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Abstract

Trajectories are generally used to describe the space and time required to
perform a desired motion task for a mobile robot or manipulator system. In this
paper, we considered a cubic polynomial trajectory for the problem of moving a
mobile robot from its initial position to a goal position in over acontinuous set of
time. Along the path, the robot requires to observe a certain acceleration profile.
Then, we formulated an optimization approach to generate optimal trajectory
profiles for the mobile robot in the cases of maximum-distance and minimum-time
problems. The optimization problem presented to find the trajectory strategy that
would give the robot time-distance optimality to. move from a start point to an end
point where the robot should stay inside its acceleration limits all the time. The
problem solved analytically because as-it is'well known, numerical solutions and
iterative methods are time-consuming, therefore, our closed-form solutions demand
low computation time. Finally, the results are verified by simulations.

Keywords: Mobile Robots, Trajectory. Planning, Constrained Optimization, Acceleration
limits

1. Introduction

In motion planning, trajectories comprise to the position, velocity and acceleration
profiles that are generated correspond robot's initial to goal configurations over a time
history [1]. Tragectories are generally used to describe the space and time required to
perform a desired motion task for a mobile robot or manipulator system. Therefore, by
generating of fit trgectories, our aim is to specify motion profiles to navigating the
robot from its current configuration to a desired final point. Usudly, it is need some
point descriptions along the path be known to the user such as initial, interval and final
points profiles. Another important issue in trgectory generation functions is that they
need to provide smooth and continuous motions in time for the robot. At least, a
desirable function has second derivative. Smooth and continuous functions could keep
away the robot from rough and jerky motions that cause of vibrations and unsightly
behaviour [1].

As aquick literature review, we refer to some related works. In the manipulator based
trajectory planning, a planning mode of tragjectory for serial-link robots using higher-
degree polynomias developed in [2], and in [3] the PSO used to search the global time-
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optimal trgectory. In the mobile robots, a method for generating acceleration-based
optimal smooth piecewise trgjectories are proposed in [4] where smoothness of velocity
profile generation were considered. An optimal trgjectory plan to minimize the tracking
error for a differential driving mobile robot is proposed in [5]. Traectory planning for
non-holonomic wheeled mobile considering obstacle avoidance and constraints like
bounded velocities, accelerations and torques is studied in [6]. Satisfying the initial and
final postures/velocities, battery voltage and obstacle avoidance factors, a near-time-
optimal trgjectory finding procedure are proposed in [7]. Time optimal trgectory
planning with a differentia evolution-fuzzy inference system and neural networks is
proposed in [8] and [9], respectively. In [10], a sequential convex programming (SCP)
for finding optimum time trgjectory planning is used. A method in [11] is proposed to
generate minimum-time optimal velocity profiles considering acceleration limits. A
switching time computation (STC) method is presented in [12] to generate time-optimal
collision-free trajectory planning.

Also, other important works include time minimizing in the spline curve path [13],
presenting a model of polynomia s-curve trajectory profilesin the recursive form with
minimum time consideration [14], using three path’ planning primitives, namely
straight-line segments, circular segments, and continuous-curvature turns in the path
planning [15]. Trajectory planning based on a new formulation of the dynamic potential
function with the aim of optimizing the trajectory and some trajectory planning
solutions was also proposed in [16]. As a closeissue to over work, in [17] the problem
of finding an optimal velocity profile to traverse the path in shortest time is described,
but the method devel oped on a dynamic model of mobile robots.

In this paper, we considered a cubic polynomial trgjectory for the problem of moving a
mobile robot from its initial position to a goal position in over a continuous set of time.
The initial position and velocity profiles of the mobile robot is known. Also, velocity
profile is presented in final position. Along the path, the robot requires to observe a
certain acceleration profile. For describing such a motion, we require a function that
generates smooth position, velocity and acceleration profiles, so that satisfy al
mentioned constraints: There are many functions that could interpolate initial and final
positions and satisfy all conditions, but we are interested to find a one that generates the
optimal values for position, velocity and acceleration profiles, whereas there are no
other functions with better generated profiles. We found these optimal functions by
analytical methods for a cubic polynomial trgjectory and we prove its optimality in
profile generations by simulations. Before introducing analytical method, we propose an
optimization form problem such that it describes optimality conditions for a third-order
polynomial function. Then, we solve it by an analytical method.

The rest of this paper organized as the sequel. The next section describes how we
formulate optimization problems and then, used analytica methods to solve it and to
find optimal trajectory planning of the robot. The simulation results and discussions are
provided in the Third Section. The last section includes conclusions.

2. Trajectory Planning Strategy

We devise trgectory planning of a mobile robot in two basic motions including linear
and circular ones. Given initial and final positions and velocities, it is required that the
trgjectory equation at least has four parameters. To achieve smooth and continuous
trajectories, it is used a third-order polynomial. The problem is determining the

52


www.sid.ir

Journal of Advancesin Computer Research (Vol. 5, No. 2, May 2014) 51-64

polynomial coefficients to get optimal trgectories considering starting and end points
positions, velocity constraints, and acceleration limits.

2.1 Trajectories of Straight Path

It is assumed that the robot travels along a straight (linear) path (in x-direction) starting
from the rest at the origin. We describe the position of the robot in x-direction as the
next equation

X(t) =1t +1 ,t? 1)

By considering the acceleration limits and zero endpoint velocities, the solution of this
problem with two different objective functionsis presented in the following.

Maximum Distance Problem: Assume that the final time of the trajectory t; isfixed, itis
desired to find an optimum 4;, A, such that the robot will cover the maximum distance.
This problem can be formulated as

max x(t;) =1t +1 ,t} 2
subject to

v(t,) =0 (29)
ja| £ F (2b)

where a is the robot's acceleration parameter and the F is a constant that specify
allowed maximum and minimum accelerations. Here, equation (2a) is a constraint
which implies on zero velocity at the end of the trgectory and inequality (2b) is the
limited acceleration constraint.

Asthe acceleration is linear, if inequality (2b) satisfied at t=0 and t=t;, then it would be
satisfied for all time durations between 0<t<t;. Therefore, we can replace inequality
(2b) with the following equations

61 .t +21,|&F t=t, (2¢)
21 ,|EF t=0 (2d)

Finding t; from equation (2a) and substituting it in equations (2c) and (2d), we conclude
that the maximum value of equation (2) is achieved if we take A4; and A, as below

|,==F,l,=—=F ©)

Accordingly, from equation (1), optimal plan for the robot's tragjectory in x-direction
would be
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& 1td 0
xt)=Fe 1t 4 1422
3L, 2 5

(4)

Then, the maximum value of covered distance x(t) is given by %tf F.

Minimum Time Problem: Assume that the robot has to cover a fixed distance of x(t;)=L
in minimum time. The problem can be represented by the following objective function

Irniln(tf),lltf3+I2t$:L (5)
1.1 2

The constraints for this problem are the same equation (2a) and inequality (2b). By
obtaining A; from equation (2a) and substituting it in the cost function equation (5), we
get

. ED
mintt,), Zl,=L or  min(|>") (6)
[ 3 [P | 2

By the same rational for the maximum distance case, we will'have 4; and A, as are given

1
in equation (3). Therefore the minimum timeis obtained as t; ., =(F) ~6L .

Finaly, by substituting t; ;min), 412 and A2 in equation (1), optimal plan for the robot's
trajectory in the minimum time case is given by

& 1 1 0
KO =FE %FZ(BL) 2t3+%t2j (7)
a

2.2 Trajectories of Circular Path

It is assumed that the robot travels from an initial angular position 6(0) to the final o(tr)
along acircle with radius ¢. The length of arc or distance traveled by the robot is

s(t;)=@(t;) - a(0)c (8)

In the planning of the robot trgjectory in this circular path, we just have to determine the
angular position over time. To this aim, assuming the robot moves from rest, we use a
third order polynomia as below to describing it's angular position.

qt) =1 t° +1 ,t? 9)

Now, the problem is to find A;, A, in order to get an optimum angular trgectory
according to two different objective functions of maximum distance and minimum time
problems. Here, acceleration of the robot composed of centripetal (a;) and tangential
components (a;) (see Figure 1).
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Figure 1. Therobot following a circular path.

Then, the limited acceleration constraint could be written as
&, +a|<F (10)
Equation (10) shows a non-linear inequality constraint that satisfies limited acceleration

condition in the case of trajectory at circular paths.

Maximum Distance Problem: The issue is represented with the following optimization
problem

max  st,)=c(l ,t° +1,t?) (11)

subject to equation (2a) and inequality (10) where the latter can be rewritten as

(61 ,t+21,)% +(31,t* +215,0)°| <F ¢ o<t<t, (11a)

Finding | ; from equation (2a) and substituting in inequality (11a), the problem yields

max s(tf):%cl U7 (12)
subject to

ZI 2\2 2 2' 2\4 (42 4 2.-2

R - 207+ (D - L) <Fe o<t<t, (128)
f f

Differentiating inequality (12a) with respect to time, only one loca maximum point at
t=0.5; isobtained. Then, if inequality (12a) held at t=0.5t; and t=t;, it would be

held in al instances of interval 0<t <t; . Therefore, we can rewriteit as
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oot &
g—z Lf <F2%? (12b)
2 g
42 <F?c? (12c)
Inequalities (12b) and (12¢) yieldsto
1 1 1 1
-£F2c2<lz<3F2c2 (12d)
t, t
S lrciar, <tFe (12¢)
2 2

Maximum value of cost function equation (12) is satisfied with maximum value of | ».
Then the solution of the optimization problem is

N~

1
I, :minggF ’c
t, P

1 0
—Fc*'T 134
5 (132)
From equation (2a), a'so we obtain | ;

2 @& .01

. i}
1 0

L= —mmé (F2c 2,=Fc'= (13b)
25

As a result, the maximum angular trajectory (of position) is obtained by using the
following eguation

NH—\

q(t) = mlng2 F2

f

1 .0
= 1 t® +t?) (14)
2 P

and the corresponding maximum distanceis

ey 11 0
max s(t =%ctfmin§t£F2c 2,%Fc'lj (15)
f

a

Minimum Time Problem: Assume that the robot covers a given arc-length s(tf)=s;, the
problem is represented as

min(t,) . c(l t?+I,t2)=s, (16)

I1.l2

The constraints are the same as in the maximum distance problem of circular paths.
Using equations (2a) and (16), we can reduce the problem into

56


www.sid.ir

Journal of Advancesin Computer Research (Vol. 5, No. 2, May 2014) 51-64

3s
min(t,) = I—f (17)
I2 2
subject to
A< A F (17a)
3s; 3s;
- 2Fct<l, <2Fc? (17b)
2 2

The minimum value for t; obtains by the maximum attainable value of | ; that is

& 6
|, =ming 2 F tpet? (189)
3s, 2 &

and from equation (2a), we have | ;

e 0
| =2 minc 2 F Lpet? (18b)
3t 3s;, 2 p

After substitutingl; andl, into equation (16), minimum time is obtained as
1

3 NS -
L (min) ZE(FC ") ?siC n

Finaly, optimal plan for the robot's angular position in the minimum time problem is
given by

o) 0
q(t)=min§iF,ch'lj(- Lﬁ +1%) (19)
3s, 2 g 3tf(min)
2.3 Motion of Wheels

In Motion planning of a wheeled mobile robot, trgectory equations of robot's wheels
should be determined. The ssimplest control method for a robot is differential driving
technique. These types of mobile robots generally have two independent analogous DC
motors along the same wheel axle. If we assume that the center of mass (COM) is below
the wheel's axle, therefore we could use all of previously generated trgjectory equations
for describing the trajectory of the COM point of a robot over time. The differential
drive robot with only two motorized wheels, when moves in x direction at straight
paths, the motion equations of its wheels is obtained as below

w0 =W () =X (208
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also, while the robot follows an arc-path of acircle, we could get motion equation of the
wheels as

w® =1+ S0, WO =C- S (20b)

where w; and w; denotes traveled trgectory equations of robot's right and left of the
active wheels, respectively. The radius of active wheels is r and the distance between
them is d (see Figure 2). The robot's configuration (position and orientation) is denoted
by vector g=(xyq)".

Figure 2. Robot posture from top view.

Kinematic and dynamic modeling of these types of mobile robots are described in [18].
3. Simulations and Discussions

In the previous section, considering maximum distance and minimum time problems,
we have found closed-form solutions holding optimal tragjectories for the robot. Asit is
well known, constrained optimization problems may have numerical solutions and
solved by different optimization techniques, but generaly they are iterative and time-
consuming. Therefore, the main advantage of analytical solving methods and closed-
form solution is their low computation time, as our proposed tragjectory hasit also.

In the simulations, we define the robot's accelerations is bounded by (-0.8166,
0.8166)nVs” over time history. In order the robot has to avoid from these values such
that the positive accelerations the limit is 0.8166m/s” and in negative accelerations the
limit is -0.8166mVs?. These limit values are valid for linear trajectory and by multiplying
inc™, limit accelerations for circular trajectory is obtained (see inequality (11a)).

3.1 Simulations of Trajectoriesin Straight Path

Maximum Distance Trajectories: Maximum distance solution of the case study of
tr=20sec is obtained as

X(t) = 0'86266 (- t2+30t?) (21)

Simulation results of the above tragjectory in the form of traveled distance, velocity and
acceleration of therobot is given in Figure 3. The maximum traveled distance is 54.4m.
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To show that equation (21) is the optimal trgjectory from the maximum distance point
of view, the following trajectory by new bounded acceleration of (-0.6,0.6)m/s’ is
considered as below

x(t) = %(— t* +30t%) (22)

According to the curves shown in Figure 3, limited acceleration constraint still holds but
the covered distance is less than the value obtained from equation (21), then trgectory
of (22) isanon-optimal solution despite it holds the problem's constraints.

Here and later, the term non-optimal trgectory refers to ones that are obtained
randomly or generated by a numerical approximation method to track optimal properties
of a motion. In other words, we used this non-optimal functions to prove that our
solutions are optimal tragjectories such that they are obtained analytically, and are not
based on numerical and iterative methods.

Optimal Solution

—— Optimal Solution
\ —— Non-optimal Solution

—— Non-optimal Solution
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Figure 3. Straight path-maximum distance plots, (a) traveled distance, (b) velocity, (c) acceleration.

Minimum Time Trajectories. Moreover, the minimum time solution of the case study of
L=54.4m, is obtained as tsmin=20sec. This means that the maximum distance values is
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the solution of the assumed minimum time problem as well. An immediate conclusion
is that the optimal tragjectory of the maximum distance problem with an assumed t; and
the solution max(x(t)) is the same as the optimal trgectory of the minimum time
problem when x(t)) assumed to be max(x(t;)) and t; found. Finally, using equation (7)
minimum time solution of the case study of L=54.4m s approximated as

@132, 8 ,0
XV=¢ 576" *105' 23)
where the above trgjectory is same with the maximum time solution that expressed in
equation (21).
To show that equation (23) is the optimal trgjectory from the minimum time point of
view, a trgectory by the assuming of L=54.4m and the new bounded acceleration
(-0.52,0.52)m/s” is considered below

e 85 , 1,0
X(t) = & ——t°+=t22 24
® €120 4 4 (24

Figure 4. illustrates that the covered distance is same with optimal trgjectory and limited
acceleration congtraint still held but the trajectory time is bigger than the time value
spend with optimal trajectory. Therefore, trgjectory of (24) is anon-optimal solution.
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Figure 4. Straight path-minimum time plots, (a) traveled distance, (b) velocity, (c) acceleration.
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3.2 Simulations of Trajectoriesin Circular Path

As mentioned before, by multiplying the limited acceleration vaues to ¢ in the case of
circular trajectory, new bounded accelerations in simulation's curves will be different
from straight paths. Here, with assuming c=0.5, the acceleration threshold is twice
respect to the straight path.
Maximum Distance Trajectories. Maximum distance solution of the case study of
tr=5sec is approximated as

e 1 3 1 20
s(t)=¢- —t*+=t° = 25

(t) it tat (25)
that yields s(t;) =2.13m for maximum arc-length. Corresponding curves of equation (25)
are shown in Figure 5. Asanon-optimal trajectory we used the following equation

e 1 3 1 26
=8 1 34 120
W=¢ 26" "56' 5

(26)
to the robot and the results depicted in Figure 5. It can be seen that the limited
acceleration still holds but the traveled arc-length is less than the optimal solution of
equation (25). Note that the accelerations in Figure 5(c). generated corresponds to the
nonlinear behaviour of the total acceleration in circular motion.

Minimum Time Trajectories. Similar to the straight path trajectory, the solution of the
minimum time problem assuming S(t) =2.13m vyields ti=5sec as minimum time.
Therefore, the minimum time solution using equation (19) and with assuming s=2. 13m
IS obtained as

P R
S)=( 5517+ 5% (27)

where the above equation is obtained same with the maximum time solution in equation
(25).

To show that equation (27) is the optimal trajectory from the minimum time point of
view, as straight path simulations, the following trgjectory by the assuming of 5=2.13m
and the new bounded accel eration (-0.52,0.52)mVs’ is considered

e 1 ;. 1,06
t)=¢- —t*+—t°= 28
O 60.5 63 g (28)

D0

Figure 6 clearly shows that the covered distance by trgjectory of (28) is correspond with
the optimal trajectory but the trgjectory time is bigger.

Due to the ssimulation results, it can be concluded that the thoroughness of the proposed
analytic solving approach, time-distance optimal motion is guaranteed in case of the
cube-polynomials trgjectory planners.
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Figure5. Circular path-maximum distance plots, (a) traveled arc-lengths, (b) velocity, (c) robot's total
accelerations (resulting from linear and angular components).
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Figure 6. Circular path-minimum time plots, (a) traveled arc-lengths, (b) velocity, (c) robot's total
accelerations.

4. Conclusion

We studied optimal trgjectory planning of a mobile robot in two basic motions including
linear and circular ones. Firstly, given some parameters from initial and final position
and velocity, we used them in the formulation of an optimization problem, such that
solving it was connected to determining the coefficients of a third-order polynomial.
Then, by simulation results, the obtained third-order polynomial trajectory proved time-
distance optimality.
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