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Abstract. In the 1960’s Noboru Iwahori and Hideya Matsumoto, Eiichi Abe and Kazuo Suzuki, and

Michael Stein discovered that Chevalley groups G = G(Φ, R) over a semilocal ring admit remarkable

Gauss decomposition G = TUU−U , where T = T (Φ, R) is a split maximal torus, whereas U = U(Φ, R)

and U− = U−(Φ, R) are unipotent radicals of two opposite Borel subgroups B = B(Φ, R) and

B− = B−(Φ, R) containing T . It follows from the classical work of Hyman Bass and Michael Stein that

for classical groups Gauss decomposition holds under weaker assumptions such as sr(R) = 1 or asr(R) =

1. Later the third author noticed that condition sr(R) = 1 is necessary for Gauss decomposition. Here,

we show that a slight variation of Tavgen’s rank reduction theorem implies that for the elementary

group E = E(Φ, R) condition sr(R) = 1 is also sufficient for Gauss decomposition. In other words,

E = HUU−U , where H = H(Φ, R) = T ∩E. This surprising result shows that stronger conditions on

the ground ring, such as being semi-local, asr(R) = 1, sr(R,Λ) = 1, etc., were only needed to guarantee

that for simply connected groups G = E, rather than to verify the Gauss decomposition itself.

1. Introduction

Let Φ be a reduced irreducible root system, R be a commutative ring with 1 and G(Φ, R) be a

Chevalley group of type Φ over R. We fix a split maximal torus T (Φ, R) in G(Φ, R) and a pair

B(Φ, R) and B−(Φ, R) of opposite Borel subgroups containing T (Φ, R). Further, let U(Φ, R) and

U−(Φ, R) be the unipotent radicals of B(Φ, R) and B−(Φ, R), respectively.

The whole theory of Chevalley groups over semi-local rings rests upon the following analogue of

Gauss decomposition established by Noboru Iwahori and Hideya Matsumoto [19], Eiichi Abe and
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Kazuo Suzuki [1, 2], and by Michael Stein [35]. In fact, it plays the same role in this case, as Bruhat

decomposition does over fields. Let R be a semi-local ring. Then one has the following decomposition

G(Φ, R) = T (Φ, R)U(Φ, R)U−(Φ, R)U(Φ, R).

For the simply connected Chevalley group Gsc(Φ, R) its maximal torus Tsc(Φ, R) is contained in the

elementary subgroup

E(Φ, R) =
〈
U(Φ, R), U−(Φ, R)

〉
,

generated by U(Φ, R) and U−(Φ, R). In particular, Gauss decomposition implies that for a simply

connected group over a semi-local ring one has Gsc(Φ, R) = Esc(Φ, R). In other words, for semi-local

rings

K1(Φ, R) = Gsc(Φ, R)/Esc(Φ, R)

is trivial.

In general, when the group is not simply connected or the ring R is not semi-local, elementary

subgroup E(Φ, R) can be strictly smaller than the Chevalley group G(Φ, R) itself. In fact, for a

non simply connected group even the subgroup H(Φ, R) spanned by semi-simple root elements hα(ε),

α ∈ Φ, ε ∈ R∗, where R∗ is the multiplicative group of the ring R. Clearly,

H(Φ, R) = T (Φ, R) ∩ E(Φ, R),

can be strictly smaller than the torus T (Φ, R) itself.

In [45] the third author observed that condition sr(R) = 1 is necessary for Gauss decomposition to

hold for a Chevalley group G(Φ, R) over a ring R and made the following remark: “One might hope

that the condition sr(R) = 1 is also sufficient to prove that Chevalley groups of all types over R admit

Gauss decomposition (some experts believe that this is rather unlikely).”

In the present paper, which is a sequel to our paper [52], we show that a slight modification of the

same argument by Oleg Tavgen [40], immediately gives the following surprising result, asserting that

condition sr(R) = 1 is necessary and sufficient for the elementary Chevalley group E(Φ, R) to admit

Gauss decomposition.

Theorem 1.1. Let Φ be a reduced irreducible root system and R be a commutative ring such that

sr(R) = 1. Then the elementary Chevalley group E(Φ, R) admits Gauss decomposition

E(Φ, R) = H(Φ, R)U(Φ, R)U−(Φ, R)U(Φ, R).

Conversely, if Gauss decomposition holds for some [elementary ] Chevalley group, then sr(R) = 1.

The proof of this result follows exactly the same lines as the proof of Theorem 1 in [52]1. Now,

we are interested not in unitriangular factorisations, but in triangular ones. Thus, we have to modify

1The statement of Theorem 1 in the Russian original of [52] contains a very unfortunate misprint. The formula there

reads as the unitriangular factorisation of length 4 for the simply connected Chevalley group G(Φ, R). Of course, the

rest of that paper and the proofs there discuss such a factorisation for the elementary Chevalley group E(Φ, R). This

inconsistency is corrected in the English version.
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induction base, which now becomes even easier, and superficially the reduction step itself. It is a total

mystery, why we failed to notice these obvious modifications when writing [52].

What is truly amazing here, is that as in [52] the usual linear stable rank condition works for groups

of all types! Before, this decomposition was known for the Chevalley group G(Φ, R) itself, under the

following [stronger!] assumptions on R.

• For Φ = Al,Cl under sr(R) = 1.

• For Φ = Bl,Dl under asr(R) = 1, or under an appropriate unitary/form ring stable rank condition

Λsr(R) = 1, sr(R,Λ) = 1, etc.

• For exceptional groups, when R is semi-local.

These results, especially for classical groups, were immediately obvious, after the introduction of

the corresponding stability conditions by Hyman Bass [7] and by Michael Stein [35]2. Under these

conditions Gauss decomposition for classical groups was [re]discovered dozens of times, and in the last

section we provide assorted references.

Our Theorem 1.1 divorces existence of Gauss decomposition from the triviality of K1(Φ, R). In fact,

it shows that these stronger stability conditions are only needed to ensure that Gsc(Φ, R) = Esc(Φ, R),

but are not necessary for the elementary Chevalley group E(Φ, R) to admit Gauss decomposition!

Let us state some immediate corollaries of Theorem 1.

Corollary 1.2. Let Φ be a reduced irreducible root system and R be a commutative ring such that

sr(R) = 1. Then any element g of the elementary Chevalley group E(Φ, R) is conjugate to an element

of

U(Φ, R)H(Φ, R)U−(Φ, R).

Corollary 1.3. Let Φ be a reduced irreducible root system and R be a commutative ring such that

sr(R) = 1. Then the elementary Chevalley group E(Φ, R) admits unitriangular factorisation

E(Φ, R) = U(Φ, R)U−(Φ, R)U(Φ, R)U−(Φ, R)U(Φ, R)

of length 5.

Notice that this corollary is a very broad generalisation of results on unitriangular factorisations

obtained by Martin Liebeck, Laszlo Pyber, Laszlo Babai and Nikolay Nikolov [23, 4], with a terribly

much easier proof. Actually, Theorem 1 of [52], which is proven by essentially the same method,

but starts with a slightly more precise induction base, asserts that under condition sr(R) = 1 the

elementary Chevalley group E(Φ, R) admits unitriangular factorisation

G(Φ, R) = U(Φ, R)U−(Φ, R)U(Φ, R)U−(Φ, R)

of length 4.

2Actually, absolute stable rank as such was first introduced by David Estes and Jack Ohm [17], but its role in the

proof of stability results for orthogonal groups was noted only by Stein.
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The present note is a by-product of our joint work on arithmetic problems of our cooperative

Russian–Indian project “Higher composition laws, algebraic K-theory and exceptional groups” at the

Saint Petersburg State University, Tata Institute of Fundamental Research (Mumbai) and Indian

Statistical Institute (Bangalore).

In § 1 we recall some fundamentals concerning sr(R) = 1 and similar stability conditions. In §§ 2

and 3 we introduce basic notation related to Chevalley groups and their parabolic subgroups. In § 4

we prove another version of Tavgen’s rank reduction theorem, which immediately implies Theorem

1.1. Finally, in § 5 we discuss existing literature on the subject and state several unsolved problems.

The proofs in the present paper, as also in [52], are based on a slight variation of an idea by Oleg

Tavgen. We finished this paper at the end of July 2011, and just as we planned to send it to Oleg,

we were deeply shocked and grieved by the news of his sudden and untimely death. We dedicate this

paper to his memory.

2. Stability Conditions

Recall that a ring R has stable rank 1, if for all x, y ∈ R, which generate R as a right ideal, there

exists a z ∈ R such that x+ yz is right invertible. In this case we write sr(R) = 1.

It is classically known that rings of stable rank 1 are actually weakly finite (Kaplansky—Lenstra

theorem), so that in their definition one could from the very start require that x + yz ∈ R∗. Since

for the linear case the result is well known, and Chevalley groups of other types only exist over

commutative rings, from here on we assume that the ring R is commutative, in which case the proof

below at the same time demonstrates that SL(2, R) = E(2, R).

Special linear groups are simply connected Chevalley groups of type Al. In particular, SL(2, R) and

E(2, R) are the simply connected Chevalley group of type A1 and its elementary subgroup. All other

notations are modified accordingly. Thus,

U(2, R) =

(
1 ∗
0 1

)
, U−(2, R) =

(
1 0

∗ 1

)
refers to the groups U(A1, R) and U−(A1, R), under the above identification of Gsc(A1, R) = SL(2, R),

etc. Similarly, H(A1, R) = T (A1, R) is now identified with

H(2, R) =

{(
ε 0

0 ε−1

)∣∣∣∣ ε ∈ R∗
}
,

in other words, with the group of diagonal matrices with determinant 1, usually denoted by SD(2, R).

The proof of the following lemma is essentially contained already in [7] and was rediscovered dozens

of times after that. The lemma itself, induction base, is the only step in the proof of Theorem 1 that

invokes stability condition.

Lemma 2.1. Let R be a commutative ring of stable rank 1. Then

SL(2, R) = E(2, R) = U(2, R)H(2, R)U−(2, R)U(2, R).
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Proof 2.2. Consider an arbitrary matrix g =

(
a b

c d

)
∈ SL(2, R). Since rows of an invertible matrix

are unimodular, one has cR+ dR = R. Since sr(R) = 1, there exists such an z ∈ R, that d+ cz ∈ R∗.
Thus, (

1 −(b+ az)(d+ cz)−1

0 1

)(
a b

c d

)(
1 z

0 1

)
=

(
(d+ cz)−1 0

c d+ cz

)
,

as claimed.

3. Chevalley Groups

Our notation pertaining to Chevalley groups are utterly standard and coincide with the ones used

in [46, 49], where one can find many further references.

Let as above Φ be a reduced irreducible root system of rank l, W = W (Φ) be its Weyl group

and P be a weight lattice intermediate between the root lattice Q(Φ) and the weight lattice P(Φ).

Further, we fix an order on Φ and denote by Π = {α1, . . . , αl}, Φ+ and Φ− the corresponding sets

of fundamental, positive and negative roots, respectively. Our numbering of the fundamental roots

follows Bourbaki. Finally, let R be a commutative ring with 1, as usual, R∗ denotes its multiplicative

group.

It is classically known that with these data one can associate the Chevalley group G = GP(Φ, R),

which is the group of R-points of an affine groups scheme GP(Φ,−), known as the Chevalley—

Demazure group scheme. In the case P = P(Φ) the group G is called simply connected and is

denoted by Gsc(Φ, R). In the opposite case P = Q(Φ) the group G is called adjoint and is denoted by

Gad(Φ, R). Many results do not depend on the lattice P and hold for all groups of a given type Φ. In

such cases we omit any reference to P in the notation and denote by G(Φ, R) any Chevalley group of

type Φ over R.

In what follows, we fix a split maximal torus T (Φ,−) of the group scheme G(Φ,−) and set T =

T (Φ, R). As usual, Xα, α ∈ Φ, denotes a unipotent root subgroup in G, elementary with respect to

T . We fix isomorphisms xα : R 7→ Xα, so that Xα = {xα(ξ) | ξ ∈ R}, which are interrelated by the

Chevalley commutator formula, see [11, 37]. Further, E(Φ, R) denotes the elementary subgroup of

G(Φ, R), generated by all root subgroups Xα, α ∈ Φ.

Elements xα(ξ), α ∈ Φ, ξ ∈ R, are called [elementary] unipotent root elements or, for short, simply

root unipotents. Next, let α ∈ Φ and ε ∈ R∗. As usual, we set wα(ε) = xα(ε)x−α(−ε−1)xα(ε) and

hα(ε) = wα(ε)wα(1)−1. Elements hα(ε) are called semisimple root elements. Define

H(Φ, R) = 〈hα(ε), α ∈ Φ, ε ∈ R∗〉.

For a simply connected group one has

Hsc(Φ, R) = Tsc(Φ, R) = Hom(P(Φ), R∗).

In general, though, H(Φ, R) = T (Φ, R)∩E(Φ, R) can be — and even over a field usually is! — strictly

smaller, than T (Φ, R).
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8 A. Smolensky, B. Sury and N. Vavilov

Finally, let N = N(Φ, R) be the algebraic normaliser of the torus T = T (Φ, R), i. e. the subgroup,

generated by T = T (Φ, R) and all elements wα(1), α ∈ Φ. The factor-group N/T is canonically

isomorphic to the Weyl group W , and for each w ∈ W we fix its preimage nw ∈ N . Clearly, such a

preimage can be taken in E(Φ, R). Indeed, for a root reflection wα one can take wα(1) ∈ E(Φ, R) as

its preimage, any element w of the Weyl group can be expressed as a product of root reflections. In

particular, we get the following classical result.

Lemma 3.1. The elementary Chevalley group E(Φ, R) is generated by unipotent root elements xα(ξ),

α ∈ ±Π, ξ ∈ R, corresponding to the fundamental and negative fundamental roots.

Further, let B = B(Φ, R) and B− = B−(Φ, R) be a pair of opposite Borel subgroups containing

T = T (Φ, R), standard with respect to the given order. Recall that B and B− are semidirect products

B = T i U and B− = T i U−, of the torus T and their unipotent radicals

U = U(Φ, R) =
〈
xα(ξ), α ∈ Φ+, ξ ∈ R

〉
,

U− = U−(Φ, R) =
〈
xα(ξ), α ∈ Φ−, ξ ∈ R

〉
.

Here, as usual, for a subset X of a group G one denotes by 〈X〉 the subgroup in G generated by X.

Semidirect product decomposition of B amounts to saying that B = TU = UT , and at that U E B

and T ∩ U = 1. Similar facts hold with B and U replaced by B− and U−. Sometimes, to speak of

both subgroups U and U− simultaneously, we denote U = U(Φ, R) by U+ = U+(Φ, R).

In general, one can associate a subgroup E(S) = E(S,R) to any closed set S ⊆ Φ. Recall that a

subset S of Φ is called closed , if for any two roots α, β ∈ S the fact that α + β ∈ Φ, implies that

already α+ β ∈ S. Now, we define E(S) = E(S,R) as the subgroup generated by all elementary root

unipotent subgroups Xα, α ∈ S:

E(S,R) = 〈xα(ξ), α ∈ S, ξ ∈ R〉.

In this notation, U and U− coincide with E(Φ+, R) and E(Φ−, R), respectively. The groups E(S,R)

are particularly important in the case where S is a special (= unipotent) set of roots; in other words,

where S ∩ (−S) = ∅. In this case E(S,R) coincides with the product of root subgroups Xα, α ∈ S, in

some/any fixed order.

Let again S ⊆ Φ be a closed set of roots. Then S can be decomposed into a disjoint union of its

reductive (= symmetric) part Sr, consisting of those α ∈ S, for which −α ∈ S, and its unipotent part

Su, consisting of those α ∈ S, for which −α 6∈ S. The set Sr is a closed root subsystem, whereas the

set Su is special. Moreover, Su is an ideal of S, in other words, if α ∈ S, β ∈ Su and α+ β ∈ Φ, then

α + β ∈ Su. Levi decomposition asserts that the group E(S,R) decomposes into semidirect product

E(S,R) = E(Sr, R) i E(Su, R) of its Levi subgroup E(Sr, R) and its unipotent radical E(Su, R).

4. Elementary Parabolic Subgroups

The main role in the proof of Theorem 1.1 is played by Levi decomposition for elementary parabolic

subgroups. Denote by mk(α) the coefficient of αk in the expansion of α with respect to the fundamental
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roots:

α =
∑

mk(α)αk, 1 ≤ k ≤ l.

Now, fix an r = 1, . . . , l – in fact, in the reduction to smaller rank it suffices to employ only terminal

parabolic subgroups, even only the ones corresponding to the first and the last fundamental roots,

r = 1, l. Denote by

S = Sr =
{
α ∈ Φ, mr(α) ≥ 0

}
the r-th standard parabolic subset in Φ. As usual, the reductive part ∆ = ∆r and the special part

Σ = Σr of the set S = Sr are defined as

∆ =
{
α ∈ Φ, mr(α) = 0

}
, Σ =

{
α ∈ Φ, mr(α) > 0

}
.

The opposite parabolic subset and its special part are defined similarly

S− = S−r =
{
α ∈ Φ, mr(α) ≤ 0

}
, Σ− =

{
α ∈ Φ, mr(α) < 0

}
.

Obviously, the reductive part S−r equals ∆.

Denote by Pr the elementary maximal parabolic subgroup of the elementary group E(Φ, R). By

definition,

Pr = E(Sr, R) =
〈
xα(ξ), α ∈ Sr, ξ ∈ R

〉
.

Now Levi decomposition asserts that the group Pr can be represented as the semidirect product

Pr = Lr i Ur = E(∆, R) i E(Σ, R)

of the elementary Levi subgroup Lr = E(∆, R) and the unipotent radical Ur = E(Σ, R). Recall that

Lr = E(∆, R) =
〈
xα(ξ), α ∈ ∆, ξ ∈ R

〉
,

Whereas

Ur = E(Σ, R) =
〈
xα(ξ), α ∈ Σ, ξ ∈ R

〉
.

A similar decomposition holds for the opposite parabolic subgroup P−r , whereby the Levi subgroup

is the same as for Pr, but the unipotent radical Ur is replaced by the opposite unipotent radical

U−r = E(−Σ, R)

As a matter of fact, we use Levi decomposition in the following form. It will be convenient to

slightly change the notation and write U(Σ, R) = E(Σ, R) and U−(Σ, R) = E(−Σ, R).

Lemma 4.1. The group
〈
Uσ(∆, R), Uρ(Σ, R)

〉
, where σ, ρ = ±1, is the semidirect product of its

normal subgroup Uρ(Σ, R) and the complementary subgroup Uσ(∆, R).

In other words, it is asserted here that the subgroups U±(∆, R) normalise each of the groups

U±(Σ, R), so that, in particular, one has the following four equalities for products

U±(∆, R)U±(Σ, R) = U±(Σ, R)U±(∆, R),

and, furthermore, the following four obvious equalities for intersections hold:

U±(∆, R) ∩ U±(Σ, R) = 1.
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In particular, one has the following decompositions:

U(Φ, R) = U(∆, R) i U(Σ, R), U−(Φ, R) = U−(∆, R) i U−(Σ, R).

5. Proof of Theorem 1

The following result, like Theorem 3 of [52], is another minor elaboration of Proposition 1 from the

paper by Oleg Tavgen [40]. Tavgen considered unitriangular factorisations, in other words, expressions

of E(Φ, R) as products of U(Φ, R) and U−(Φ, R),

E(Φ, R) = U(Φ, R)U−(Φ, R) . . . U±(Φ, R).

Here, we are interested in triangular factorisations, in other words expressions of E(Φ, R) as products

of

B(Φ, R) ∩ E(Φ, R) = H(Φ, R)U(Φ, R)

and

B−(Φ, R) ∩ E(Φ, R) = H(Φ, R)U−(Φ, R).

However, since T (Φ, R) — and, a fortiori, H(Φ, R) — normalises U(Φ, R) and U−(Φ, R), we can

collect all toral factors together, and consider factorisations of the form

E(Φ, R) = H(Φ, R)U(Φ, R)U−(Φ, R) . . . U±(Φ, R).

The length of such a decomposition is the number of distinct triangular factors, in other words, the

number of U±(Φ, R) occuring in this product.

Theorem 5.1. Let Φ be a reduced irreducible root system of rank l ≥ 2, and R be a commutative ring.

Suppose that for the two subsystems ∆ = ∆1,∆l, the elementary Chevalley group E(∆, R) admits a

triangular factorisation

E(∆, R) = H(∆, R)U(∆, R)U−(∆, R) . . . U±(∆, R)

of length L. Then the elementary Chevalley group E(Φ, R) admits triangular factorisation

E(Φ, R) = H(Φ, R)U(Φ, R)U−(Φ, R) . . . U±(Φ, R)

of the same length L.

The leading idea of Tavgen’s proof is very general and beautiful, and works in many other related

situations. It relies on the fact that for systems of rank ≥ 2 every fundamental root falls into the

subsystem of smaller rank obtained by dropping either the first or the last fundamental root. Similar

consideration was used by Eiichi Abe and Kazuo Suzuki [1] and [2] to extract root unipotents in their

description of normal subgroups. Compare also the simplified proof of Gauss decomposition with

prescribed semisimple part by Vladimir Chernousov, Erich Ellers, and Nikolai Gordeev [13].

Remark. As was pointed out by the referee, the argument below applies without any modification

in a much more general setting. Namely, it suffices to assume that the required decomposition holds
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for elementary Chevalley groups E(∆, R) for some subsystems ∆ ≤ Φ, whose union contains all

fundamental roots. These subsystems do not have to be terminal, or even irreducible, for that matter.

However, we do not see any immediate application of this more general form of Theorem 5.1, since the

use of terminal subsystems invariably gives better results depending on weaker stability conditions.

Let us reproduce the details of the argument. By definition

Y = H(Φ, R)U(Φ, R)U−(Φ, R) . . . U±(Φ, R)

is a subset in E(Φ, R). Usually, the easiest way to prove that a subset Y ⊆ G coincides with the whole

group G consists in the following.

Lemma 5.2. Assume that Y ⊆ G, Y 6= ∅, and X ⊆ G be a symmetric generating set. If XY ⊆ Y ,

then Y = G.

Proof 5.3 (Proof of Theorem 5.1). By Lemma 3.1 the group G is generated by the fundamental root

elements

X =
{
xα(ξ) | α ∈ ±Π, ξ ∈ R

}
.

Thus, by Lemma 5.2 is suffices to prove that XY ⊆ Y .

Let us fix a fundamental root unipotent xα(ξ). Since rk(Φ) ≥ 2, the root α belongs to at least one

of the subsystems ∆ = ∆r, where r = 1 or r = l, generated by all fundamental roots, except for the

first or the last one, respectively. Set Σ = Σr and express U±(Φ, R) in the form

U(Φ, R) = U(∆, R)U(Σ, R), U−(Φ, R) = U−(∆, R)U−(Σ, R).

Using Lemma 4.1 we see that

Y = H(Φ, R)U(∆, R)U−(∆, R) . . . U±(∆, R)·

U(Σ, R)U−(Σ, R) . . . U±(Σ, R).

Since α ∈ ∆, one has xα(ξ) ∈ E(∆, R), so that the inclusion xα(ξ)Y ⊆ Y immediately follows from

the assumption.

6. Final Remarks

A major application of Theorem 1.1 we have in mind, is the commutator width of elementary

Chevalley group.

One of the major recent advances was the positive solution of Ore’s conjecture, asserting that

any element of Ead(Φ,K) over a field K is a single commutator, whenever this group is simple [as an

abstract group]. For large fields, say, all fields containing ≥ 8 elements, this was proven by Erich Ellers

and Nikolai Gordeev [16], using their remarkable results on Gauss decomposition with prescribed semi-

simple part, see [13] and references there. For small fields, this result was obtained by Martin Liebeck,

Eamonn O’Brien, Aner Shalev and Pham Huu Tiep [22], using very delicate character estimates. It
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is essential that the groups are adjoint . Beware, that in general one may need two commutators to

express some elements of Esc(Φ,K).

We believe that solution of the following two problems is now at hand. Compare the works of

Arlinghaus, Leonid Vaserstein, Ethel Wheland and You Hong [43, 44, 53, 3], where this is essentially

done for classical groups, over rings subject to sr(R) = 1 or some stronger stability conditions, and

the work by Nikolai Gordeev and Jan Saxl [18], where this is essentially done over local rings.

Problem 6.1. Under assumption sr(R) = 1 prove that any element of Ead(Φ, R) is a product of ≤ 2

commutators in Gad(Φ, R).

Problem 6.2. Under assumption sr(R) = 1 prove that any element of E(Φ, R) is a product of ≤ 3

commutators in E(Φ, R).

It may well be that under this assumption the commutator width of E(Φ, R) is always ≤ 2, but so

far we were unable to control details concerning semisimple factors.

It seems, that one can apply the same argument to higher stable ranks. Solution of the following

problem would be a generalisation of [14], Theorem 4.

Problem 6.3. If the stable rank sr(R) of R is finite, and for some m ≥ 2 the elementary linear group

E(m,R) = Esc(Am−1, R) has bounded word length with respect to elementary generators, then for all

Φ of sufficiently large rank one has

E(Φ, R) =
(
U(Φ, R)U−(Φ, R)

)3
.

In particular, it would follow that in this case any element of E(Φ, R) is a product of ≤ 6 commu-

tators. In fact, we expect a much better result.

Problem 6.4. If the stable rank sr(R) of R is finite, and for some m ≥ 2 the elementary linear group

E(m,R) has bounded word length with respect to elementary generators, then for all Φ of sufficiently

large rank any element of E(Φ, R) is a product of ≤ 4 commutators in E(Φ, R).

Theorem 2 of [52] is the first step towards construction of short triangular factorisations of Chevalley

groups over Dedekind rings of arithetic type. At present, sharp bounds depend on the Generalised

Artin Conjecture, which in turn depends on the Generalised Riemann Hypothesis, but with [27] there

is some hope to divorce these bounds from GRH and we are presently working on that. This would

then be a crucial advance in the direction of the following result.

Problem 6.5. Let R be a Dedekind ring of arithmetic type with infinite multiplicative group. Prove

that any element of Ead(Φ, R) is a product of ≤ 3 commutators in Gad(Φ, R).

Some of our colleagues expressed belief that any element of SL(n,Z), n ≥ 3, is a product of ≤ 2

commutators. However, for Dedekind rings with finite multiplicative groups, such as Z, at present we

do not envisage any obvious possibility to improve the generic bound ≤ 4 even for large values of n.

Expressing elements of SL(n,Z) as products of 2 commutators, if it can be done at all, should require

a lot of specific case by case analysis.
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Triangular factorisations, such as Gauss decomposition considered in this paper, are the simplest

instance of parabolic factorisations. Recently, Sergei Sinchuk and the third author obtained analogues

of Dennis—Vaserstein decomposition for arbitary pairs of maximal parabolic subgroups (Pr, Ps), r < s,

in classical groups and pairs of terminal parabolic subgroups in exceptional groups, see [33, 50, 51]. In

some cases stronger conditions than sr(R) < s − r were imposed. Now, it seems, that these stronger

conditions were only used to ensure surjective stability of K1 and are not needed to get decompositions

of the elementary group itself. Here, U−rs = U−r ∩ U−s .

Problem 6.6. Prove Dennis—Vaserstein type decomposition

G = PrU
−
rsPs

for elementary Chevalley groups E(Φ, R), under restrictions on the usual stable rank sr(R).

A similar problem for unitary groups was recently solved by Sergei Sinchuk [32], as part of his efforts

to improve stability results for unitary K1, see [5, 6].

Results of the present paper are also closely related to Bass—Kolster type decompositions. The

classical Bass—Kolster decomposition for the group SL(n,R) has the form

G = LrUrU
−
r UrU

−
r = PrU

−
r UrU

−
r .

For groups of other types, one has to vary one of the unipotent radicals and gets decompositions of the

form G = LrUrU
−
r UsU

−
s . In [24] Ottmar Loos addresses the problem, whether one can shorten this

decomposition. He uses language of Jordan pairs, and his results apply to some non-split reductive

groups. In our context the problem he studies amounts to asking, whether

G = LrUrU
−
r Ur = PrU

−
r Ur,

for parabolic subgroups with Abelian unipotent radical. He proves that for SL(n,R) existence of such

a decomposition is equivalent to sr(R) = 1, [24], Corollary 3.9, but this follows already from [7]. To

establish similar shorter Bass—Kolster type decompositions for groups of other types, he imposes

further conditions, similar in spirit to von Neumann regularity. However, our Theorem 1.1 suggests

that no such conditions are necessary.

Problem 6.7. Prove Bass—Kolster type decompositions for elementary Chevalley groups E(Φ, R),

under restrictions on the usual stable rank sr(R).
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(4) 2 (1969), 1–62.

[26] D. W. Morris, Bounded generation of SL(n,A) (after D. Carter, G. Keller, and E. Paige) — New York J. Math.

13 (2007), 383–421.

[27] M. R. Murty, K. L. Petersen, The generalized Artin conjecture and arithmetic orbifolds. — preprint, 2011, 1–8.

[28] K. R. Nagarajan, M. P. Devaasahayam, T. Soundararajan, Products of three triangular matrices over commutative

rings. — Linear Algebra Applic. 348 (2002), 1–6.

[29] A. S. Rapinchuk, I. A. Rapinchuk, Centrality of the congruence kernel for elementary subgroups of Chevalley groups

of rank > 1 over Noetherian rings. (2010), pp. 1–12 arXiv:1007.2261v1 [math.GR].

[30] R. W. Sharpe, On the structure of the unitary Steinberg group. — Ann. Math. 96 (1972), no.3, 444–479.

[31] R. W. Sharpe, On the structure of the Steinberg group St(Λ). — J. Algebra 68 (1981), 453–467.

[32] S. Sinchuk, Injective stability of unitary K1 revisited. (2011), to appear.

[33] S. Sinchuk, N. Vavilov, Parabolic factorisations of exceptional Chevalley groups. (2011), to appear.

[34] A. Sivatski, A. Stepanov, On the word length of commutators in GLn(R). — K-theory 17 (1999), 295–302.

[35] M. R. Stein, Surjective stability in dimension 0 for K2 and related functors. — Trans. Amer. Math. Soc. 178 (1973),

176–191.

[36] M. R. Stein, Stability theorems for K1, K2 and related functors modeled on Chevalley groups, Japan J. Math. 4

(1978), No. 1, 77–108.

[37] R. Steinberg, Lectures on Chevalley groups, Yale University, 1967.

[38] A. Stepanov, N. Vavilov, On the length of commutators in Chevalley groups. — Israel Math. J. 185 (2011), 253–276.

[39] A. A. Suslin, M. S. Tulenbaev, A theorem on stabilization for Milnor’s K2-functor, J. Soviet Math. 17 (1981),

1804–1819.

[40] O. I. Tavgen, Bounded generation of Chevalley groups over rings of S-integer algebraic numbers. — Izv. Acad. Sci.

USSR 54 (1990), no.1, 97–122.

[41] O. I. Tavgen, Bounded generation of normal and twisted Chevalley groups over the rings of S-integers. — Contemp.

Math. 131 (1992), No. 1, 409–421.

[42] L. N. Vaserstein, Bass’s first stable range condition. — J. Pure Appl. Algebra 34 (1984), Nos. 2–3, 319–330.

[43] L. N. Vaserstein, E. Wheland, Factorization of invertible matrices over rings of stable rank one. — J. Austral. Math.

Soc., Ser. A, 48 (1990), 455–460.

[44] L. N. Vaserstein, E. Wheland, Commutators and companion matrices over rings of stable rank 1. — Linear Algebra

Appl. 142 (1990), 263–277.

[45] N. A. Vavilov, Parabolic subgroups of Chevalley groups over a commutative ring. — J. Soviet Math 26 (1984), No.

3, 1848–1860.

[46] N. Vavilov, Structure of Chevalley groups over commutative rings. — In: Proc. Conf. Non-associative algebras and

related topics (Hiroshima – 1990) , World Sci. Publ., London et al. (1991), pp. 219–335.

[47] N. A. Vavilov, E. I. Kovach, SL2-factorisations of Chevalley groups. — Zapiski Nauchn. Semin. POMI (2011), (in

Russian, English translation pending)

[48] N. A. Vavilov, E. B. Plotkin, Net subgroups of Chevalley groups. II. Gauss decomposition. — J. Soviet Math. 27

(1984), No. 4, 2874–2885.

www.SID.ir



Arc
hive

 of
 S

ID

16 A. Smolensky, B. Sury and N. Vavilov

[49] N. Vavilov, E. Plotkin, Chevalley groups over commutative rings. I. Elementary calculations. — Acta Applicandae

Math. 45 (1996), 73–115.

[50] N. A. Vavilov, S. S. Sinchuk, Dennis—Vaserstein type decomposition. — Zapiski Nauchn. Semin. POMI 375 (2010),

48–60 (in Russian, English translation pending).

[51] N. A. Vavilov, S. S. Sinchuk, Parabolic factorisations of the split classical groups. — Algebra and Analysis 23 (2011),

No. 4, 1–30 (in Russian, English translation pending).

[52] N. A. Vavilov, A. V. Smolensky, B. Sury, Unitriangular factorisations of Chevalley groups. — Zapiski Nauchn.

Semin. POMI 388 (2011), 17–47 (in Russian, English translation pending)

[53] You Hong, Commutators and unipotents in symplectic groups. — Acta Math. Sinica, New Ser., 10 (1994), 173–179.

[54] Zheng Bodong, You Hong, Products of commutators of transvections over local rings. — Linear Algebra Applications

357 (2002), 45–57.

Andrei Smolensky

St. Petersburg State University, University pr. 28, Peterhof, 198504 St. Petersburg, Russia

Email: andrei.smolensky@gmail.com

Balasubramanian Sury

Indian Statistical Institute, 8th Mile Mysore Road, Bangalore 560059, India

Email: surybang@gmail.com

Nikolai Vavilov

St. Petersburg State University, University pr. 28, Peterhof, 198504 St. Petersburg, Russia

Email: nikolai-vavilov@yandex.ru

www.SID.ir


