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Abstract 

Zinc is the first modelling language which supports solver and technique 

independence. This means that a high level conceptual model can be automatically 

mapped into an appropriate low level design model for a specific solver or 

technique. To date, Zinc uses three different techniques to solve a model: Constraint 

Programming (CP), Local Search (LS), and Mixed Integer Programming (MIP). In 

this way, modellers can examine all solving techniques for their models and see 

which one gives them the best result. MIP solvers can only accept linear models. 

Therefore, to map a conceptual model to MIP solvers, the model must be linearized 

first. In this paper we explain the techniques used in Zinc to linearize high level data 

structures and expressions which may be appeared in a conceptual model. As a 

result, modellers can benefit of expressive modelling using nonlinear expressions as 

well as efficiency of MIP solvers. 
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1. Introduction 

Constraint decision problems appear in many applications such as scheduling, 

planning, routing [1] Solving such problems, which may be decreasing the cost or 

increasing the benefit of a company, plays a very important role in industry [2]. 

However, solving these problems is difficult because their search space grows 

exponentially in terms of the number of variables. As a result, using ordinary search 

algorithms may be inefficient for solving them[1]. 

Constraint decision problems must be modelled first which means an appropriate 

formulation of the problem must be found (conceptual model). A conceptual model 

usually includes variables, constraints and an objective function. Then, the given model 

must be solved which means that each variable gets an appropriate value such that all 

constraints are being satisfied and the objective function is being optimized [3].Well 

known techniques for solving constraint decision problems are Constraint Programming 

(CP), Mixed Integer programming(MIP), and Local Search(LS) [3]. 

MIP techniques can be applied only on linear models. Modelling with linear 

equations is more limited than with nonlinear ones. However, there are many linear 

solvers that can find an optimal solution for the given model efficiently. Therefore, 

mapping high-level nonlinear models into equivalent linear models allows the modellers 
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to enjoy both the precise solution of linear solvers and the high formalism of nonlinear 

models[4]. 

Zinc is a solver and technique independent modeling language which allows users to 

solve their models by three aforementioned solving techniques and see which one works 

better for their models. To do so, Zinc maps a conceptual model into an equivalent 

design model acceptable for the desired technique [5]. 

To solve a Zinc model by MIP techniques, the models must be linearized and high-

level structures must be eliminated from the model. In this paper we explain the 

linearization techniques used by Zinc to perform this mapping. 

The rest of the paper is organized as follows. Section 2 gives a Zinc model for n-

queen problem to make the reader familiar with Zinc language. Section 3gives a brief 

overview of nonlinear expressions in Zinc. In section 4 we explain the techniques being 

used to linearize Zinc expressions and structures. In section 5 we evaluate our approach 

on a set of benchmarks. Finally, section 6 concludes the paper.  

2. An Example of a Zinc Model 

As an example, Figure 1 depicts a Zinc model for the n-queen problem. N queens 

must be placed in a n×n chess board such that no queen can take others. The first line 

defines a parameter n which is the number of queens. In line 2, an integer range as a 

new type is declared. In line 3 an array of variables is declared in which a variable 

shows the column of a queen. Constraints of the problem have been defined in lines 4-6, 

which for each two queens ensure they are neither in a same column nor in a same 

diagonal. The all different constraint is a global constraint which takes a list of variables 

and ensures that they have different values. Line 7 introduces the model as a satisfaction 

mode to Zinc. This means that the problem has no objective function [6]. 

 

1. int: n; 

2. type Domain = 1..n; 

3. array[Domain] of var Domain :q; 

4. constraint alldifferent([Q[i]| i in 1..n]); 

5. constraint alldifferent([Q[i]+i| i in 1..n]); 

6. constraint alldifferent([Q[i]-i| i in 1..n]); 

7. solve satisfy; 

Figure 1. n-queen model in Zinc 

3. Nonlinear Expressions in Zinc 

The most important feature of Zinc is that it can solve the model by all three methods, 

because it is not clear which technique provides the best solution. As a result, the users 

can choose their own solving method for their models .In order to be able to solve a 

model with the desired solving method, Zinc should convert the model into an 

acceptable form for the solver. One solving method is MIP which expects the model to 

be linearized first[5]. 

A MIP model is composed of variables, input parameters, the objective function and 

constraints.The mathematical definition of a MIP model implies the following 

assumptions: 

Arc
hive

 of
 S

ID

www.SID.ir

www.sid.ir


 

Journal of Advances in Computer Research  (Vol. 5, No. 4, November  2014) 1-8 

 

 

3 

1. Divisibility assumption for each continuous variable. 

2. Integrality assumption for each integer variable. 

3. Certainty (constant) assumption for each input parameter. 

4. Proportionality assumption for each term in constraints and in the objective 

function. 

5. Additivity and separability assumption for each combined function in the 

objective and constraints. 

6. Single-objective assumption. 

7. Simultaneousness (conjunction)assumption for all constraints [7]. 

However,the following Zinc expressions and operations do not confirm to MIP 

assumptions: 

 Boolean operations  

 Comparison operations 

 Polynomials of degree two or above 

 Arithmetic functions  

 

Therefore, to use MIP solvers, Zinc must use linearization methods to transform 

existing nonlinear structures in a model into linear structures. Then, modellers can use 

advantages of linear solvers for solving their high-level models. This is important 

because for some problems, the solution obtained by MIP solvers may be better than 

other solvers [5]. 

4. Mapping to MIP 

To map a conceptual Zinc model into a design model suitable for MIP solvers the 

original model must be linearized first. In the following sections we explain how such 

expressions are being linearized in a model intended to be solved by a linear solver.  

4.1 Mapping Boolean operations to Mathematic Operations 

A MIP model can consist only integer or real variables. Therefore all Boolean 

variables in a model are mapped to Binary variables [7]. Accordingly, the Boolean 

operations are mapped to equivalent operations on integer variables. For example, the 

following Zinc code: 

var bool :B1, B2;

constraint B1 B2;
 (1) 

is transformed to the following Zinc code which is suitable for MIP [6]: 

var 0..1:B1, B2;

constraint B1 B2 >=1;
 (2) 

4.2 Mapping Comparison Operations to Mathematical Equations 

Linear tools do not support dis-equality and strict inequalities: >, <, !=
1
. Therefore, 

they are transformed to the linear equations by using the reify function [5]. We use the 

                                                           
1. The dis-equality operator may be shown in other forms such as <> , \=. 
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Big M technique to translate comparison operators to equivalent expressions [8]. For 

instance, reify(X ≤ Y,B)
1
 is modelled by the inequalities as follows [8]: 

(X + B M M + Y),

(X + M > (1- B) M + Y)

 


 (3) 

As a result, we can readily transform reify(X < Y, B) to reify(X ≤ Y- , B) for an 

arbitrary small value  and use the above equations to handle it.  

Having all the above reify functions, we can implement reify(X  Y, B) as follows[6] : 

( , 1)

( , 2)

1 2 1

reify X Y B

reify X Y B

B B





 

 (4) 

4.3 Mapping alldifferent Constraint  

Global constraints are defined in Zinc as user-defined predicates in the Zinc standard 

library. If a solver directly supports a global constraint, the global constraint is mapped 

to the design model as it is, otherwise, it is replaced with the predicate body defined by 

the user. One useful global constraint is all different(L) which ensures all elements of 

list L have different values. An example of its usage was shown in the n-queen model in 

Section 2. 

For linear version of the all different constraint, we assume that there are n elements 

in L and each element of L gets its value from domain [min,max]. We construct a binary 

matrix A with n rows and max-min +1 columns. Then, the all different constraint is 

mapped to the following constraints[6]: 

 
max max

, ,

min min

,1

1.. 1 1.. *

.. 1

i j i j

j j

n

i ji

i n a i n a j L i

j min max a

 







    

 

 



 (5) 

4.4 Linearizing Multiplication of Binary and Real Variables 

To linearize expression X*Y, where X is a binary variable and Y is a real variable, we 

introduce a new variable Z with which X*Y is replaced as follows [7]. Note that min 

and max are the lower and upper bound of Y. 

( 1)*min

(1 )*max

max*

*min

Z X Y

Z Y X

Z X

Z X

  

  





 (6) 

                                                           
1. reify(C,B) ensures the binary variable B equals 1iff constraint C holds, otherwise B=0. 
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When X=1 the first two constraints ensure that Z=Y while the last two constraintsare 

released. When X=0, the last two constraints ensure Z=0, while the first two ones are 

released.  

4.5 Linearizing Multiplication of Integer and Real Variables 

To linearize a nonlinear expression X*Y in which X is an integer variable and Y is a 

real variable, a new variable Z is introduced to replace X*Y as follows. To do this, the 

integer variable X is mapped to an array of binary variables A. Then, using the 

technique mentioned for multiplication of binary and float variables mentioned 

previously, we place the multiplication of Y and every element of A in a float array T. 

Required equations are as follows .Note that min and max are the lower and upper 

bounds of X, respectively [5]. 

W= log2 (max –min+1) 

1

1

1

1

min 2

1..

min 2

w
i

i

i

i i i

w i

ii

X A

i wT A Y

Z Y T









  

   

   





 (7) 

4.6 Linearizing Powers of Integer Variables 

Since X
n
 equals to multiplication of X to itself n times, we can use the 

aforementioned techniques for multiplication to linearize it. However, it seems to be 

more efficient if we map X to a binary array having a value 1 in a position equals to X, 

and use the power operator to obtain X
n
 from the binary array as follows[9]:  

max

min

max

min

ii

n

ii

X A i

Z A i





 

 




 (8) 

4.7 Linearizing Products of Discrete and Integer Variables 

A discrete variable can take only one value in a given list and does not confirm to the 

MIP format [7]. If X is a bounded integer variable and Y is a discrete variable which 

takes a value from a list L, to linearize X*Y,we use the following equations. As usual 

we assume min and max are the lower and upper bounds of X, respectively. Wb is a 

binary array in which there is only one bit equals to one whose position equals to the 

position of that element of L which equals to Y. 

W= log2 (max –min+1) 
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1

1

1

1

1

1 1 1

1

2

2 min

N

ii

N

i ii

W i

ii

N w Nj

i i j i ii i i

Wb

Y Wb L

X A

Z Wb L A Wb L











  



 

 

      







  

 (9) 

All we need is the multiplication of the value of Y (i.e., Li if we assume Wbi=1) and 

the value of X (i.e.  ∑         
        ). Adding min to the sigma is necessary 

because we map X to a binary representation with minimum value 0 [5]. 

5. Evaluation 

The following problems have been used as benchmarks to evaluate the efficiency of 

the proposed approach: 

 Design Template Problem [10] (2, 3 templates, 7 variations, 9 slots). The 

model has product of integer and real variables. 

 Volume of Cylinder (with height in 

{50,100,200,250,300,350,400,450,500,550,600} and environment of circle in 

2..200 ) [5]. This model includes both the second power and the product of 

discrete and integer variables. 

 N-queen (18 queens). – This model contains alldifferent constraint. 

The models have been executed on an Intel Core2 Duo CPU 2.20 GHz, 3GB of RAM 

running Microsoft Windows 8. To compare the execution time of the original 

(nonlinear) model with generated (linear) model, nonlinear models have been solved by 

propagation-based solvers using the first-fail technique [8] , while for linear models we 

used linear solvers using well-known linear algorithms including Simplex, Dual 

Simplex and barrier [11].   

For Design Template problem, the linear model is faster when the number of 

templates is 2. However, when running the model for 3 templates, the execution time of 

the nonlinear model is better. Generally, although for the linear model the number of 

variables, about 9 times, and the number of constraints, about 10 times are greater than 

the nonlinear model, it seems for this problem the linearization process is worthwhile.  

The linearized version of the Volume of Cylinder problem finds the optimal solution 

in a short time. Although the nonlinear model runs faster, it finds a sub-optimal 

solution. 

The nonlinear version of n-queen is much faster than the linear one. In addition, the 

number of constraints and variables in the nonlinear model is less than the number of 

variables and constraints in the linear model. 
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Table 1. Experimental results 

Execution 
time (s) 

No. 
Constraints 

No. 
Variables 

 
Type of model 

 
Problem 

52.67 22 16 Nonlinear model Design 
Template 

T = 2 
3.38 242 142 Linear model 

667.93 25 26 Nonlinear model Design 
Template 

T = 3 
782.84 328 212 Linear model 

0.00 2 2 Nonlinear model Volume of  
cylinder 5.57 535 376 Linear model 

3.48 3 18 Nonlinear model Queens 
(18 queens) 1372.47 196 1584 Linear model 

 

6. Conclusions and Future Work 

The Zinc modelling language supports solver independence which means a high-level 

model can be automatically mapped to different design models using different solving 

techniques. As a result, modellers can readily examine all solving techniques for their 

models to see which one gives the best result.  

To solve Zinc models, which may include high-level structures, by MIP solvers, the 

original models must be mappedinto simpler equivalent models. In this paper we 

explained how Zinc provides necessary mappings to linearize nonlinear structures and 

expressions.Our experimental results showed that for some problems linearized models 

work better than the original nonlinear ones.  

In the future, we intend to provide all well-known linearization techniques for Zinc in 

terms of Zinc functions and predicates instead of providing them as built-in in the 

compiler. In this way, the modeller can experience different linearization techniques for 

a given model and see which one works better for the model.  

7. References 

[1] K. Marriot, and P.J. Stuckey, Programming with Constraint Programming: An Introduction, The 

MIT Press, 1998. 

[2] G. Ottosson, “Integration of Constraint Programming and Integer Programming for Combinatorial 

Optimization,” Computing Science, Uppsala, 2000. 

[3] M.G.d.l. Banda, K. Marriott, R. Rafeh, and M. Wallace, “The Modelling Language Zinc,” 

Principles and Practice of Constraint Programming, Springer, pp. 700-705. 

[4] N. Jaberi, and R. Rafeh, “A Survey of Linearization Techniques for Nonlinear Models,” 

International Journal of Computational Intelligence and Information Security,  vol. 3, no. 2, 

2012, pp. 66-75. 

[5] N. Jaberi, “Proposing Linearization Methods for Nonlinear  Zinc Models,” Computer Engineering, 

Islamic Azad University Malayer Branch, 2012. 

[6] R. Rafeh, “The Modelling Language Zinc,” Clayton School of IT, Monash, 2008. 

[7] D.s. Chen, R.G. Batson, and Y. Dang, Applied Integer Programming, WILEY, 2010. 

Arc
hive

 of
 S

ID

www.SID.ir

www.sid.ir


 

On the Linearization of Zinc Models … N. Jaberi, R. Rafeh

 

 

8 

[8] R. Rafeh, M.G.d.l. Banda, K. Marriott, and M. Wallace, “From Zinc to design model ” Practical 

Aspects of Declarative Languages, Springer, pp. 215-229. 

[9] J.B.d. Fonseca, “Solving Any Nonlinear Problem with a Linear MILP Model,” Computer Aided 

Process Engineering, Elsevier, pp. 647–652. 

[10] L. PROLL, and B. SMITH, “Integer Linear Programming and Constraint Programming 

Approaches to a Template Design Problem,” INFORMS Journal on Computing,  vol. 10, no. 3, 

1998, pp. 265-275. 

[11] K.R. Apt, and M. Wallace, Constraint Logic Programming using Eclipse, Cambridge University 

Press New York, NY, USA, 2007. 

Arc
hive

 of
 S

ID

www.SID.ir

www.sid.ir

