byw|w| + b,g? + b, Thrust

6 =c,sing +c, cosq +c,u|ul"™ +c,qu+c,qw+ cuw+c,d,u? + g + W W + 9% + ¢, Thrust

d=q (19)
% =ucosq +wsing

& =-using +wcosq

d, ==%d,

where the value of parameters are presented at the table B.I in-appendix B.

3.2 Goals And Assumptions

The goal is to steer the AUV from the depth of 50 meters towards the nest where is
located on the surface, of course in aleast time aspossible. Due to practical restriction,
the AUV isforced to have a pitch angle of about 10 degrees when it reaches the surface.
Meanwhile batteries of one per unit supply the thruster force. It is also assumed that the
external disturbance of environmental forces and moments like waves and currents are
negligible. The control input is considered as bang-bang controller. Consequently, the
IPSO-SQP method is preferred to be used for a time optimal bang-bang control purpose.

3.3 Simulation

The IPSO-SQP is implemented for a swarm size of 30. Bothc, and c, are set to 2.1.

Initial guesses of the number-of switching and the control input are assumed to beN = 4
and u(0) =-7p/180(rad) respectively. In order to show that the algorithm is not sensitive

to the initial guess, therange of the arc times in each dimension is assumedz, T g10°,30y,

and initially the particles are randomly distributed in this range. The PSO search process
algorithm is switched to the SQP method when the change in the fitness value becomes
less than 0.0001 after 10 iterations. The algorithm is accordingly results z =[13.8698, 8|
and t, =21.8698 for an optimum number of the arcs and the final time. This verifies that
the reaching time to the target is achieved with two arcs:

iN=1

ju(t) ={- 7p/180, - 7p/180} (rad)

iz ={13.8698,8}

{t, =21.8608
The results are depicted in Figure 5 to 11.
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Figure7. The pitch rate (the angular velocity around the z axis)
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Figure9. The Vehicle depth towards the surface
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Figurell. The Vehicle longitudinal motion

From Figure5 it can be seen that the control input (the fin angle) with just one
switching forces the AUV towards the surface whilst keeping the pitch angle (Figure6)
10 degrees when it reaches the surface. The pitch rate is aso depicted in Figure7. The
forward linear speed, the Vehicle depth, the heave rate and the longitudinal motion
along with the x axis are respectively shown in Figs. 8, 9, 10 and 11, verifying that the
proposed technique does the duty well enough.

4. Pitch Programming Task
An auxiliary aim of controlling the AUV is to measure and control the pitch angle
via an optimum based control inputd, . It should be noted that the required trajectory in

the tracking problem is yielded from another optimum job through the IPSO-SQP
algorithm. A PID controller in the closed loop system (Figurel2) is designed to achieve
the goal. The PID gains (K,.K,,K,) are tuned by using the IPSO-SQP agorithm

described in subsection2.3 to minimize the tracking error.

IPSO-SQP

Kl K.K

s 2 A /

PID Controller > System

Figurel2. The closed loop control system in the pitch programming task
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In the IPSO-SQP algorithm described in subsection2.3, coefficients K,, K, and K,

are considered as particles. In this regard, the cost function, which is required to be
minimized, is defined as follows:

3= Cpltyeh (20)
Defining the error by:
et) =q,(t)- a(t) (21)

The desired trgectory q,(t) is achieved from the time optimum bang-bang control
problem in the last section. Furthermoreq(t) isthe actua pitch angle of the vehicle.

The IPSO-SQP optimization technique is implemented for a swarm size of 30. Both
¢, ahd c, are set to 21. The range of the each dimension is assumed
K, K, K, T[-1000,0], and initially the particles are randomly distributed in this range.
Choosing the negative value of the bound is due to the difference in sign conventions
between the stern plane angle (d.) and vehicle pitch angle. Positive stern plane angle
will generate a negative moment about the y-axis, forcing the vehicle to pitch down
(negative pitch rate). The PSO search process agorithm is switched to the SQP method
when the change in the fitness value becomes less than 0.0001 after 10 iterations. The

algorithm achieves the gains by:
Kp =-600, K, =0and K, =-2852014

In the following, outcome of the simulation of applying the PID controller are
illustrated in Figure 13 to 15.

error signal
0.2
\\’\‘ error
g% ——
o \\-/W’"
-0.2
(0] 5 10 15 20 25
time (sec)
Figurel3. The pitch tracking error signal
Depth (z)
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3
N .40 —
/
———" | Depth (z)
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Figureld. The vehicle depth
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Figurel5. The Control input vs. the fin angle (d, )

Apart from the smooth fluctuation in the graph (Figurel3), the magnitude of the
tracking error is seen negligible. It confirms that the controller is capable to track the
desired pitch angle. The quality of the achieved depth trgectory is aso seen in
Figurel4.

5. Conclusion

In this paper, the IPSO-SQP algorithm is used for the first:.time in a time optimal bang-
bang control problem. The algorithm is shown to have a high capability of finding the
globa minimum. It is also shown that there is no need to have good initial guess. The
primary stage of the search procedure uses the IPSO method to minimize the defined
cost function. This confirmed the advantage of the proposed algorithm, i.e. directly
minimizing the cost function without using a gradient based technique. Then the
algorithm switches to the SQP method to find the globa solution more rapidly and
precisely. The agorithm is followed by the IPSO-SQP method in time optimal bang-
bang control of three distinct nonlinear systems and an autonomous underwater vehicle.
The fina time, which is achieved by this method, was shown less than what was
achieved by previous gradient based methods. The significance of the proposed
technique is aso verified when it'is used to tune the coefficients of the PID controller
i.e. K, K, andK,in a minimization of the tracking error. Ultimately, the tuned PID
controller is successfully-used in the pitch programming of AUV. Simulation results
showed that the performance of the IPSO-SQP agorithm in both time optima bang-
bang control and pitch programming are satisfactory.

Dynamic motion of an AUV (Fig. A.1) can be described in both reference frames of
attached to the body and inertia (the earth) one. A coordinate transformation states the
variables on each. It must be noted that the effect of the motion of the earth in the fixed
reference frame is neglected with respect to the vehicle motion.
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Figure A.1. The body and the inertia fixed reference frames
AUV is usudly expresses by six degree of freedom equations of mation. Theses

equations can be described in either of two prescribed reference frames. One may state
the equations in terms of the body fixed coordinates as follows:

M¥+C(v)v+D(V)v+g(h) =t (A.2)
where:

M =Mg +M,, C(v) =Cg(v) +C,(v), D(V) =D, (V) + Dy(V) (A.2)
and

t =t + Thrust (A.3)

Mg and Cy(v) are the rigid body mass.and coriolis matrices respectively. M,and
C,(v) are added mass and coriolis matrices whilst p(v) is the drag force. Vector gn)
consists of the gravity, the buoyancy forces and the moments which act on their center
of the relevant forces. Furthermore t , as vector of containing the control forces and
moments, states the control surfaces (t.), the thruster (Thrust) and the environment
forces. However the environment forces and moments, including those caused by the
sea currents and waves are neglected. Meanwhile the linear and angular velocity vector
n in the body fixed reference frame together with the position and the Euler angel
vector h in theinertiareference frame are described by:

v=[uvwpqr] (A.4)

h,=[xyz]", h,=[i a Y], h=[h;h,] (A.5)
The relation between the body and the inertia fixed reference frame is defined by a
coordinate transform matrix which is as follows:

h=Jh)v (A.6)

&Lh) 0 U

W= gm0

(A7)
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écqeY  -sYc +cYsqs  sYs +cYcjsqu

Jl(hz):ng cq cYgc +sjsYsq -cYs +sgsY ﬂ (A.8)
g-s1 cqsj cqcj o
2 sinj tané cosj tanOH

3,0,)=9  cosi -sinj U (A.9)
& sinj Cosj d
3) cos6 cosfu

where c(¥ and s(¥ stand for trigonometric cos(¥ and sn(¥ respectively. The six degree

of freedom equations of motion of AUVs are expressed in Eq. (A.10) to (A.15).
Force equation along with the x axis:

(M- X, )8+ Mz G- mygh =- (W~ B)sing + X, ulul +(X,q - MW+ (X, + M) - myg pa+ (X, +mvr (A.10)
+(X,, +mxg)r? - mz, pr +Thrust
Likewise, the force equation along with they axis:
(M- Y, )¥- mz, p+(mx, - Y,)&=(W- B)cosqg sinf +Yva|v|+Yr‘r‘r|r|+myGr2 +(Y, -mjur +(Y,, +mwp
+ (qu - TTD(G) +YLNUV+ myg p2 +mzar +Yuud,dr (A.ll)
Similarly for the force equation along with the z axis:

(m' Zw)\&/"'rn)/(;p' (mxe +Z@.)@| =+(\N' B)Cosq cosf +ZMMW|V\4+Zq‘q‘Q|Q|+(ZUq +m)Uq+(Z\,p - m)Vp (A 12)
+(er - rnXG)rp-‘-Zuwuw_ rnyGrp+rnzG(p2 +q2) +Zuudeu2de .

In parallel, the momentum equation aong with the x axis:

- mzg¥+ my W+ (1, - Kg) = +(YoW - ygB)cosq cosf - (z,W - z,B)cosq sinf +Kp‘p‘p|p|

= (I, - 1y)ar +m(uq- vp) - mz; (wp- ur) + KThrust (A.13)

The same for momentum equation along with the y axis:

B~ (Mg + M)W+ (1, = M)d=- (W~ 2,B)sing - (,W- XBB)wfqoosf +MWWI\vx{+Mq‘qqld (A1)
+(Myg - m)ug+(M,, +m )+ @M - (1, - 1)Ep

and finally the momentum equation along with z axisis as follows:

- Myl + (mx - N +(1, - N B = (X W - x;B)cosgsinf +(y,W- yBB)sinq+Nva|v|+ Ner|r|
+ (N, - mx)ur + (N, - i )wp - my (vr - wa) (A.15)
+ngq - (Iyy- Izz)Hpq+NuVUV+ Nuud,uzdr

The value of parameters which are used in the depth plane equation of motion, Eq.
(18), is presented here:
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TableB.I

a, =0.0669 |a=-4223 10| a, =-0.0146 | a, =0.0011 |a, =-1.9885 |a,=3.6413 |a =27080 10"

a, =0.0692 | a,- 11487 10° | &, =0.0430 | &, =6.6859" 10"

h=-944%"10" | b, =-0.0327 | h,=1.3998" 10° | b, = 0.4716 b, =9.4575"10° | b, =- 0.0173 | b, =- 0.0089

h=-01820 |b, =-07010 | b, =0.0149 |b,=-6396 10°

¢ =-00437 | c,=0.0143 |c,=6.4731 |c,=-0.0355 |c, =0.0044 C, =-0.0123 | ¢, =-0.0091

G =-23%4 |c, =0.0039 |co=-94575"10" | ¢, =-29580" 10°
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