

53

Journal of Advances in Computer Research
Quarterly pISSN: 2345-606x eISSN: 2345-6078
Sari Branch, Islamic Azad University, Sari, I.R.Iran
(Vol. 7, No. 2, May 2016), Pages: 53-68
www.jacr.iausari.ac.ir

Genetic Algorithm Based on Explicit Memory for
Solving Dynamic Problems

Majid Mohammadpour

1
 and Hamid Parvin

2

1) Young Researchers and Elite Club, Yasooj Branch, Islamic Azad University, Yasooj, Iran

2) Department of Computer Engineering, Yasooj Branch, Islamic Azad University, Yasooj, Iran

m.mohammadpour@iauyasooj.ac.ir; parvin@iust.ac.ir

Received: 2015/07/04; Accepted: 2015/10/04

Abstract

Nowadays, it is common to find optimal point of the dynamic problem; dynamic

problems whose optimal point changes over time require algorithms which

dynamically adapt the search space instability. In the most of them, the exploitation

of some information from the past allows to quickly adapt after an environmental

change (some optimal points change). This is the idea underlining the use of

memory in the field, which involves key design issues concerning the memory

content, the process of memory update, and the process of memory retrieval. With

use of the Aging Best Solution and Keeping Diversity in Population, the speed

convergence of algorithm can be increased. This article presents a genetic

algorithm based on memory for dealing with dynamic optimization problems and

focuses on explicit placement of memory schemes, and performs a comprehensive

analysis on current design of Moving Peaks Benchmark (MPB) problem. The MPB

problem is the most proper benchmark for simulation of dynamic environments. The

experimental study show the efficiency of the proposed approach for solving

dynamic optimization problems in comparison with other algorithms presented in

the literature.

Keywords: Dynamic Optimization, Genetic Algorithm, Explicit Memory, Offline Error

1. Introduction

Nowadays engineering intervenes with issues with which we are faced. These

problems will be solved (optimized) if they are minimized/maximized. In some of real-

world problems the purpose of the optimization is to reduce expenses; here optimization

process is seen as a minimization one. In some others of real-world problems the

purpose of the optimization is to increase profit making; here optimization process is

seen as a maximizing one. Optimization stands for the process of exploration of

parameter space for finding the best parameters that maximize/minimize an objective

function. Any instantiation of parameters is considered as a possible solution to the

problem. The instantiation of parameters which leads the objective function (i.e.

problem) to its best value is considered the best parameters.

There are two major categories for real-world problems: dynamic problems and static

problems. In static problems, local optima parameters (including their positions) are

stationary while the time pasts. In the static problems tracking the positions of local

optima is an easy task. In dynamic problems, the parameters of local optima are not

Arc
hive

 of
 S

ID

www.SID.ir

http://jacr.iausari.ac.ir/?_action=article&au=19879&_au=Hossein++Nezamabadi-pour
www.sid.ir

Genetic Algorithm Based on Explicit … M. Mohammadpour, H. Parvin

54

stationary when the time is ticking. In the dynamic problems tracking the positions of

local optima is a really hard task.

Evolutionary algorithms may be with good efficiency in static environments, but these

algorithms are weak to solve dynamic optimization and in the literature it has been

shown that they can't have a good performance. Therefore to solve dynamic

optimization problems some strong heuristics are needed. There are some important

challenges in the dynamic problems that should be handled before any algorithm can be

selected from the literature or even any algorithm can be proposed.

Some of these challenges may include:(1) difficulty in updating of the memory after

occurring each environmental change, (2) preserving diversity in the population of some

possible solutions (provided that we intend to use a population based optimization), (3)

detecting memory capacity, (4) identifying the environmental change times, (5)

difficulty in updating of the population after deciding to update population. There are

many methods in the literature dealing with dynamic optimization that we will discuss

them in the remaining of the current section. Each of these methods manages the above

mentioned challenges in a different mechanism. This paper has presented a

combinational method for solving dynamic optimization problems. Proposed method

uses the explicit memory mechanism in the Genetic Algorithm (GA). Novelty in the

proposed method is a new strategy for updating memory. The traditional methods

update only one individual at each updating time (only one individual is exchanged in

memory and population). In the proposed method instead of updating only one

individual from memory we have used a new strategy where it updates more than one

individual at each updating time.

The paper is organized as follows. Section 1 introduces the dynamic optimization

problems, dynamic environments, MPB problem, Offline Error (the measure of

effectiveness of evolutionary algorithms in dynamic environments), genetic algorithm

and memory. Section 2 presents related work. The proposed algorithm is presented in

section 3. Section 4 presents the experimental study and discussions. Finally,

conclusions are given in section 5.

1.1 Dynamic Optimization Problems

In most real-world problems, the objective function can change over time and

therefore optimal points in these problems may be due to changes in the environmental

change time. These problems are referred to as dynamic optimization problems.

1.2 Dynamic Environments

Those real world environments in that the optimal points are not static and are

changing over the time are referred to as dynamic environments. The effect of

environmental changes makes it a non-easy task to achieve desired global optima in

these environments.

1.3 Moment of Change in the Environment

A dynamic environment changes cyclically over time. The cycle in which the

optimization function should be changed, is considered as change frequency. The cycle

at which a change occurs is referred to as a moment of change in the environment.

Arc
hive

 of
 S

ID

www.SID.ir

www.sid.ir

Journal of Advances in Computer Research (Vol. 7, No. 2, May 2016) 53-68

55

1.4 Types of Environmental Changes

 Cyclic: in a cyclic environment, situations from the past reappear in the future in

a cyclic manner. In this type of environments the length of a cycle can determine

the difficulty of the problem. We say that an environment is cyclic if a set of

environmental states always reappears in the same order (A-B-C-A-B-C…) [1].

 Cyclic with noise: in a noisy cyclic environment, environments from past

reappear but with small differences introduced by a noise factor. We say that an

environment is cyclic with noise if a set of environmental states always

reappears in the same order but with small differences introduced by a noise

factor (A-B-C-A'-B'-C'- . . .) [1].

 Probabilistic: when the transition between environmental states are governed by

some distribution probability [1].

 Random: when the environmental changes occur from a state to another

completely different state without any correlation with the past [1].

1.5 Severity of Change

The severity of change measures the modification strength in an environmental

change. The environment can change to a completely different state or to a similar one.

1.6 Benchmark Problem

Benchmark problems are used to examination the performance of the evolutionary

algorithms in dynamic environments.

1.7 Moving Peaks Benchmark

Moving Peaks Benchmark is a problem for simulating the dynamic environments. It

consists of peaks, in an -dimensional space. It can take into consideration all actual

parameters in a real world problem. The width, height and position of peaks can be

changed over time. The MPB problem has been presented in the reference [2].

1.8 Measure the Effectiveness of Evolutionary Algorithms

To measure the effectiveness of evolutionary algorithms in dynamic environment

Offline Error should be used. The Offline Error properly shows the effectiveness of an

evolutionary algorithm in a dynamic environment. The Offline Error is calculated

according to equation (1) [3].

 
1

1
 (())

sFE

ts

Offlin Error h t f t
FE 

 

(1)

Regarding Eq. (1),the Offline Error is equal to the average of fitness of the best found

position by the algorithm at the end of all environments.

1.9 Genetic Algorithm

Genetic Algorithm (GA) is based on learning method of biological evolution [4]. A

GA to solve a problem produces a very large set of possible solutions (a population).

Each of these solutions is evaluated by a metric to find out how it is good. Then some of

the best solutions incorporate in production of new solutions (new population). This

work helped to evolve the solutions (population). The evolution of GA is in such a

direction that the desirable solutions will remain. With the combination of people within

the current population, GA in each stage tries to generate a developed generation that is

Arc
hive

 of
 S

ID

www.SID.ir

www.sid.ir

Genetic Algorithm Based on Explicit … M. Mohammadpour, H. Parvin

56

better than the current generation. GA for the combination operator uses the name of the

crossover operator that includes a single point and a multipoint crossover. The GA to

probably improve the generation produced by crossover operator uses a new operator

named mutation. For any iteration of the genetic algorithm each individual in the

population is evaluated using a fitness function. A number of individuals in the

population form a new population. It means that a number of these people (the current

population and the offspring population) have chosen to be used as the next population.

Figure 1 shows the pseudo code of the GA.

Algorithm1: Genetic Algorithm

1. Initialize population

2. Evaluate population

3. repeat

4. Select parents

5. Recombine pairs of parents

6. Mutate the offspring

7. Evaluate the offspring

8. Create new population from parents and offspring

9. until stop-condition is t rue

Figure 1. Pseudo code of the standard genetic algorithm

1.9.1 Population

A population is formed by a set of individuals, also called chromosomes, typically of

a fixed size. Each individual represents a possible solution to the problem and consists

of a sequence of smaller components, called genes. Each gene may be set to different

values (or alleles).

1.9.2 Representation

The choice for the representation of a chromosome is made according to the type of

the problem that should be solved. The representation defines how the individuals of the

population will be encoded.

1.9.3 Fitness Function

The fitness function is used to measure the quality of an individual of the population.

To measure it, a decoding process is needed to obtain the individual's phenotype (the

concept of individual). The fitness of an individual is a real value obtained by applying

the fitness function to the phenotype of that individual.

1.9.4 Selection

The selection method is used to choose a new population from parent population

(previous population) and offspring population (created population) based on the fitness

values of the individuals available in them. Solutions with higher fitness values have

more probability to be chosen for mating and participating in the next population.

1.10 Memory

Generally memory is divided into two categories: explicit memory and implicit

memory. The implicit memory is used to store all information (including additional

information). In fact, this type of the memory is used to store all information in an

arbitrary chromosome (each chromosome might have two or more alleles). The implicit

memory is divided into two categories: A dualism memory and a diploid memory. The

diploid implicit memory functions are presented in [5]. Explicit memory is used to store

useful information about the environment and unlike implicit memory that stores

Arc
hive

 of
 S

ID

www.SID.ir

www.sid.ir

Journal of Advances in Computer Research (Vol. 7, No. 2, May 2016) 53-68

57

additional data, it only stores useful information. Explicit memory involves two types of

direct memory and associative memory [6]. In direct memory good solutions obtained

by each individual (local information) or solutions obtained by all members of the

population (general information) are directly stored into memory. Then they are reused

in new environments [7]. In associative memory environmental information are stored

in addition to good solutions; among the data stored in the memory there are lists of the

problem space states or the likelihood of good solutions in the problem space [8]. They

are then reused in the new future environment.

1.10.1 Memory Retrieval

The information stored in memory should be used for tracking of the new optima. So

the best time to retrieve data from memory is the moment when the environment has

been changed. Several strategies can be employed to retrieve memory. One of the

methods for memory retrieval includes substituting the best individual in the memory

with the worst individual in the population [9, 10].

1.10.2 Memory Update Strategy

The information of population should be used to be placed in the memory for future

exploiting. The first time to store one or more individuals from population into the

memory is at a random time. But the next time is the previous time plus a random value

in a fixed range. There are some strategies in the literature to update the memory. We

will explain some them here.

Strategy 1: In this strategy, a pair of individuals of the memory with the least

distance (or the closest two individuals from the memory) are nominated as

replacement candidates. The winner is someone who is less efficient. For example

assume -th and -th individuals are the replacement candidates. If
 fit i

(efficiency of -th individual) is less than
 fit j

, i.e.
   fit i fit j

, the best

person to be replaced by an individual from the population is -th individual.

Strategy 2: In this strategy, the individual from the memory selected to be replaced

was compared with the new individual to store. Again, suppose that individuals
and were chosen:

If    
max

ijd
fit j fit new

d
  replaced the individual by the current best otherwise,

replaced the individual by the current best, where ijd was the distance between the

individuals and and maxd was the maximal possible distance between the

individuals and .
Strategy 3: In this strategy, a pair of individuals including one in the memory and

one in population with the least distance (or the closest two individuals where one

of them is in the memory and the other one is in the population), selected

substituting candidates. Indeed in this strategy the best individual present in

population will be replaced with the most similar one in memory (provided that the

individual of the population has more efficiency than the individual of the

memory). Euclidean distance can be employed for similarity measure.

Arc
hive

 of
 S

ID

www.SID.ir

www.sid.ir

Genetic Algorithm Based on Explicit … M. Mohammadpour, H. Parvin

58

2. Related Work

Among the methods proposed to solve dynamic optimization problems, the methods

that use combinational strategies are superior to others. The memory usage mechanism

and diversity preserving mechanism that are two of the most versatile mechanisms have

simultaneously and successfully been used in [11-14].

Yang et al, proposed CPSOR method, that in their method, particles are divided to

into clusters as the smallest particles existing in each cluster are to search local cluster

in practice. Every particle that is near to the average position of that cluster is the cluster

center. In this method if the particles of a cluster converged or be very sparse, then some

of the particles will be done by random immigration to the area more privacy. Another

criterion for preventing the convergence is used in the name of degree variety. The

variety after every change is computed in the environment [3].

In CPSO algorithm to cluster particles are particles that divided the existing cluster in

each to search in local Pay cluster. Each particle is the average of the best locations

visited by the particles in the cluster that is in move-to. In this algorithm is called the

degree of the measure on particle failure used to be that if the search space in an area of

bustle creates a random particle came as some of the particles in this region have

created overcrowding and together have fallen more into the area of the search space of

random immigration retreats. Achieving optimal solution for multi-peak function in a

dynamic environment optimization using evolutionary algorithms, particle swarm is

change. To achieve this, a speciation model that allows the parallel development of the

following, and for clustering using k-mean method used in this population [15].

CGAR algorithm presented by Yang et. al [3]. In their algorithm a standard genetic

algorithm with a simple crossover operator and a simple mutation operator is employed.

They also benefits from the k-means clustering.

SOS begins with a number of probably good solutions. When a peak (a good solution)

found population is divided into two subsections. Song population must be able to trace

the other couriers, while the search for a new peak population [16].

Particle swarm optimization algorithm based on quantum particles is named

algorithm. In the population is divided into several groups. Three quantum

particles is also employed called functional diversity. Pluralism is an anti-convergence

mechanism employed by [17]. Quantum particles [17] are placed in random

positions to maintain the diversity of groups. If you find a real function overlap between

the two groups, the worse group will be re-initialized. Anti-convergence is activated

when all groups are converged. In anti-convergence operation the groups will be re-

initialized [17]. In algorithm Adaptive [18], the number of groups from the very

beginning is not determined; when the change in environment occurs or the new peaks

emerged the number of new groups will be increased. So the operator against

convergence is activated when all groups converges. In memory/search population, the

number of the individuals can be divided into two populations. Indeed they have

claimed that the population consists of 'memory' individuals (named 'memory'

population) and population individuals (named 'search' population). The first population

is based on memory and is notation for the possible solutions of the old. The second

population that is search population wants to explore new peaks and to introduce them

to the used memory. The second population is randomly initialized after each change

[18].

Arc
hive

 of
 S

ID

www.SID.ir

www.sid.ir

Journal of Advances in Computer Research (Vol. 7, No. 2, May 2016) 53-68

59

The method of FMSO [19] is parent of a group. Each group wants to identify

promising areas, i.e. a group of children is used for exploration of a local search space.

Each child has its own search area. In their method there is a trade-off between local

search and global search. The method of FMSO searches an area to form a circle

centered in the best particle in each group. Each particle that has a shorter distance than

the radius of the circle (and is closer to the center of the particle) belongs to the group of

children [19].

In the ESCA [20] and CESO [21] methods the populations are divided into different

categories where each group uses unlike search approaches.

 presented in [22]. An information sharing Artificial Bee Colony (ABC)

algorithm has been proposed for locating and tracking multiple peaks in non-stationary

environments. The method has been adapted by hybridizing two techniques. A

modified variant of the fitness sharing has been used for detecting multiple peaks

simultaneously and a speciation based technique is employed to keep the better

individuals of the previous generation. The base algorithm used here is a modified

variant of ABC that helps to synchronize the employer and onlooker forager swarms by

synergizing the local information. The main crux of our algorithm is its independency

of the problem dependent control parameters, like niche radius, and the absence of any

hard-partitioning technique that leads to high computational burden [22].

ICATS method proposed in [23]. The first stage of the ICATS is to solve the TSP by

the imperialist competitive algorithm (ICA), and then the TS is used for improving

solutions. This process avoids the premature convergence and makes better solutions.

The traveling salesman problem (TSP) is the problem of finding the shortest tour

through all the nodes that a salesman has to visit. The TSP is probably the most famous

and extensively studied problem in the field of combinatorial optimization. Because this

problem is an NP-hard problem, practical large-scale instances cannot be solved by

exact algorithms within acceptable computational times [23].

3. Proposed Algorithm

In this article we have proposed a different approach for dealing dynamic

environments. This approach uses Genetic Algorithm with Explicit Memory.

It is of course true that there are many algorithmic systems that could be explored to

solve the types of optimization problems. For instance, neural networks, agent-based

modeling systems, classifier systems, reinforcement learning techniques, and Bayesian

based systems could all provide potential solutions to the problem of learning within a

dynamic environment. So the natural question is: Why Genetic Algorithms? The

answer for me is that since nature uses an evolutionary process in a dynamic

environment, it would be interesting to investigate a similar process in dynamic

environments that are of particular interest to engineers and scientists. The goal is not to

design a perfect general search algorithm, but to describe the behavior of the genetic

algorithm in dynamic environments so that we can make recommendations as to types

of problems where it would be appropriate to use the GA. Most importantly, we are

interested in investigating the effects of Genetic Algorithms in various settings

regardless of their actual efficacy. The exploration of the Genetic Algorithm as a tool is

a worthwhile goal, regardless of whether it is the best search technique for a dynamic

fitness landscape.

Arc
hive

 of
 S

ID

www.SID.ir

www.sid.ir

Genetic Algorithm Based on Explicit … M. Mohammadpour, H. Parvin

60

 Explicit memory used to maintain the old appropriate solutions. It maintains the old

appropriate solutions so as to increase the efficiency of the algorithm. In this article first

the population and the memory was initialized at random. The memory size is equal

with 0.1 N where is the size of the population. The memory was updated in random

time each steps where  5,10t  . It means that after being updated, the algorithm

decided the next time the memory should be updated in -th to -th next generation. If

the memory is updated at generation , the next updating generation will occur at

generation  5,10t rand . The pseudo code for proposed algorithm is shown in Figure

2.
Algorithm2: Proposed Algorithm
1. Input:
2. MCN: Number of cycles that algorithm is permitted to go
3. US: Size of updating memory or updating population
4. Output: BEST Solution, BEST Fitness, Offline Error
5. Begin
6. initialize random and % x is population and is memory
7. % is fitness for -th individual of population
8. % is fitness for -th individual of memory
9. % Update memory flag
10.
11. Repeat:
12. If
13.
14.
15.

16. If(()) % Change detected

17. If % We should reuse memory
18.
19.
20. % is the best individual in memory
21. % is the worst individual in population

22. % the worst individual in population is replaced with the best individual in memory

23. If
24.
25. Compute:

26.
27.
28.
29. End

Figure 2. Pseudo code for the proposed algorithm

3.1 Memory Update

In the proposed algorithm we used a new strategy for updating memory. The strategy

used in the proposed algorithm is as follows:

The function  msortedindex f also returns an array of indices , with the size of mf .

If  mf I stands for '

mf , then
 is sorted version of array mf . th feature of th is

denoted by   Pop i j . _Pop Size shows the size of population. _Mem Size shows the

size of memory. is the number of dimensions of the problem.  Mem i stands for th

individual in the memory.  Pop i stands for th individual in the population.

Threshold is a parameter of replacement algorithm; It is very important for accepting a

Arc
hive

 of
 S

ID

www.SID.ir

www.sid.ir

Journal of Advances in Computer Research (Vol. 7, No. 2, May 2016) 53-68

61

replacement. k is the number of replacements that should be done. The pseudo-code for

the updating memory is shown in Figure 3.

Algorithm3: Updating Memory
Inputs: Number of Memory Update

Inputs: Memory

01. { } ()
02. []
03.

04.
05.

06. ()

07. { } ∑ ()

08. { }

09. ()

10.
11.

12.
13.
14.

Figure3. The pseudo code of proposed algorithm for updating population from memory

The general flowchart of this model is shown in Figure 4.

Figure 4. Flowchart of the proposed algorithm

4. Experimental Settings

In experimental section, the experiments are conducted on moving peaks benchmark

(MPB), with the same parameters as proposed by Branke (2001). MPB were performed

in order to test the behavior of all methods with a fix set of parameter values through all

start

Initialize population

randomly

Change detected?

Fitness evaluation for individuals

Update memory in random time

Memory Retrieval

Modify population with memory

information

No

Yes Arc
hive

 of
 S

ID

www.SID.ir

www.sid.ir

Genetic Algorithm Based on Explicit … M. Mohammadpour, H. Parvin

62

the paper (having a set of default values) except when it is explicitly noted that a

parameter has a different value. The default settings and definition of the benchmark

used in the experiments of this paper can be found in Table 1. Setting of parameters for

the proposed algorithm has been presented in Table 2.

Table 1. The standard configuration parameters for the dynamic peaks

Parameter Value

peaks (number of peaks) 10

Change frequency (U) 5000

Height severity 7.0

Width severity 1.0

Peak shape Con

Basic function No

Shift length s 1.0

Number of dimensions (D) 5

Correlation coefficient (λ) 0

S [0, 100]

H [30.0, 70.0]

W [1, 12]

I 50.0

Table 2. The proposed algorithm parameters

Value Parameter

0 Lower bound

100 Upper bound

100

10
0.6 The probability of crossover

0.2 The probability of mutation

5 (memory update size)

4.1 Varying Shift Severity

The shift severity parameter of the MPB controls the severity of the change in height,

width and position of peaks. From Table (3), it can be seen that the results achieved by

the proposed algorithm are much better than the results of the other 9 algorithms on the

MPB problems with different shift severity, i.e. 1, 2 and 3. As it is expected, the peaks

are more and more difficult to be tracked with increment of the shift severity value. Of

course, the performance of all algorithms degrades when the shift severity value

increases. However, the Offline Error of proposed algorithm is better than the other 9

algorithms while changing shift severity value from 1 to 2 to 3. It is also observed that,

even in shift severity 5 and 6, the proposed algorithm is better than all other algorithms

except ESCA algorithm.

Arc
hive

 of
 S

ID

www.SID.ir

www.sid.ir

Journal of Advances in Computer Research (Vol. 7, No. 2, May 2016) 53-68

63

Table 3. Average Offline Errors for Different Algorithms and proposed algorithm on the MPB

Problem with Different Shift Severities

Algorithm Shift Severity (s)

 0 1 2 3 4 5 6

 1.18 1.19 1.24 1.35 2.67 2.20 3.19

 [18] 1.17 1.75 2.40 3.0 3.59 4.24 4.79

 [34] 0.74 1.50 1.87 2.4 2.90 3.25 3.87

 [19] 1.72 1.53 1.57 1.67 1.72 1.78 1.79

 [20] 0.58 1.38 1.78 2.03 2.23 2.52 2.74

 [18] 1.18 2.05 2.80 3.57 4.18 4.89 5.53

 [27] 0.95 2.51 3.78 4.96 2.56 6.76 7.68

 [3] 1.48 2.62 2.76 2.96 3.16 3.46 3.8

 [3] 2.56 2.52 7.47 8.62 9.81 10.7 11.4

 [30] 0.87 1.31 1.98 2.21 2.61 3.20 3.93

4.2 Varying Number of Peaks

Table (4) presents the experimental results in terms of the Offline Error of 19

algorithms, where the results of the other 18 algorithms are provided by the

corresponding papers with their optima configuration that enables them to achieve their

best performances. In Table (4), mCPSO[17] and mQSO [17] denote [17]

without anti-convergence and without anti-convergence, respectively. From

Table (4), it can be seen that the performance of proposed algorithm is not influenced

too much when the number of peaks is increased. Usually, increasing the number of

peaks makes it harder for algorithms to track the optima. However, the Offline Error

decreases when the number of peaks is larger than 50 for the proposed algorithm. Figure

5 shows trend of the convergence individuals in 4 steps at the optimum peaks during

algorithm run. Figure 6 shows Offline Error for the proposed algorithm on MPB

problem with change frequency 5000, 10000 and number of peaks 10, 50.

Table 4. Average Offline Errors for Different Algorithms on the MPB Problem with Different

Numbers of Peaks, Where the Suggested Configuration for the Framework and the Default Settings

for the MPB Problem in Table 1

Number of peaks

Algorithm

200 100 50 30 20 10 7 5 2 1

2.34 2.41 2.65 2.50 2.09 1.19 1.17 1.16 1.11 1.09
2.44 2.49 2.65 2.63 2.64 2.08 2.11 2.07 3.36 4.93 [17]

2.26 2.36 2.50 2.48 2.42 1.80 1.77 1.81 3.47 5.07 [17]

3.97 4.07 3.68 3.38 2.95 2.05 2.11 2.07 3.36 4.93 ∗[17]

3.86 3.93 3.65 3.27 2.74 1.75 1.77 1.81 3.47 5.07 ∗[17]

- 1.28 1.45 1.24 1.72 1.38 - - - 1.04 [21]

2.79 2.93 2.72 2.62 2.20 1.50 1.21 1.04 1.10 1.42 [26]

3.82 4.01 3.86 3.64 3.21 2.51 1.98 2.15 2.31 2.64 [27]

- 1.61 1.67 1.52 1.89 1.54 - - - 0.98 ESCA[20]

1.71 1.68 1.66 1.65 1.5 1.42 - 1.18 - 0.87 [28]

2.84 3.06 3.22 3.28 3.36 3.11 - 2.94 - 3.44 FMSO[19]

3.40 3.41 3.26 2.93 2.60 1.78 - 1.68 - 2.55 [29]

8.90 9.73 11.34 12.35 12.79 12.98 - 12.58 - 0.56 [25]

2.62 2.68 2.43 2.19 2.00 1.51 - 1.01 - 0.51 [18]

Arc
hive

 of
 S

ID

www.SID.ir

www.sid.ir

Genetic Algorithm Based on Explicit … M. Mohammadpour, H. Parvin

64

Figure 5. trend of convergence individual at the optimum peaks in during run algorithm

Figure 6. Offline Error for the proposed algorithm on the MPB problem with change frequency 5000,

10000 and number of peaks 10, 50.

From Figure 6, we can see that the Offline Error in the most of fitness landscape is

almost zero, which is because the peaks have the same initial heights in the fitness

landscape, which enables the algorithm to easily find one or more of the peaks.

a b

c d

Arc
hive

 of
 S

ID

www.SID.ir

www.sid.ir

Journal of Advances in Computer Research (Vol. 7, No. 2, May 2016) 53-68

65

4.3 Effect Dimension Number

Table (5) shows the result of the proposed method with different dimensions, in

addition to those of [17], Adaptive [18], [25] and [24]. Here

MPB involves 10 peaks, 5000 frequency of change and 1 shift severity. The results

existed in Table (7) confirms that with increasing the number of MPB dimensions, the

performance of the proposed algorithm become better and better in comparison with

other algorithms. Figure 7 shows Offline Error for the proposed algorithm in the 10 and

20 dimensions.

Figure 7. Shows Offline Error for proposed algorithm on the MPB problem and dimension is 10 and

20, change frequency is 500 and number of peaks is 10.

Table 5. Result of the proposed method with different dimensions involving peaks number is 10,

frequency of change is 5000 and shift severity is 1, in comparison with , Adaptive ,

 and .

Algorithm
Dimension

2 3 4 5 10 15 20

 0.96 1.18 1.35 1.19 3.26 4.16 5.65

 [18] 0.71 1.16 1.33 1.51 3.37 4.91 5.83

 [17] 1.01 1.49 1.47 1.85 4.22 6.50 8.88

 [25] 2.62 6.61 10.43 12.98 16.87 18.48 18.48

 [24] 1.24 1.42 1.35 1.51 4.32 7.07 10.77

4.4 Effect Memory Size

The results obtained with the proposed algorithm for MPB problem, using different

values for the memory size, are shown in Figure 8.

Figure 8. Effect of various values of the memory size in the proposed algorithm

Arc
hive

 of
 S

ID

www.SID.ir

www.sid.ir

Genetic Algorithm Based on Explicit … M. Mohammadpour, H. Parvin

66

4.5 Effect Update Size

The results obtained with the proposed algorithm for MPB problem, using different

values for the Update Size, are shown in Figure 9.

Figure 9. Effect of various values of the Update Size in the proposed algorithm

4.6 Concluding Results

Figure 10 shows the average Offline Error of the proposed method compares with the

standard genetic algorithm on the different change frequencies and default parameters

of the MPB problem.

Figure 10. Shows average Offline Error for proposed algorithm compares standard GA on the MPB

problem with different change frequency

5. Conclusion

Genetic Algorithm based on Explicit Memory work by storing good solutions of the

current population has been proposed in the paper where the stored information can be

reused later in new environments. When the environment changes, old solutions in the

memory that are suitable for the new environment are reactivated allowing the genetic

algorithm to readapt to the new environment. In this article a new strategy is proposed

for updating memory. This strategy can update the memory more than once at a time.

Usage of the aging best solution and diversity in environments helps to speed-up the

convergence of the proposed algorithm. Using suitable clustering in proposed algorithm

is good idea for future work in this literature.

References

[1] A. Simoes and E. Costa. "An immune system-based genetic algorithm to deal with dynamic

environments," Diversity and memory. In D. W. Pearson, N. C. Steele, and R. Albrecht, editors,

Arc
hive

 of
 S

ID

www.SID.ir

www.sid.ir

Journal of Advances in Computer Research (Vol. 7, No. 2, May 2016) 53-68

67

Proceedings of the 6th International Conference on Artificial Neural Networks (ICANNGA

2003), pages 168-174. Springer-Verlag, 2003.

[2] J. Branke. "Memory enhanced evolutionary algorithms for changing optimization problems," In

Proceedings of the IEEE Congress on Evolutionary Computation (CEC 1999), pages 1875-1882.

IEEE Press, 1999.

[3] S. Yang. C .Li., "A clustering particle swarm optimizer for locating and tracking multiple optima

in dynamic environments," IEEE Trans. Vol 16, no. 4, Aug 2012.

[4] J. Holland, “Adaptation in Natural and Artificial Systems,” University of Michigan Press, Ann

Arbor, MI, 1975.

[5] C. Ryan, "Diploidy without dominance," in Nordic Workshop on Genetic Algorithms, pp. 45–

52, 1997.

[6] S. Yang. "Genetic algorithms with elitism-based immigrants for changing optimization

problems," in Applications of Evolutionary Computing, Lecture Notes in Computer Science

4448, pages 627–636, 2007.

[7] C. Ramsey, ,J. Grefenstette., "Case-based initialization of genetic algorithms," in S. Forrest,

editor, Proceedings of the Fifth International Conference on Genetic Algorithms, pages 84-91.

Morgan Kaufmann, 1993.

[8] K . Trojanowski and Z. Michalewicz., "Searching for optima in non-stationary environments," in

Proc of the IEEE Congress on Evolutionary Computation (CEC 1999), pages 1843-1850. IEEE

Press, 1999.

[9] J. Branke. "Memory enhanced evolutionary algorithms for changing optimization problems," in

Congress on Evolutionary Computation, pp. 1875–1882, 1999.

[10] C. N. Bendtsen and T. Krink. "Dynamic memory model for non-stationary optimization," In

Proceedings of the IEEE Congress on Evolutionary Computation (CEC 2002), pages 145{150.

IEEE Press, 2007.

[11] S. Yang. "Memory-enhanced univariate marginal distribution algorithms for dynamic

optimization problems," In Proceedings of the 2005 IEEE Congress on Evolutionary

Computation (CEC 2005), volume 3, pages 2560-2567. IEEE Press, 2005

[12] S. J. Louis and Z. Xu. "Genetic algorithms for open shop scheduling and re- scheduling," In M.

E. Cohen and D. L. Hudson, editors, Proceedings of the Eleventh International Conference on

Computers and their Applications (ISCA), pages 99-102, 1996.

[13] N. Mori, H. Kita, and Y. Nishikawa. "Adaptation to a changing environment by means of the

thermo dynamical genetic algorithm,". In H.-M. Voigt, editor, Parallel Problem Solving from

Nature (PPSN IV), volume 1141 of Lecture Notes in Computer Science, pages 513-522, 1996.

[14] N. Mori, H. Kita, and Y. Nishikawa. "Adaptation to changing environments by means of the

memory-based thermo dynamical genetic algorithm," In I. Back, editor, Proceedings of the

Seventh International Conference on Genetic Algorithms (ICGA 1997), pages 299-306. Morgan

Kaufmann, 1997.

[15] S. Yang, C. Li., "A clustering particle swarm optimizer for dynamic optimization," in Proc.

Congr. Evol. Comput., pp. 439–446. 2009.

[16] J. Branke, T. Kauler, and C. Schmidt., "A multi-population approach to dynamic optimization

problems," In I. Parmee, editor, Proceedings of Adaptsim03ive Computing in Design and

Manufacture (ACDM 2000), pp. 299-308. Springer-Verlag. 2000.

[17] T. Blackwell, J. Branke. "Multi-Swarms, Exclusion, and Anti-Convergence in Dynamic

Environments," IEEE Transactions on Evolutionary Computation 10, 459–472, 2006.

[18] T. Blackwell, J. Branke and X. Li, “Particle swarms for dynamic optimization problems,” Swarm

Intelligence. Springer Berlin Heidelberg. 193-217. 2008.

Arc
hive

 of
 S

ID

www.SID.ir

www.sid.ir

Genetic Algorithm Based on Explicit … M. Mohammadpour, H. Parvin

68

[19] S. Yang. C .Li., "Fast Multi-Swarm Optimization for Dynamic Optimization Problems," Proc,

Int’l Conf. Natural Computation, vol. 7, no. 3, pp. 624-628, 2008.

[20] R. I. Lung and D. Dumitrescu, "Evolutionary swarm cooperative optimization in dynamic

environments," Natural Comput., vol. 9, no. 1, pp. 83–94, 2010.

[21] R. I. Lung and D. Dumitrescu, "A collaborative model for tracking optima in dynamic

environments," in Proc. Congr. Evol. Comput., pp. 564–567. 2007.

[22] S. Biswas, S. Das, S. G.R. Kundu Patra., "Utilizing time linkage property in DOPs: An

information sharing based Artificial Bee Colony algorithm for tracking multiple optima in

uncertain environments," Soft Comput 18:1199–1212. 2014.

[23] M. Ahmadvand, M. Yousefikhoshbakht, N. Mahmoodi Darani., "Solving the Traveling

Salesman Problem by an Efficient Hybrid Metaheuristic Algorithm," Journal of Advances in

Computer Research. Vol. 3, No. 3, Pages: 75-84. , August 2012.

[24] M. Kamosi, A.B. Hashemi, M.R. Meybodi, "A new particle swarm optimization algorithm for

dynamic environment," Swarm, Evolutionary, and Memetic Computing, SEMCO 2010, Lect.

Notes in Comput. Sci. 6466 (2010) 129–138.

[25] X. Hu, R.C. Eberhart, "Adaptive particle swarm optimization: detection and response to

dynamic systems", in: Proceedings of the IEEE Congeress on Evolutionary Computation, vol. 2,

pp. 1666–1670. 2002.

[26] S. Bird, X. Li, "Using regression to improve local convergence", in: Proceedings of the IEEE

Congress on Evolutionary Computation, CEC 2007, pp. 592–599. 2007.

[27] W. Du, B. Li, "Multi-strategy ensemble particle swarm optimization for dynamic optimization",

Inf. Sci. 178 (15) (2008) 3096–3109, http://dx.doi.org/10.1016/j. ins.2008.01.020.

[28] M. Kamosi, A. B. Hashemi, and M. R. Meybodi, "A hibernating multi swarm optimization

algorithm for dynamic environments," in Proc. World Congr. NaBIC, pp. 363–369, 2010.

[29] B. Hashemi and M. R Meybodi, "Cellular PSO: A PSO for Dynamic Environments," in

Advances in Computation and Intelligence, Lecture Notes in Computer Science, vol. 5821, pp.

422-433, 2009.

[30] L. Liu, S. Yang, and Wang, D., "Particle swarm optimization with composite particles in

dynamic environments," IEEE Trans. Syst. Man Cybern. B Cybern., vol. 40, no. 6, pp. 1634–

1648, Dec. 2010.

Arc
hive

 of
 S

ID

www.SID.ir

http://dx.doi.org/10.1016/j.%20ins.2008.01.020
www.sid.ir

