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Abstract 
Trajectories are generally used to describe the space and time required to 

perform a desired motion task for a mobile robot or manipulator system. In this 
paper, we considered a cubic polynomial trajectory for the problem of moving a 
mobile robot from its initial position to a goal position in over a continuous set of 
time. Along the path, the robot requires to observe a certain acceleration profile. 
Then, we formulated an optimization approach to generate optimal trajectory 
profiles for the mobile robot in the cases of maximum-distance and minimum-time 
problems. The optimization problem presented to find the trajectory strategy that 
would give the robot time-distance optimality to move from a start point to an end 
point where the robot should stay inside its acceleration limits all the time. The 
problem solved analytically because as it is well known, numerical solutions and 
iterative methods are time-consuming, therefore, our closed-form solutions demand 
low computation time. Finally, the results are verified by simulations. 

 
Keywords: Mobile Robots, Trajectory Planning, Constrained Optimization, Acceleration 

limits 
 

 

1. Introduction 

    In motion planning, trajectories comprise to the position, velocity and acceleration 
profiles that are generated correspond robot's initial to goal configurations over a time 
history [1]. Trajectories are generally used to describe the space and time required to 
perform a desired motion task for a mobile robot or manipulator system. Therefore, by 
generating of fit trajectories, our aim is to specify motion profiles to navigating the 
robot from its current configuration to a desired final point. Usually, it is need some 
point descriptions along the path be known to the user such as initial, interval and final 
points profiles. Another important issue in trajectory generation functions is that they 
need to provide smooth and continuous motions in time for the robot. At least, a 
desirable function has second derivative. Smooth and continuous functions could keep 
away the robot from rough and jerky motions that cause of vibrations and unsightly 
behaviour [1].  
As a quick literature review, we refer to some related works. In the manipulator based 
trajectory planning, a planning mode of trajectory for serial-link robots using higher-
degree polynomials developed in [2], and in [3] the PSO used to search the global time-
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optimal trajectory. In the mobile robots, a method for generating acceleration-based 
optimal smooth piecewise trajectories are proposed in [4] where smoothness of velocity 
profile generation were considered. An optimal trajectory plan to minimize the tracking 
error for a differential driving mobile robot is proposed in [5]. Trajectory planning for 
non-holonomic wheeled mobile considering obstacle avoidance and  constraints like 
bounded velocities, accelerations and torques is studied in [6]. Satisfying the initial and 
final postures/velocities, battery voltage and obstacle avoidance factors, a near-time-
optimal trajectory finding procedure are proposed in [7]. Time optimal trajectory 
planning with a differential evolution-fuzzy inference system and neural networks is 
proposed in [8] and [9], respectively. In [10], a sequential convex programming (SCP) 
for finding optimum time trajectory planning is used. A method in [11] is proposed to 
generate minimum-time optimal velocity profiles considering acceleration limits. A  
switching time computation (STC) method is presented in [12] to generate time-optimal 
collision-free trajectory planning. 
Also, other important works include time minimizing in the spline curve path [13], 
presenting a model of polynomial s-curve trajectory profiles in the recursive form with 
minimum time consideration [14], using three path planning primitives, namely 
straight-line segments, circular segments, and continuous-curvature turns in the path 
planning [15]. Trajectory planning based on a new formulation of the dynamic potential 
function with the aim of optimizing the trajectory and some trajectory planning 
solutions was also proposed in [16]. As a close issue to over work, in [17] the problem 
of finding an optimal velocity profile to traverse the path in shortest time is described, 
but the method developed on a dynamic model of mobile robots. 
In this paper, we considered a cubic polynomial trajectory for the problem of moving a 
mobile robot from its initial position to a goal position in over a continuous set of time. 
The initial position and velocity profiles of the mobile robot is known. Also, velocity 
profile is presented in final position. Along the path, the robot requires to observe a 
certain acceleration profile. For describing such a motion, we require a function that 
generates smooth position, velocity and acceleration profiles, so that satisfy all 
mentioned constraints. There are many functions that could interpolate initial and final 
positions and satisfy all conditions, but we are interested to find a one that generates the 
optimal values for position, velocity and acceleration profiles, whereas there are no 
other functions with better generated profiles. We found these optimal functions by 
analytical methods for a cubic polynomial trajectory and we prove its optimality in 
profile generations by simulations. Before introducing analytical method, we propose an 
optimization form problem such that it describes optimality conditions for a third-order 
polynomial function. Then, we solve it by an analytical method.  
The rest of this paper organized as the sequel. The next section describes how we 
formulate optimization problems and then, used analytical methods to solve it and to 
find optimal trajectory planning of the robot. The simulation results and discussions are 
provided in the Third Section. The last section includes conclusions. 

2. Trajectory Planning Strategy  

We devise trajectory planning of a mobile robot in two basic motions including linear 
and circular ones. Given initial and final positions and velocities, it is required that the 
trajectory equation at least has four parameters. To achieve smooth and continuous 
trajectories, it is used a third-order polynomial. The problem is determining the 
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polynomial coefficients to get optimal trajectories considering starting and end points 
positions, velocity constraints, and acceleration limits. 

2.1 Trajectories of Straight Path  

It is assumed that the robot travels along a straight (linear) path (in x-direction) starting 
from the rest at the origin. We describe the position of the robot in x-direction as the 
next equation 
 

2
2

3
1 tttx λλ +=)(                                                                                           (1) 

 
By considering the acceleration limits and zero endpoint velocities, the solution of this 
problem with two different objective functions is presented in the following. 
Maximum Distance Problem: Assume that the final time of the trajectory tf  is fixed, it is 
desired to find an optimum λ1,  λ2  such that the robot will cover the maximum distance. 
This problem can be formulated as 
 

2
f2

3
f1f tttx

21
λλ

λλ
+=)(max

,
                                                                                               (2) 

 
  subject to                 

0tv f =)(                                                                                                                       (2a) 
Φ≤a                                                                                                                         (2b)                                  

 
where a is the robot's acceleration parameter and the Φ  is a constant that specify 
allowed maximum and minimum accelerations. Here, equation (2a) is a constraint 
which implies on zero velocity at the end of the trajectory and inequality (2b) is the 
limited acceleration constraint. 
As the acceleration is linear, if inequality (2b) satisfied at t=0 and t= tf,  then it would be 
satisfied for all time durations between 0<t<tf. Therefore, we can replace inequality 
(2b) with the following equations 
 

f2f1 tt2t6 =Φ≤+ ,λλ                                                                                    (2c)
  

0t2 2 =Φ≤ ,λ                                                                                                  (2d)         
 
Finding tf  from equation (2a) and substituting it in equations (2c) and (2d), we conclude 
that the maximum value of equation (2) is achieved if we take λ1 and λ2 as below 

 

Φ=
2
1

2λ , Φ
−

=
f

1 t3
1

λ                                                                                                  (3)         

 
Accordingly, from equation (1), optimal plan for the robot's trajectory in x-direction 
would be 
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









+

−
Φ= 2

f

3

t
2
1

t
t

3
1tx )(                                                                                                  (4) 

 

Then, the maximum value of covered distance x(tf) is given by Φ2
ft

6
1 .                                                                 

Minimum Time Problem: Assume that the robot has to cover a fixed distance of x(tf)=L 
in minimum time. The problem can be represented by the following objective function 
 

)(min
, ft

21 λλ
, Ltt 2

f2
3
f1 =+ λλ                                                                                                 (5)                                                                                                      

 
The constraints for this problem are the same equation (2a) and inequality (2b). By 
obtaining λ1 from equation (2a) and substituting it in the cost function equation (5), we 
get  

)(min ft
2λ

 , 
    

Lt
3
1

2
2
f =λ        or

        
)(min

2

L3
2 λλ

                                                            (6) 

 
By the same rational for the maximum distance case, we will have λ1 and λ2 as are given 

in equation (3). Therefore the minimum time is obtained as L6t 2
1

f

−
Φ= )((min) .                                                                

Finally, by substituting tf (min), λ1 and λ2 in equation (1), optimal plan for the robot's 
trajectory in the minimum time case is given by 
 









+Φ−Φ=

− 232
1

2
1

t
2
1tL6

3
1tx )()(                                                                                  (7) 

2.2 Trajectories of Circular Path 

It is assumed that the robot travels from an initial angular position θ(0) to the final θ(tf) 
along a circle with radius c. The length of arc or distance traveled by the robot is  
 

c0tts ff ))()(()( θθ −=                                                                                                  (8) 
 
In the planning of the robot trajectory in this circular path, we just have to determine the 
angular position over time. To this aim, assuming the robot moves from rest, we use a 
third order polynomial as below to describing it's angular position. 
 

2
2

3
1 ttt λλθ +=)(                                                                                                         (9) 

   
Now, the problem is to find λ1, λ2 in order to get an optimum angular trajectory 
according to two different objective functions of maximum distance and minimum time 
problems. Here, acceleration of the robot composed of centripetal (ac) and tangential 
components (a t) (see Figure 1).  
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Figure 1. The robot following a circular path.  
 
Then, the limited acceleration constraint could be written as 
 

Φ<+ tc aa rr                                                                                                                (10) 
 
Equation (10) shows a non-linear inequality constraint that satisfies limited acceleration 
condition in the case of trajectory at circular paths.  
Maximum Distance Problem: The issue is represented with the following optimization 
problem 
 

)()(max
,

2
f2

3
f1f ttcts

21

λλ
λλ

+=     
                                                                                     

(11) 

 
subject to equation (2a) and inequality (10) where the latter can be rewritten as 
 

f
224

2
2

1
2

21 tt0 ct2t32t6 <<Φ<+++ − ,)()(          λλλλ
                                        

(11a) 
  
Finding  λ1 from equation (2a) and substituting in inequality (11a), the problem yields 

2
f2f tc

3
1ts

1

λ
λ

=)(max      
                                                                                                

(12) 

 
subject to 

f
224

f
24

f

22
f

2

f

2 tt0cttt
t

2
t2t

t
2

<<Φ<−+− − ,)()()()(
λλ

                          (12a) 

Differentiating inequality (12a) with respect to time, only one local maximum point at 
ftt 5.0=  is obtained. Then, if inequality (12a) held at ftt 5.0=  and ftt = , it would be 

held in all instances of interval ftt <<0 . Therefore, we can rewrite it as 

 

θ 

v 

a t 
ac 

                  

X 

Y 

c 
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22
4

f2 c
2
t −Φ<







 λ
                                                                                                     (12b) 

222
2 c4 −Φ<λ                                                                                                             (12c) 

Inequalities (12b) and (12c)  yields to 
 

 2
1

2
1

f
2

2
1

2
1

f

c
t
2c

t
2 −−

Φ<<Φ− λ                                                                                  (12d)                         

1
2

1 c
2
1c

2
1 −− Φ<<Φ− λ                                                                                            (12e) 

 
Maximum value of cost function equation (12) is satisfied with maximum value of λ2. 
Then the solution of the optimization problem is 
 

 









ΦΦ= −− 12

1
2
1

f
2 c

2
1c

t
2 ,minλ                                                                                 (13a) 

 
From equation (2a), also we obtain  λ1 
 











ΦΦ−= −− 12

1
2
1

ff
1 c

2
1c

t
2

t3
2 ,(minλ                                                                        (13b) 

 
As a result, the maximum angular trajectory (of position) is obtained by using the 
following equation 
 

)(,min)( 23

f

12
1

2
1

f

tt
t3
2c

2
1c

t
2t +−










ΦΦ= −−

θ                                                          (14) 

 
 and the corresponding maximum distance is 
 











ΦΦ= −− 12

1
2
1

f

2
ff c

2
1c

t
2ct

3
1ts ,min)(max                                                                  (15) 

 
Minimum Time Problem: Assume that the robot covers a given arc-length s(tf)=sf, the 
problem is represented as 
 

)(min
,

ft
21 λλ     

,  f
2
f2

3
f1 sttc =+ )( λλ                                                                                   (16)           

 
The constraints are the same as in the maximum distance problem of circular paths. 
Using equations (2a) and (16), we can reduce the problem into 
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2

f
f c

s3
t

2 λλ
=)(min                                                                                                          (17) 

 
    subject to 

Φ<<Φ−
f

2
f s3

4
s3
4

λ                                                                                              (17a) 

1
2

1 c
2
1c

2
1 −− Φ<<Φ− λ                                                                                            (17b) 

 
The minimum value for tf obtains by the maximum attainable value of  λ2 that is 
 

 









ΦΦ= −1

f
2 c

2
1

s3
4 ,minλ                                                                                       (18a) 

 
and from equation (2a), we have  λ1 
 

 









ΦΦ−= −1

ff
1 c

2
1

s3
4

t3
2 ,minλ                                                                              (18b) 

 
After substituting λ1 and λ2  into equation (16), minimum time is obtained as 

1
f

2
1

1
f csc

2
3t −−−Φ= )((min) .                                                               

Finally, optimal plan for the robot's angular position in the minimum time problem is 
given by 

)(,min)(
(min)

23

f

1

f

tt
t3

2c
2
1

s3
4t +−










ΦΦ= −θ                                                              (19) 

2.3 Motion of Wheels 

In Motion planning of a wheeled mobile robot, trajectory equations of robot's wheels 
should be determined. The simplest control method for a robot is differential driving 
technique. These types of mobile robots generally have two independent analogous DC 
motors along the same wheel axle. If we assume that the center of mass (COM) is below 
the wheel's axle, therefore we could use all of previously generated trajectory equations 
for describing the trajectory of the COM point of a robot over time. The differential 
drive robot with only two motorized wheels, when moves in x direction at straight 
paths, the motion equations of its wheels is obtained as below 
 

)()()( tx
r
1twtw lr ==                                                                                                                    (20a) 
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also, while the robot follows an arc-path of a circle, we could get motion equation of the 
wheels as 

)()()(,)()()( t
2
dc

r
1twt

2
dc

r
1tw lr θθ −=+=                                                                            (20b) 

 
where wr and wl denotes traveled trajectory equations of robot's right and left of the 
active wheels, respectively. The radius of active wheels is r and the distance between 
them is d (see Figure 2). The robot's configuration (position and orientation) is denoted 
by vector q=(x y θ)T.  

 
Figure 2. Robot posture from top view. 

 
Kinematic and dynamic modeling of these types of mobile robots are described in [18]. 

3. Simulations and Discussions  

In the previous section, considering maximum distance and minimum time problems, 
we have found closed-form solutions holding optimal trajectories for the robot. As it is 
well known, constrained optimization problems may have numerical solutions and 
solved by different optimization techniques, but generally they are iterative and time-
consuming. Therefore, the main advantage of analytical solving methods and closed-
form solution is their low computation time, as our proposed trajectory has it also.  
In the simulations, we define the robot's accelerations is bounded by (-0.8166, 
0.8166)m/s2 over time history. In order the robot has to avoid from these values such 
that the positive accelerations the limit is 0.8166m/s2 and in negative accelerations the 
limit is -0.8166m/s2. These limit values are valid for linear trajectory and by multiplying 
in c-1, limit accelerations for circular trajectory is obtained (see inequality (11a)). 

3.1 Simulations of Trajectories in Straight Path  

Maximum Distance Trajectories: Maximum distance solution of the case study of 
tf=20sec is obtained as 
 

( )23 t30t
60
81660tx +−=

.)(                                                                                                               (21) 

Simulation results of the above trajectory in the form of traveled distance, velocity and 
acceleration of the robot is given in Figure 3. The maximum traveled distance is 54.4m. 

X 

d 
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To show that equation (21) is the optimal trajectory from the maximum distance point 
of view, the following trajectory by new bounded acceleration of (-0.6,0.6)m/s2 is 
considered as below  
 

( )23 t30t
60

60tx +−=
.)(                                                                                                                                 (22) 

 
According to the curves shown in Figure 3, limited acceleration constraint still holds but 
the covered distance is less than the value obtained from equation (21), then trajectory 
of (22) is a non-optimal solution despite it holds the problem's constraints. 
 Here and later, the term non-optimal trejectory refers to ones that are obtained 
randomly or generated by a numerical approximation method to track optimal properties 
of a motion. In other words, we used this non-optimal functions to prove that our 
solutions are optimal trajectories such that they are obtained analytically, and are not 
based on numerical and iterative methods.  

 

(a) (b) 

 
(c) 

Figure 3.  Straight path-maximum distance plots, (a) traveled distance, (b) velocity, (c) acceleration. 

Minimum Time Trajectories: Moreover, the minimum time solution of the case study of  
L=54.4m, is obtained as tf(min)=20sec. This means that the maximum distance values is 
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the solution of the assumed minimum time problem as well. An immediate conclusion 
is that the optimal trajectory of the maximum distance problem with an assumed tf and 
the solution max(x(tf)) is the same as the optimal trajectory of the minimum time 
problem when x(tf) assumed to be max(x(tf)) and tf found. Finally, using equation (7) 
minimum time solution of the case study of L=54.4m is approximated as 







 +−= 23 t

519
8t

697
321tx

..
.)(                                                                                         (23) 

where the above trajectory is same with the maximum time solution that expressed in 
equation (21). 
To show that equation (23) is the optimal trajectory from the minimum time point of 
view, a trajectory by the assuming of L=54.4m and the new bounded acceleration 
(-0.52,0.52)m/s2 is considered  below 
 







 +−= 23 t

4
1t

1220
58tx .)(                                                                                                                             (24) 

 
Figure 4. illustrates that the covered distance is same with optimal trajectory and limited 
acceleration constraint still held but the trajectory time is bigger than the time value 
spend with optimal trajectory. Therefore, trajectory of (24) is a non-optimal solution. 

(a) (b)  

 
(c) 

Figure 4.  Straight path-minimum time plots, (a) traveled distance, (b) velocity, (c) acceleration. 
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3.2 Simulations of Trajectories in Circular Path  

As mentioned before, by multiplying the limited acceleration values to c-1 in the case of 
circular trajectory, new bounded accelerations in simulation's curves will be different 
from straight paths. Here, with assuming c=0.5, the acceleration threshold is twice 
respect to the straight path. 
Maximum Distance Trajectories: Maximum distance solution of the case study of 
tf=5sec is approximated as 
 







 +−= 23 t

4
1t

15
1ts )(                                                                                                                     (25) 

 
that yields s(tf) =2.13m for maximum arc-length. Corresponding curves of equation (25) 
are shown in Figure 5.  As a non-optimal trajectory we used the following equation  
 







 +−= 23 t

65
1t

641
1ts

..
)(                                                                                    (26) 

 
to the robot and the results depicted in Figure 5.  It can be seen that the limited 
acceleration still holds but the traveled arc-length is less than the optimal solution of 
equation (25). Note that the accelerations in Figure 5(c). generated corresponds to the 
nonlinear behaviour of the total acceleration in circular motion. 
Minimum Time Trajectories: Similar to the straight path trajectory, the solution of the 
minimum time problem assuming s(tf) =2.13m yields tf=5sec as minimum time. 
Therefore, the minimum time solution using equation (19) and with assuming sf=2. 13m 
is obtained as 
 

)
.

()( 23 t
4
1t

330
1ts +−=                                                                                               (27) 

 
where the above equation is obtained same with the maximum time solution in equation 
(25). 
To show that equation (27) is the optimal trajectory from the minimum time point of 
view, as straight path simulations, the following trajectory by the assuming of sf=2.13m 
and the new bounded acceleration (-0.52,0.52)m/s2 is considered  
 







 +−= 23 t

36
1t

560
1ts

..
)(

 
                                                                                           (28)  

 
Figure 6 clearly shows that the covered distance by trajectory of (28) is correspond with 
the optimal trajectory but the trajectory time is bigger. 
Due to the simulation results, it can be concluded that the thoroughness of the proposed 
analytic solving approach, time-distance optimal motion is guaranteed in case of the 
cube-polynomials trajectory planners. 
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(a) (b) 

 
(c) 

Figure 5.  Circular path-maximum distance plots, (a) traveled arc-lengths, (b) velocity, (c) robot's total 
accelerations (resulting from linear and angular components). 
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(a) 

 
(b) 

 
(c) 

Figure 6. Circular path-minimum time plots, (a) traveled arc-lengths, (b) velocity, (c) robot's total 
accelerations.  

4. Conclusion 

We studied optimal trajectory planning of a mobile robot in two basic motions including 
linear and circular ones. Firstly, given some parameters from initial and final position 
and velocity, we used them in the formulation of an optimization problem, such that 
solving it was connected to determining the coefficients of a third-order polynomial. 
Then, by simulation results, the obtained third-order polynomial trajectory proved time-
distance optimality. 
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