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ABSTRACT: In order to present a quantitative indicator for the onset of instability, in this paper, the critical points 
of a stratified gravitational flow on a slope are found and analyzed. These points are obtained by means of the 
solution of the two-dimensional Navier-Stokes equations via the standard Arakawa-C finite-difference method. 
Results show that in the marginal Richardson numbers, the critical points begin to originate. Also, the cyclic 
evolution in the temporal differenced density field in the vicinity of the critical points is used as a quantitative 
criterion of the onset of mixing. Therefore, it is possible to predict the beginning of the mixing phenomenon via 
analysis of only a limited number of critical points. 
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INTRODUCTION
1 Prediction of the instability of a moving stratified 
flow is a key element in the effective resolving of 
gravitational flows. For example, thermohaline 
circulation is extremely affected by the vertical 
mixing in a stratified flow. When the velocity 
difference across the interface between two fluids or 
two stratified layers are significant, the flow 
undergoes the Kelvin-Helmholtz instability. In 
gravitational flows where less dense fluid lays over 
the denser one, the onset of instability is given by the 
suitably defined Richardson number. It is well 
accepted that the layers will become unstable for 
Richardson numbers less than �� � 0.25	(Drazin and 
Reid, 2004). 
In practice, the statistical scaling and stability theories 
are applied to analyze the chaotic mixing systems 
(Sturman, 2006). Furthermore, some researchers have 
used the asymptotic directionality approach to deal 
with the geometry and topology of a chaotic mixing 
flow (Giona et al., 2000). Since the mechanism of 
instability may comprise a broad range of behaviors 
from spatiotemporal chaos to full turbulence, the 
applied and quantitative decisive factors are of great 
utility.  
On the other hand, followed by the multifractal 
analysis of the chaotic mixing (Ramshankar and 
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Gollub, 1991), one of the major findings in the field 
of spatiotemporal chaotic mixing has been the 
geometric method of Shinbrot and Ottino (Sturman, 
2006) who presented the repeated stretching and 
folding of horseshoes as a model for mixing 
phenomenon. Moreover, Ottino presented the 
interesting kinematic feature of the two-dimensional 
flows that hyperbolic and elliptic points are created in 
strain-dominated and rotation-dominated regions 
respectively (Ottono and Khakhar, 2000).  
Here, in order to introduce a quantitative criterion to 
predicting the onset of disordered instability, inspired 
by the geometric methods of (Sturman, 2006; 
Ramshankar and Gollub, 1991; Ouellette and Gollub, 
2007), we focus on role of the critical points in the 
gravitational flows. In a typical gravitational flow, 
these pairs of critical points may emerge and 
annihilate. These mutual interactions have an 
essential effect on the dynamics of the flow. 
Specifically, we plan to show that the analysis of the 
scattering of just few critical points can be exploited 
as a quantitative criterion to predict the onset of 
instability.  
 
MATERIALS AND METHODS 
Governing equations and numerical methodology 
The two-dimensional Navier-Stokes equations 
together with the Buoyancy equation are solved in the 
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rotated coordinate system for the simulation of the 
dynamics of a gravitational flow with density 
stratification on a constant small slope surface with 

consideration of the vertical slice assumption. The 
governing equations are 
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where 
� and �� are respectively the velocity 
components parallel to the bed and normal to the 
bed,	�	is the hydrostatic pressure,	� is the 
nonhydrostatic pressure,	�	is the angle of rotation of 
the coordinate system,	� and	�" are the horizontal 
and vertical eddy diffusivity coefficients respectively, 
�� is the reference density and	& and	&" are the 
horizontal and vertical density diffusion coefficients 
respectively. The governing equations are solved 
using a finite-difference approach on an standard 
Arakawa-C grid with applying the successive-over-
relaxation method for the solution of the Poisson 
equation for pressure. The finite-difference core of 
our solution is adopted from codes of (Kämpf, 2010). 
In this approach, a Cartesian grid is used for 
evaluating velocities. The grid points for pressures 
and densities are located midway between the 
velocity grid points. The rigid-lid assumption enables 
us to consider the undisturbed fluid surface aligned 
with vertical velocity grid points of the upper grid 
cells. We explicitly impose the no-penetration 
velocity boundary condition on the bed by 
 defining the bottom topography via setting  
velocity values normal to solid boundaries to zero. As 

we have used the regular structured grids, for  
general non-smoothed beds the boundaries are sharp 
and may not be expected to have accuracy of more 
than order one. 
 
RESULTS AND DISCUSSION 
In this study, the well-documented rectangular 
domain with initial density stratification is examined 
as a framework of the physical model for a 
gravitational flow facing instability and onset of 
mixing. The arrangement of the characteristics of the 
solution is explained in Fig. 1 and Table1. Note that 
the prescribed CFL condition is fairly satisfied in all 
simulations. 
As the simulation proceeds, for considerable density 
differences, the flow undergoes instability and 
therefore, the vertical dense layers begin the process 
of convective mixing. In longer times, the shear 
stresses originated from the bed cause the Kelvin-
Helmholtz instability which is a set of counter-
rotating vortices that move in the direction of the 
flow and interact with the previously existing 
vortices. The results are in good agreement with the 
existing literature (Ramshankar and Gollub, 1991). 
 

Fig. 1: Layout of the solution domain 
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Table 1: The solution configuration and the fluid properties. 
Boundary conditions  

Top edge Rigid-lid 

Bottom edge No-slip 

Lateral edges Periodic 

Solution characteristics 

Extensions parallel and normal to the bed ' � 101 (, ) � 31 (
Grid spacings parallel and normal to the bed  ∆� � 5 (, ∆� � 2 (
Time integration interval ∆� � 1 ,
Slope angle   � � 5˚
Location of the density interface (see Fig. 1) �-./0�1230 � 3)/4
CFL condition ∆� 6 min8∆� 
9 , ∆� �9 :
Fluid properties 

Reference density �� � 1028 <=/(>

Vertical and horizontal eddy diffusivity coefficients � � �" � 10?>(@/s 

Vertical and horizontal density diffusion coefficients & � &" � 10?@(@/s 

In order to investigate the critical points, the 
curvature field is analyzed. This field is evaluated 
using the Frenet relation < � A.
?@where,	A. is the 
acceleration normal to the flow direction and 
 is the 
magnitude of the velocity vector. Note that A. is 
computed by means of first-order time differencing of 
the velocity field with the time step of the simulation 
∆�.
Figs. 2a-b and c show the density difference (� � ��), 
the stream function and the curvature fields for three 
different Richardson numbers after 6000s. In these 
experiments, all parameters except	� � �� are kept 
fixed. The critical points are highlighted as the 
maxima of the curvature value contours. A couple of 
these points are schematically also marked in Fig. 2b 
by circles and plus indicators representing the elliptic 
and hyperbolic points respectively. As can be realized 
from Fig. 2, when the Richardson number is about 
0.3, the mixing process is more likely diffusive and 
the curvature field contains only a weak set of 
maxima which are periodically repeated. In contrast, 
the velocity field does not notify the instability. Thus, 
one can use the curvature analysis as an indicator for 
the onset of instability.  
As the Richardson number decreases to �� � 0.2	 the 
density field is triggered and the critical points in the 

curvature field begin to spread while their vertical 
positions are scattered. This marginal Richardson 
number is consistent with the results of (Özgökmen et 
al., 2003). Note that the stream function field is still 
silent; revealing no information about the 
phenomenon. For lower Richardson number namely 
�� � 0.06 the flow clearly goes through disordered 
convective mixing which is evident from the stream 
function and curvature fields. 
Fig. 3 shows the values of the vertical component of 
the position of the critical points for different 
Richardson numbers. Vertical component of the 
position is chosen due to the periodicity of the 
boundary conditions in the lateral extension. One can 
anticipate that if the critical points are spread 
vertically, the vertical mixing is expected. The results 
show that at �� � 0.2 the diversity of the vertical 
positions is remarkable. Table 2 brings an overview 
of the issue in terms of standard deviation of the 
vertical component of the position of the critical 
points. The maximum deviation corresponding to  
�� � 0.2 could be a sign of incept of instability 
process. This outcome matches with the qualitative 
description that the flow experiences vigorous 
stretching and rotation in hyperbolic and elliptic 
points respectively (Sturman, 2006). 
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Fig. 2a: Contours of density difference � � �� at 6000 s from left to right for: �� � 0.06, 0.2 ACD 0.3. Small values are brought 
colorless. 

Fig. 2b: The stream function field at 6000 s from left to right for: Ri � 0.06, 0.2 and 0.3. Sample elliptic and hyperbolic points 
are shown by circles and plus signs respectively. 

 

Fig. 2c: Contours of curvature at 6000 s from left to right for: Ri � 0.06, 0.2 and 0.3. The maxima of this field correspond to 
critical points. 

Fig.3: The vertical position of the critical points at 6000 s for different Richardson numbers.

Table 2: Standard deviation of the vertical positions of the critical points at 6000 s. 
0.06 0.2 0.3 Richardson number 

2.24 4.45 0.15 Standard deviation 
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ba

Fig.4, a: Contours of the temporal differenced density at 4000 s. Values less than 0.002<= (>⁄ are brought colorless 
for more clarity, b: Values of the temporal differenced density on circles of the left panel with respect to the sampling 

angle. 
 

Now, in order to more deeply analyze the effect and 
role of the critical points, we concentrate on the 
evolutions adjacent to the critical points. In Fig.4a,
the time differenced density field for another 
experiment with extensions (81 I 51) is shown at 
4000 s. One can see that around the critical points 
which are indicated by the filled circles, a cyclic 
evolution in the temporal difference values is evident. 
This issue can be verified by reporting their 
discretized values on concentric circles with radii 
J � KLMNO, J � K L>�NO where O is the extent normal 
to the flow surface. 
In Fig. 4b the temporal difference values of the 
density corresponding to these circles are revealed. 
The figure confirms that the interval of variation of 
the temporal difference values is bracketed between 
two equal values with different sizes. This special 
condition is not the case in other regions of the field. 
Furthermore, one can observe that the mentioned 
critical points are located at the mixing front of the 
flow. 
This phenomenon can be expressed as follows. Since 
the velocity values vanish at the critical points, 
considerable gradients are produced around them. 
Therefore, emergence and annihilation of the critical 
points are key mechanisms in the mixing of dense 
layers. It should be remarked that the most effective 
cause of the mixing phenomenon is the convection 
which is governed by the velocity magnitude. 
 
CONCLUSION 
We presented a sensitive pointer for the onset of 
instability in gravitational flows. The results show 
that there exist a direct relation between the 
divergence of the critical points and the mixing rate 
in a gravitational flow on a slope. On the other hand, 

considering the cyclic evolution in the temporal 
density difference field, one can conclude that in the 
vicinity of the critical points, oscillations with 
identical amplitude but with opposite signs occur in 
the field. Such a pointer can be a novel basis for the 
tracking and detection of locations where mixing 
originates in a gravitational flow. 
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