
 

  

 

 

9 

   

  

Journal of Advances in Computer Research 
Quarterly pISSN: 2345-606x   eISSN: 2345-6078 
Sari Branch, Islamic Azad University, Sari, I.R.Iran 
(Vol. 6, No. 3, August 2015), Pages: 9-22 
www.jacr.iausari.ac.ir  

 

Complexity-Measure-Based Approach To Detect Life 
Threatening Cardiac Arrhythmias Using First-Order 

Difference Of Electrocardiogram Signals 
 

Chandrakar Kamath 

“ShanthaNilaya”, 107,Ananthnagar, Manipal, India  

Chandrakar.kamath@gmail.com 

 

Received: 2014/08/08; Accepted: 2014/09/01 
 

 

Abstract 

The aim of this study is to evaluate how far Lempel-Ziv complexity (LZC) of the 

binary symbolic sequences resulting from static or dynamic transformation 

(partitioning first-order difference) of the short-term electrocardiogram (ECG) 

signals (only 2 seconds duration) has the  potential in discriminating normal and 

ventricular tachycardia/ventricular fibrillation (VT/VF) subjects. The statistical 

analyses show that LZC from either transformation is sufficient to distinguish 

between normal and VT/VF subjects. Between the two, LZC of dynamic 

transformation is found to outperform LZC of static transformation. The receiver 

operating characteristic curve analysis confirms the robustness of this new 

approach which exhibits an average sensitivity of about 99.1% (100.0%), specificity 

of about 100.0% (100.0%), precision of around 98.9% (100.0%), and accuracy of 

about 99.5% (100.0%), with LZC to distinguish between normal and VT (VF) 

subjects. The presented method is simple, computationally efficient, and well suited 

for real time implementation in automatic external or implantable cardioverter-

defibrillators. 

Keywords: Electrocardiogram, Lempel-Ziv complexity, Symbolic sequences, Ventricular 

tachycardia, Ventricular fibrillation 
 

 

1. Introduction 

Ventricular tachycardia (VT) and ventricular fibrillation (VF) are life threatening 

cardiac arrhythmias [1]. Despite numerous recent advances in the field of medicine, 

Ventricular tachycardia/ fibrillation (VT/VF) has been difficult to manage with in 

clinical practice and mortality rate has remained high. It is crucial for the patient to 

receive immediate medical intervention when either VF or VT occurs. As a 

consequence the development of new non-invasive methods and measures of mortality 

risk in VT/VF, including sudden cardiac death, is still a major challenge. For this 

reason, a number of quantitative analysis techniques for ECG arrhythmia detection have 

been proposed [1]-[3]. Sequential hypothesis testing of binary sequences has been 

employed to detect ventricular fibrillation [4]. Though the method shows an 

improvement over previous methods, the accuracy is not high enough for clinical 

applications. Gustavo Santos used regularized least squares technique with a radial basis 
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kernel to predict ventricular arrhythmia [5]. Power spectrum of raw ECG signals and 

power spectrum of beat-to-beat intervals were tried as input vectors to a neural network. 

Though the approach is said to lead to more accurate risk stratification, no details of 

accuracy and other measures are available. A number of methods are available to detect 

VT/VF in the literature. Some of them with good results are given below. Jun Wang et 

al. have tried symbolic dynamics and information entropy to discriminate VT/VF from 

NSR [6]. Zhang HX et al. use complexity measure and complexity rate information to 

detect VT/VF [7]. Complexity dispersity method has been tried in qualitative chaos 

analysis of VT/VF based on symbolic complexity [8]. The method showed accuracy of 

100%, but with segments of 5 sec length. Inappropriate defibrillator discharge or anti-

tachycardiac pacing remains an important clinical problem in implantable cardioverter-

defibrillator therapy as they lead to unnecessary pain and sometimes proarrhythmic 

effects. As an implication in real time applications the value for specificity is more 

important than the value for sensitivity. However, in these studies no details pertinent to 

sensitivity and specificity are available.  

Besides manual defibrillation by an emergency paramedic in the recent years, 

bystander defibrillation with automated external defibrillators (AEDs) has also been 

recommended for resuscitation. A reliable automated classification system combined 

with computationally efficient real time implementable algorithm can resolve this issue. 

This work is an attempt to develop such an automated computationally fast system to 

discriminate between normal and Ventricular tachycardia/ fibrillation subjects. 

Physiological data more often show complex structures which cannot be quantified 

or interpreted using linear methods. The classical nonlinear methods suffer from the 

disadvantage of dimensionality. Further, there are not enough samples in the time series 

to arrive at a reasonable estimate of the nonlinear measures. From this point of view it is 

advisable to resort to methods which can quantify system dynamics even for short time 

series, like the symbolic dynamics [9]. The prime advantages of symbolic dynamics are 

the following: If the fluctuations of the two data series are governed by different 

dynamics then the evolution of the symbolic sequences is not related [10]. The resulting 

symbolic sequences histograms give a reconstruction of their respective histories and 

provide a visual representation of the dynamic patterns. In addition, they may be used as 

a basis to build statistics to compare the regions that show different dynamical 

properties and indicate which patterns are predominant. Thus methods of symbolic 

dynamics are useful approaches for classifying the underlying dynamics of a time 

series. Parameters of time domain and frequency domain often leave these dynamics out 

of consideration. Besides computational efficiency, symbolic methods are also robust 

when noise is present. The process of symbolization can be used to represent any 

possible variation over time, depending on the number of symbols and the sequence 

lengths used. This is a very powerful property because it does not make any 

assumptions about the nature of the signals/ patterns (e.g., it works equally well for both 

linear and nonlinear phenomena). 

Symbolic time series analysis has found application for the past few decades in the 

field of complexity analysis, including astrophysics, geomagnetism, geophysics, 

classical mechanics, chemistry, medicine and biology, mechanical systems, fluid flow, 

plasma physics, robotics, communication, and linguistics [11]. To be specific, in 

medicine, various implementations of symbolic sequences have been used to 

characterize encephalography (EEG) signals to understand the interaction between brain 

structures during seizures [12]. Under mechanical systems, symbolic methods were 
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applied to combustion data from internal combustion engines to study the onset of 

combustion instabilities [13] and in multiphase flow data-symbolization were found to 

be useful in characterizing and monitoring fluidized-bed measurement signals [14]. 

Symbolic dynamics, as an approach to investigate complex systems, has found profound 

use in the analysis of heart rate variability signals [15]-[19]. There are many ways 

symbolic dynamics can be used for analysis of time series and all of them require 

coding i.e. converting the time series into symbolic series. The differences in symbolic 

methods are usually in their coding procedure or used complexity indices. In this 

contribution dynamic transformation [18] is employed as the symbolic method and LZC 

[20]-[22] as a measure of complexity of the first-order difference of ECGs to classify 

ECG signals obtained from standard Holter recordings from PhysioNet database [23] 

into normal and VT/VF subjects. Dynamic transformation is preferred when the time 

series, like ECG, is either nonstationary or has very long-time-scale variations. Binary 

dynamic transformation amounts to partitioning first-order difference of the ECG signal 

and it is shown that it leads to better separation of the classes than binary static 

transformation. The rationale behind the application of LZC is that it is suitable for 

short-term segments of the ECG signal. Receiver operating characteristic (ROC) plots 

were used to evaluate the ability of the complexity measure to discriminate normal from 

VT/VF subjects. It is found that LZC yielded excellent results with an average 

sensitivity of about 99.1% (100.0%), specificity of about 100.0% (100.0%), precision of 

around 98.9% (100.0%), and accuracy of about 99.5% (100.0%), to distinguish between 

normal and VT (VF) subjects. In the testing phase, for LZC analysis, segments of only 2 

seconds duration are used. As mentioned above, in real time applications the value for 

specificity is more important than the value for sensitivity. With this approach an 

average specificity of 100.0% and an average sensitivity about 99.0% is achieved. The 

usual nonlinear methods applied to time series (other than symbolic dynamics) usually 

demand long-term series, longer than 20 seconds length. Although the ECG data used 

contains both 30 minutes and 20 hours duration records, this method uses short-term 

segments, of the order of 2 sec duration in the final testing phase. Hence the method is 

suitable for screening large populations in a short time. The presented method is simple, 

computationally efficient, and hence, is well suited for real time implementation in 

automatic external or implantable cardioverter-defibrillators. 

2. Methods and material 

The following subsection 2.1 discusses the data used for analysis. The next three 

subsections 2.2, 2.3, and 2.4 discuss in depth the methods based on coarse-graining of 

the system dynamics. Subsection 2.5 depicts the LZC algorithm and subsection 2.6 

describes the statistical tests and receiver operating characteristic (ROC) plots to 

evaluate the performance parameters. 

 

2.1 ECG records 

 

All the ECG records used are from the benchmark PhysioNet databases [23]. The 

work involved 18 ECG records from normal sinus rhythm (NSR) database (nsrdb) and 

ECG records of 35 subjects who experienced episodes of sustained ventricular 

tachycardia, ventricular flutter and ventricular fibrillation (VT/VF) from Creighton 

University ventricular tachyarrhythmia database (cudb). The NSR database includes 5 
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men, aged 26 to 45 years, and 13 women, aged 20 to 50 years. The age and gender of 

subjects in VT/VF database are not available. For sake of comparison and validation, 

the NSR database was divided into two groups, first with 9 ECG records (Normal-1) 

and second, also, with 9 ECG records (Normal-2).  Likewise, the VT/VF database was 

divided into two groups, first with 15 ECG records (VT/VF-1) and second also with 15 

ECG records (VT/VF-2). From each record the modified limb lead II was only 

considered for analysis. The resolution is 200 samples per mV for nsrdb and 400 

samples per mV for cudb. The sampling frequency of normal sinus rhythm signal from 

NSR is 128 Hz and that of VT/VF signal from cudb is 250 Hz. Since the sampling 

frequency does influence upon the calculated indices it is necessary to have the same 

sampling frequency for all the records. For this reason ECG signals from NSR database 

are first re-sampled at 250 Hz. Then each record is divided into segments of equal time 

duration (12 seconds), with 3000 samples/ segment in both normal sinus rhythm and 

VT/VF database. A total of 2000 segments from normal sinus rhythm and from VT/VF 

data base, each, are analyzed. All the records are normalized before analysis. Also all 

the signals from both database are filtered using an 8-point moving average filter to 

remove high-frequency noise. In the testing phase, however, for LZC analysis segments 

of 2 seconds duration are used. 

 2.2 Symbolic Dynamics 

Symbolic  dynamics,  as  an approach  to  investigate  complex  systems,  facilitates  

the analysis  of  dynamic  aspects of  the  signal of interest.  The  concept  of symbolic  

dynamics  is  based  on  a  coarse-graining  of  the  dynamics [9]. The original time 

series is transformed into a series of dicretized symbols that are further processed to 

extract information about the generating process. Some  detailed  information  is  lost  in  

the  process  but  the coarse and robust properties of the dynamic  behaviour  is 

preserved and can  be  analyzed  [9]. 

 

2.3 Static transformation and Dynamic transformation 

 

During coarse-graining of the system dynamics, the range of original observations or 

the range of some transform of the original observations such as the first difference 

between the consecutive values, is partitioned into a finite number of regions and each 

region is associated with a specific symbolic value so that each observation or the 

difference between successive values is uniquely mapped to a particular symbol 

depending on the region into which it falls. The former mapping is called static 

transformation and the latter dynamic transformation. Thus the original observations are 

transformed into a series of same length but the elements are only a few different 

symbols (letters from the same alphabet), the transformation being termed 

symbolization. A general rule of thumb is the partitions must be such that the individual 

occurrence of each symbol is equiprobable with all other symbols or the measurement 

range covered by each region is equal [14]. This is done to bring out ready differences 

between random and non-random symbol sequences. The transformations into symbols 

have to be chosen context dependent. For this reason, complexity measures on the basis 

of such context-dependent transformations, which have a close connection to 

physiological phenomena and relatively easy to interpret are employed. This way the 

study of dynamics simplifies to the description of symbol sequences. 
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 2.4 Binary Symbol-sequence from Static transformation of ECG signals 

This is the simplest possible partition involving the division of data range into two 

parts (binary partition). Those data which are above a cut-off value are assigned a 

symbolic value of „1‟, while those below the cut-off value are assigned a symbolic value 

of „0‟. In this case the cut-off value is chosen to be equal to the median of the data, 

xmedian. The time series xi is transformed into the symbolic sequence Si, where Si є {0, 

1}, as given below. 

if xi ≥  xmedian    Si = 1 and  if xi < xmedian      Si = 0                                                      (1) 

2.5 Binary Symbol-sequence from first-difference of ECG signals 

In this study, dynamic transformation approach for the symbolic dynamics [14] is 

employed. Dynamic transformation amounts to partitioning first-order difference of the 

ECG signal. Such a differenced symbolization scheme is relatively insensitive to 

extreme noise spikes in the data. In this approach arithmetic differences between 

adjacent data points of the ECG signal define the symbolic values. The positive 

difference is symbolized as a „1‟ and the negative difference as a „0‟ as shown in the 

eqn. below. 

if xi – xi-1  ≥  0   Si = 1 and  if xi – xi-1  < 0      Si = 0                                                     (2) 

2.6 Lempel-Ziv Complexity Measure 

The Lempel-Ziv complexity algorithm was proposed by Lempel and Ziv to evaluate 

the randomness of finite sequences. It is rather a simple-to-compute nonparametric 

measure of complexity suitable for finite length one-dimensional signals related to the 

number of distinct substrings and the rate of their recurrence. Larger values of LZC 

imply higher complexity data. Since LZC analyzes finite symbol-sequences it is 

essential that the given signal must first be coarse-grained. In this study, a binary 

conversion is used. This binary string is scanned from left to right and a complexity 

counter c(N)  is incremented by one unit every time a new subsequence pattern is 

encountered in the scanning process, and the immediate next symbol is regarded as the 

beginning of the next subsequence pattern. The LZC can be estimated using the 

following algorithm [21]. 

1. Let P denote the original string sequence i.e. P= {s1, s2, s3,,…}, with si defined as in 

Eq. (1). Let S and Q denote two sub-sequences of P and SQ be concatenation of S and 

Q. Also, let SQπ be a sequence derived from SQ after its last character is deleted (π 

implying deletion of last character in the sequence) and υ(SQπ) denote the vocabulary of 

all different sub-sequences of SQπ. 

2. At the beginning, the complexity counter c(N)=1, S=s1, Q=s2,  SQ=s1, s2, and 

therefore, SQπ=s1. 

3. In general, with S=s1, s2, s3,…,sr   and Q=sr+1, SQπ= s1, s2, s3,…,sr. If Q belongs to 

υ(SQπ) then Q is subsequence of SQπ and not a new sequence. 
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4. With S intact, change Q to sr+1, sr+2 and check if Q belongs to υ(SQπ) or not. 

5. Keep repeating previous steps until Q does not belong to υ(SQπ). Now Q=sr+1, 

sr+2,…,sr+i is not a subsequence of SQπ=s1, s2,..,sr+i-1. So increase c(N) by 1. 

6. Thereafter, S is renewed to S=s1, s2,…, sr+i and Q to Q=ss+i+1. 

7. Repeat the previous steps until Q is the last character. At this point in time, the 

number of sub-sequences in P is c(N), which corresponds to measure of complexity. 

To arrive at a measure of complexity independent of sequence length, c(N) must be 

normalized. If the length of the sequence is n and the number of different symbols is α, 

it has been shown that the upper bound of c(N) is [21] 

c(N) < N / ((1-єN) logα(N))                                                                                      (3) 

 

where 𝜀N is a small quantity and 𝜀N →0 (N→∞). In general, N/logα(N) is the upper 

limit of c(N), i.e., 

       limN→∞ c(N) = b(N) = N / logα(N)                                                                          (4) 

 

For a binary conversion α =2, b(N)=N/log2(N) and c(N) can be normalized by b(N) as 

       C(N) = c(N) / b(N)                                                                                                  (5) 

 

C(N), the normalized LZC, reflects the arising rate of new patterns  along with the 

sequence and thus captures the temporal structure of the sequence. A larger value of 

LZC means that the chance of generating a new pattern is greater, so the sequence is 

more complex, and vice versa. 

2.7 t-Tests and Receiver Operating Characteristic (ROC) Analysis 

Individual and pair-wise significance tests (Student‟s t-tests) are used to evaluate the 

statistical differences between the LZC values of normal and VT/VF groups. If 

significant differences between groups are found, then the ability of the nonlinear 

analysis method to discriminate normal from VT/VF subjects is evaluated using 

receiver operating characteristic (ROC) plots in terms of C-statistics. ROC curves are 

obtained by plotting sensitivity values (which represent the proportion of the patients 

with diagnosis of VT/VF who test positive) along the y axis against the corresponding 

(1-specificity) values (which represent the proportion of the correctly identified normal 

subjects) for all the available cut-off points along the x axis. Accuracy is a related 

parameter that quantifies the total number of subjects (both normal and VT/VF) 

precisely classified. The area under ROC curve (AUC), also called C-statistic, 

measures this discrimination, that is, the ability of the test to correctly classify those 

with and without the disease and is regarded as an index of diagnostic accuracy. The 

optimum threshold is the cut-off point in which the highest accuracy (minimal false 

negative and false positive results) is obtained. This can be determined from the ROC 

curve as the closet value to the left top point (corresponding to 100% sensitivity and 

100% specificity). A C-statistic value of 0.5 indicates that the test results are better than 

those obtained by chance, where as a value of 1.0 indicates a perfectly sensitive and 

specific test. 

3. Results and Discussion 
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To test for significance of LZC and efficacy of the first-order difference of ECG 

approach, first LZC of the ECG data from normal and VT/VF subjects of Group-I for 

the following two cases (i) with binary static transformation and (ii) with binary 

dynamic transformation (partitioning first-order difference of ECG) are compared and 

then it is shown that dynamic transformation outperforms static transformation. Next, 

this approach is validated conducting another case study on normal and VT/VF subjects 

from Group-II. 

The ECG records used are pre-processed, grouped, and segmented as mentioned in 

Sec. 2.1. LZC analysis is applied to these segments from both the groups to decide 

whether a particular segment belongs to normal, or VT/VF group. Dynamic 

transformation as given in Eq. (1) is first applied on each segment to arrive at a symbol 

string with a range of two possible symbols {0, 1} (binary symbolization). LZC is 

computed and averaged to obtain mean values for the entire recording period. This is 

repeated for all the segments of all the three classes. 

 

 

 
Figure 1. (a) The distribution of LZC values (with static transformation) using Box-whiskers plots 

(with outliers) for normal, VT and VF subjects from Group-I. (b) ROC curves for LZC with static 

transformation, for normal and VT (solid line), and normal and VF (dash-dot line). The diagonal line 

(dotted line) from 0,0 to 1,1 represents ROC curve that cannot discriminate between normal and 

VT/VF from Group-I. 
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The distribution of LZC values, with static transformation of ECGs, for the normal, 

VT and VF groups (Group-I) are shown using Box-whiskers plots in Figure 1(a). The 

boxes (inter-quartile range) of normal and VT/VF subjects are non-overlapping. This 

plot shows that LZC is sufficient to distinguish between normal and VT/VF subjects. 

The results of statistical analysis of non-paired Student‟s t-test for normal, VT and VF 

groups of Group-I are depicted in Table 1. All values are expressed as mean ± Standard 

Deviation (median) [95% Confidence Interval]. For normal subjects, the following LZC 

(mean ± SD) is observed: 0.3147±0.02744. For VT subjects the following LZC (mean ± 

SD) is found: 0.1547±0.01113, different from normal. For VF subjects the following 

LZC (mean ± SD) is observed: 0.1841±0.02637, again different from normal. These 

distributions show that LZC is sufficient to distinguish between normal and VT/VF 

subjects. It can be observed that LZC for VT/VF group are always smaller than that of 

the normal group. This implies a decrease in the complexity of VT/VF group compared 

to normal group. 

 

Table 1. Descriptive results of LZC analysis (with static transformation) for Group-I. All values are 

expressed as mean ± SD (median) [95% CI].  (non-paired Student’s t-test; p < 0.0001) 

 
Subject LZC 

Normal 0.3147±0.02744 

(0.3119) 

[0.3074    0.3242] 

VT 0.1547±0.01113 

(0.154) 

[0.1524    0.1590] 

VF 

 

 

0.1841±0.02637 

(0.1848) 

[0.1740    0.1907] 

 
Table 2. p-values and tstat (test statistic ) values of paired t-test for LZC analysis (with static 

transformation) of normal and VT/VF subjects from Group-I. 

 
Subject VT VF 

Normal p = 8.2742 x10-177 ; tstat = 

37.5407 

p = 0; 

tstat = 19.2343 

 

Figure 2(a) depicts the distribution of LZC values, with dynamic transformation of 

ECGs, for the normal, VT and VF groups (Group-I) using Box-whiskers plots. The 

boxes (inter-quartile range) of normal and VT/VF subjects are found to be non-

overlapping. From this plot it is seen that LZC can be used to distinguish between 

normal and VT/VF subjects. The results of statistical analysis of non-paired Student‟s t-

test for normal, VT and VF groups of Group-I are depicted in Table 3. All values are 

expressed as mean ± Standard Deviation (median) [95% Confidence Interval]. For 

normal subjects, the following LZC (mean ± SD) is seen: 0.8114±0.0292. For VT 

subjects the following LZC (mean ± SD) is seen: 0.3861±0.04696, different from 

normal. For VF subjects the following LZC (mean ± SD) is observed: 0.2821±0.02045, 

different from normal. These distributions show that LZC can be readily used to 

separate normal and VT/VF subjects. It is found that LZC for VT/VF group are always 

smaller than that of the normal group. This implies a decrease in the complexity of 
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VT/VF group compared to normal group. Of course, experimental studies are necessary 

to confirm the mechanisms behind the decrease in the complexity of signals in VT/VF 

subjects. 

 

 

 

 

Figure 2. (a) The distribution of LZC values (with dynamic transformation) using Box-whiskers plots 

(with outliers) for normal, VT and VF subjects from Group-I. (b) ROC curves for LZC with dynamic 

transformation, for normal and VT (solid line), and normal and VF (dash-dot line). The diagonal line 

(dotted line) from 0,0 to 1,1 represents ROC curve that cannot discriminate between normal and 

VT/VF from Group-I. 

Although both, static and dynamic transformations, perform well in separating 

normal from VT/VF groups, comparing paired t-test results (p-value and tstat) from 

Tables 2 and 4, it is found that dynamic transformation outperforms static 

transformation. This finding is substantiated using ROC plots, which are shown in 

Figure 1(b), for static transformation and in Figure 2(b), for dynamic transformation, 

respectively, with normal and VT (shown by solid line) and normal and VF (shown by 

dash-dot line). It is found, comparing both the figures that, dynamic transformation 

performs better than static transformation.  For the case of static transformation, in 
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Figure 1(b), it is found that (i) for normal and VT separation, the area under the curve 

(AUC) is 0.95693 with sensitivity = 97.9%, specificity = 93.1%, precision = 94.6%, and 

accuracy = 95.8% and (ii) for normal and VF separation, the area under the curve 

(AUC) is 0.93597 with sensitivity = 93.1%, specificity = 87.7%, precision = 77.5%, and 

accuracy = 89.4%. For the case of dynamic transformation, in Figure 2(b), it is found 

that (i) for normal and VT separation, the area under the curve (AUC) is 0.99942 with 

sensitivity = 99.1%, specificity = 100.0%, precision = 98.9%, and accuracy = 99.5% 

and (ii) for normal and VF separation, the area under the curve (AUC) is 1.0000 with 

sensitivity = 100.0%, specificity = 100.0%, precision = 100.0%, and accuracy = 

100.0%. Comparing these measures, it is obvious that using dynamic transformation for 

symbolization has an advantage over the usual static transformation. 

 
Table 3. Descriptive results of LZC analysis (with dynamic transformation) for Group-I. All values are 

expressed as mean ± SD (median) [95% CI].  (non-paired Student’s t-test; p < 0.0001) 

 
Subject LZC 

Normal 0.8114±0.0292 

(0.8163) 

[0.7952    0.8069] 

VT 0.3861±0.04696 

(0.3889) 

[0.3795    0.3985] 

VF 

 

 

0.2821±0.02045 

(0.2849) 

[0.2788    0.2989] 

 

 
Table 4. p-values and tstat (test statistic ) values of paired t-test for LZC analysis (with dynamic 

transformation) of normal and VT/VF subjects from Group-I. 

 
Subject VT VF 

Normal p = 0; 

tstat = 68.6044 

p = 5.0044 x10-317; 

tstat = 91.3541 

 

Finally, our approach is validated conducting another case study on normal and 

VT/VF subjects from Group-II. The results of statistical analysis of non-paired 

Student‟s t-test for normal and VT/VF groups of Group-II are depicted in Table. 5. All 

values are expressed as mean ± Standard Deviation (median) [95% Confidence 

Interval]. For normal subjects, the LZC (mean ± SD) is 0.8264±0.0125. For VT 

subjects, the LZC (mean ± SD) is 0.2956±0.05352, different from normal. For VF 

subjects the LZC (mean ± SD) is: 0.2853±0.03897, again different from normal. The 

paired t-test results (p-value and tstat) are shown in Table 6 and the ROC plots in Figure 

3. It is found that (i) for normal and VT separation, the area under the curve (AUC) is 

0.99861 with sensitivity = 99.0%, specificity = 99.0%, precision = 99.0%, and accuracy 

= 98.0% and (ii) for normal and VF separation, the area under the curve (AUC) is 1.0 

with sensitivity = 100.0%, specificity = 100.0%, precision = 100.0%, and accuracy = 

100.0%. The above results substantiate our finding that LZC with first-order difference 

of ECGs outperforms LZC with static transformation and that former is preferred to 

distinguish between normal and VT/VF subjects. 
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Table 5. Descriptive results of LZC analysis (with dynamic transformation) for Group-II. All values 

are expressed as mean ± SD (median) [95% CI].  (non-paired Student’s t-test; p < 0.0001) 

 
Subject LZC 

Normal 0.8264±0.0125 

(0.8278) 

[0.8141    0.8220] 

VT 0.2956±0.05352 

(0.3042) 

[0.2990    0.3305] 

VF 

 

 

0.2853±0.03897 

(0.2888) 

[0.2823    0.3147] 

 

 

Figure 3. ROC curves for LZC with dynamic transformation, for normal and VT (solid line), and 

normal and VF (dash-dot line). The diagonal line (dotted line) from 0,0 to 1,1 represents ROC curve 

that cannot discriminate between normal and VT/VF from Group-II. 

Table 6. p-values and tstat (test statistic ) values of paired t-test for LZC analysis (with dynamic 

transformation) of normal and VT/VF subjects from Group-II. 

 
Subject VT VF 

Normal p = 7.4889 x10-283; 

tstat = 61.7038 

p = 5.5555 x10-296; 

tstat = 77.0900 

 

Figure 4 shows a synthesized ECG signal comprising NSR, VT, and VF rhythms in 

sequence, each 3500 samples long, together with the corresponding LZC variation. For 

LZC analysis segments of 2 seconds duration are used. Two empirically found 

thresholds (at 0.53 and 0.21 marked by horizontal solid lines) are used for separating 

NSR and VT/ VF rhythms. The sudden drop in the LZC indicates that the patient 

entered crucial episode of VT. 
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The presented method is simple, computationally efficient, and well suited for real 

time implementation in automatic external or implantable defibrillators. One limitation 

of the current study is the small sample size. Although this study reports symbolic 

dynamics to yield very sensitive measures based on the p-value generated from the t-

statistics, factors like high variance, age differences, and differing male-to-female ratios 

between groups will have an impact on the results when statistical analyses are carried 

out on small sample sizes. Nevertheless, the results of this study provide sufficient 

evidence to warrant the execution of larger studies that can provide more statistically 

robust confirmation of the application of symbolic dynamics as a reliable measure of 

cardiac health. 

 

 
Figure 4. Variation of LZC (dotted line) for a simulated signal (solid line) comprising NSR, VT, and 

VF rhythms in sequence. The two horizontal solid lines mark the empirical thresholds to separate NSR 

from VT/VF. 

 

 

4. Conclusion 

 

LZC analysis is applied to the first-order difference of nonstationary raw ECG time 

series from normal and VT/VF subjects. The quantified complexity measure LZC of the 

binary symbolic sequences are found to have potential in discriminating normal and 

VT/VF subjects and thus can significantly add to the prognostic value of traditional 

cardiac analysis. This complexity measure can easily be analyzed from ambulatory ECG 

recordings without time consuming pre-processing and hence, may have practical 

implications for risk stratification. Inappropriate defibrillator discharge or anti-

tachycardiac pacing remains an important clinical problem in implantable cardioverter-

defibrillator therapy as they lead to unnecessary pain and sometimes proarrhythmic 

effects. As an implication in real time applications the value for specificity is more 

important than the value for sensitivity and with this approach the average specificity is 

100.0% and average sensitivity is about 99.0%. The usual nonlinear methods applied to 

time series (other than symbolic dynamics) usually demand long-term series, longer 

than 20 seconds length. Although the ECG data used contains both 30 minutes and 20 

hours duration records, this method uses short-term segments, of the order of 2 sec 
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duration in the final testing phase. Hence the method is well suited for real time 

implementation in automated external or implantable cardioverter-defibrillators. 
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