

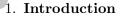
International Journal of Group Theory
ISSN (print): 2251-7650, ISSN (on-line): 2251-7669
Vol. 01 No.1 (2012), pp. 17-23.
© 2012 University of Isfahan

SOME REMARKS ON REGULAR SUBGROUPS OF THE AFFINE GROUP

M. CHIARA TAMBURINI BELLANI

Communicated by Patrizia Longobardi

ABSTRACT. Let V be a vector space over a field \mathbb{F} of characteristic $p \ge 0$ and let T be a regular subgroup of the affine group AGL(V). In the finite dimensional case we show that, if T is abelian or p > 0, then T is unipotent. For T abelian, pushing forward some ideas used in [A. Caranti, F. Dalla Volta and M. Sala, Abelian regular subgroups of the affine group and radical rings, Publ. Math. Debrecen **69** (2006), 297–308.], we show that the set $\{t - I \mid t \in T\}$ is a subalgebra of $\operatorname{End}_{\mathbb{F}}(\mathbb{F} \oplus V)$, which is nilpotent when V has finite dimension. This allows a rather systematic construction of abelian regular subgroups.



Let \mathbb{F} be a field of characteristic $p \ge 0$ and \mathbb{F}^{n+1} be the space of row vectors, with canonical basis e_0, e_1, \ldots, e_n . Considering $\operatorname{GL}_{n+1}(\mathbb{F})$ acting on the left, in the natural way, on the transpose of \mathbb{F}^{n+1} , we may identify the affine group $\operatorname{AGL}_n(\mathbb{F})$ with the stabilizer of the transpose of e_0 . Thus $\operatorname{AGL}_n(\mathbb{F})$ acts on the right on the set of affine vectors

$$\Omega := (1, v) \mid v \in \mathbb{F}^n \}.$$

Moreover the subspace $\langle e_1, \ldots, e_n \rangle$ is invariant under $\operatorname{AGL}_n(\mathbb{F})$. We are concerned here with regular subgroups of $\operatorname{AGL}_n(\mathbb{F})$. They are the subgroups which act transitively on Ω and whose non-trivial elements fix no point. Equivalently, a subgroup T of $\operatorname{AGL}_n(\mathbb{F})$ is regular if, for every $v \in \mathbb{F}^n$, there exists a unique element of T having (1, v) as first row. Thus T can be identified with a function

MSC(2010): Primary: 20H20.

Keywords: Affine group, Regular subgroups.

Received: 09 July 2011, Accepted: 26 October 2011.

 $T: \mathbb{F}^n \to \mathrm{GL}_n(\mathbb{F})$ and its elements can be written as:

(1.1)
$$\left\{ \begin{pmatrix} 1 & v \\ 0 & T(v) \end{pmatrix} \mid v \in \mathbb{F}^n \right\}.$$

The most natural example of a regular subgroup is the translation group, corresponding to the constant function T(v) = I for all v. Another abelian example is given by the centralizer $C_U(J)$, where $U = U_{n+1}(\mathbb{F})$ denotes the group of all upper unitriangular matrices, and $J \in U$ is the $(n+1) \times (n+1)$ Jordan block with minimal polynomial $(x-1)^{n+1}$. Indeed, by a formula of Frobenius, the centralizer of J in Mat_{n+1}(\mathbb{F}) has dimension n+1. Thus it coincides with the subalgebra $\mathbb{F}J^0 + \cdots + \mathbb{F}J^n$ generated by J. Note that, in general, $C_U(J)$ is not isomorphic to the translation group. For example, J does not have order p when p > 0 and $n \ge p+1$. Other examples can be found in [1]. In [2], Hegedus constructed some interesting examples of regular subgroups of $\operatorname{AGL}_n(\mathbb{F}_p)$ containing no non-trivial translations. His construction leads to non-abelian examples for $n \ge 4$. The observation after Lemma 5.1 shows how to construct non-abelian examples already for n = 2. For our purposes it is relevant to consider the regular subgroup of $\operatorname{AGL}_2(\mathbb{R})$ whose elements are:

(1.2)
$$\left\{ \begin{pmatrix} 1 & x & y \\ 0 & e^y & 0 \\ 0 & 0 & 1 \end{pmatrix} \mid x, y \in \mathbb{R} \right\}.$$

Similarly, for $n \ge 3$, and $i \ne j$, we have the non-abelian regular subgroup:

$$\left\{ \begin{pmatrix} 1 & v & x \\ 0 & I + xE_{ij} & \mathbf{0^t} \\ 0 & \mathbf{0} & 1 \end{pmatrix} \mid v \in \mathbb{F}^{n-1}, \ x \in \mathbb{F} \right\}.$$

We recall that a subgroup of $\operatorname{GL}_{n+1}(\mathbb{F})$ is called unipotent if all its elements have 1 as the unique eigenvalue. It is well known (see for example [3, 17.5, Corollary, p. 113]) that every unipotent subgroup of $\operatorname{GL}_{n+1}(\mathbb{F})$ is conjugate to a subgroup of $U_{n+1}(\mathbb{F})$.

Let T be a regular subgroup of $AGL_n(\mathbb{F})$. When \mathbb{F} is finite, T is a p-group, hence it is unipotent. In Section 3 we show that T is unipotent whenever either T is abelian or p > 0. On the other hand, when p = 0, this may not be true, as example (1.2) shows. Note that, when p > 0, the exponential map cannot be defined over \mathbb{F} .

In [1], among other things, it is shown axiomatically that any regular abelian subgroup T of AGL(V), where V is a vector space over \mathbb{F} , allows to define on (V, +) the structure of a radical ring. But the relation of this ring with the algebra $\operatorname{End}_{\mathbb{F}}(\mathbb{F} \oplus V)$, of which it is an additive subgroup, is not made explicit. In Section 4, pushing forward some of the ideas of [1], we show that the set $\{t - I \mid t \in T\}$ is a subalgebra of $\operatorname{End}_{\mathbb{F}}(\mathbb{F} \oplus V)$. Moreover this subalgebra is nilpotent, whenever V has finite dimension.

As a byproduct we sketch a rather systematic construction of unipotent regular subgroups of $AGL_n(\mathbb{F})$, illustrating the cases $n \leq 3$.

We are grateful to the authors of [1] for having attracted our attention to this problem.

2. Preliminary facts

As above \mathbb{F}^{n+1} has canonical basis e_0, \ldots, e_n . We recall that $\langle e_1, \ldots, e_n \rangle$ is invariant under $AGL_n(\mathbb{F})$.

Lemma 2.1. Let T be a regular subgroup of $AGL_n(\mathbb{F})$. Assume that $\langle e_1, \ldots, e_n \rangle = U \oplus W$ where U and W are T-invariant subspaces, of dimensions m and n-m. Then T is the semidirect product of two subgroups $\widehat{T}_1 \sim T_1$ and $\widehat{T}_2 \sim T_2$, where T_1 and T_2 are regular subgroups of $AGL_m(\mathbb{F})$ and $AGL_{n-m}(\mathbb{F})$ respectively. Moreover, if \hat{T}_1 and \hat{T}_2 centralize each other, then

$$T = \left\{ \begin{pmatrix} 1 & u & w \\ 0 & T_1(u) & 0 \\ 0 & 0 & T_2(w) \end{pmatrix} \mid u \in U, w \in W \right\}.$$

Proof. For every $u \in U$, there exists a unique matrix t_u in T having (1, u, 0) as first row. Similarly, for every $w \in W$, there exists a unique matrix t_w in T having (1,0,w) as first row. Hence, by the assumption that U and W are T-invariant, up to conjugation, they have respective shapes

$$t_u = \begin{pmatrix} 1 & u & 0 \\ 0 & T_1(u) & 0 \\ 0 & 0 & A(u) \end{pmatrix}, \quad t_w = \begin{pmatrix} 1 & 0 & w \\ 0 & B(w) & 0 \\ 0 & 0 & T_2(w) \end{pmatrix}$$

with $T_1(u), A(u) \in \operatorname{GL}_m(\mathbb{F}), B(w), T_2(w) \in \operatorname{GL}_{n-m}(\mathbb{F})$ Thus T contains the subgroups:

$$\widehat{T}_1 := \{ t_u \mid u \in U \} \,, \quad \widehat{T}_2 := \{ t_w \mid w \in W \}$$

The maps

$$t_u \mapsto \begin{pmatrix} 1 & u \\ 0 & T_1(u) \end{pmatrix}, \quad t_w \mapsto \begin{pmatrix} 1 & w \\ 0 & T_2(w) \end{pmatrix}$$

are isomorphisms from \widehat{T}_1 and \widehat{T}_2 to regular subgroup T_1 and T_2 of $\operatorname{AGL}_m(\mathbb{F})$ and $\operatorname{AGL}_{n-m}(\mathbb{F})$. Since UB(w) = U, for all $w \in W$, we conclude that $T = \widehat{T}_1 \widehat{T}_2$. Clearly $\widehat{T}_1 \cap \widehat{T}_2 = I$. Finally \widehat{T}_1 and \widehat{T}_2 centralize each other if and only if wA(u) = w for all $w \in W$ and uB(w) = u for all $u \in U$, if and only if A(u) = I for all $u \in A$ and B(w) = I for all $w \in W$. Thus also our final claim follows.

Lemma 2.2. If $\begin{pmatrix} 1 & v \\ 0 & g \end{pmatrix}$ fixes no affine vector, then v does not belong to the image of I - g. In particular 1 is an eigenvalue of g.

Proof. If z(I-g) = v for some $z \in \mathbb{F}^n$ then the block matrix in the statement fixes the affine vector (1, z). Thus I - g is singular, whence our final claim.

We will need the following fact, based on elementary linear algebra.

www.SID.ir

Lemma 2.3. Let $f_1(x)$, $f_2(x)$ be coprime polynomials and let $f(x) = f_1(x)f_2(x)$ have degree n. Then every element of $\operatorname{GL}_n(\mathbb{F})$ with characteristic polynomial f(x) is conjugate in $\operatorname{GL}_n(\mathbb{F})$ to a matrix

$$g = \begin{pmatrix} g_1 & 0\\ 0 & g_2 \end{pmatrix},$$

where g_1, g_2 have respective characteristic polynomials $f_1(x)$ and $f_2(x)$. Moreover the centralizer C(g) of g in $GL_n(\mathbb{F})$ consists of block-diagonal matrices of the same form.

3. Unipotency

Let T be a regular subgroup of $AGL_n(\mathbb{F})$.

Theorem 3.1. If T is abelian, then it is unipotent.

Proof. By contradiction assume that $\begin{pmatrix} 1 & v_0 \\ 0 & T(v_0) \end{pmatrix}$ is an element of T that is not unipotent. By Lemma 2.2 we have $n \ge 2$ and the characteristic polynomial of $T(v_0)$ factorizes as $(x-1)^m f(x)$, where $m \ge 1$ and f(x) is coprime to x-1. By Lemma 2.3, the space $V = \langle e_1, \ldots, e_n \rangle$ is the direct sum of two subspaces U, W which are invariant under $C := C_{\operatorname{GL}_n(\mathbb{F})}(T(v_0))$. By the commutativity of T, we have $T(v) \le C$ for all $v \in V$. Hence U, W are also T-invariant. Thus we can apply Theorem 2.1 to the abelian group T. Let $\widehat{T_1}$ and $\widehat{T_2}$ be defined as in that theorem. By induction on n, they are unipotent. It follows that T is unipotent, a contradiction.

Theorem 3.2. If char $\mathbb{F} = p > 0$, then T is unipotent.

Proof. Again suppose that T has a non-unipotent element t. By Lemmas 2.2 and 2.3, we may assume that, for some $v_1 \in \mathbb{F}^{n-m}$, $v_2 \in \mathbb{F}^m$,

$$t = \begin{pmatrix} 1 & v_1 & v_2 \\ 0 & g_1 & 0 \\ 0 & 0 & g_2 \end{pmatrix}$$

where g_1 does not have 1 as an eigenvalue and g_2 is unipotent.

If
$$z := v_1(I - g_1)^{-1}$$
, then $(1, z) = (1, z) \begin{pmatrix} 1 & v_1 \\ 0 & g_1 \end{pmatrix}$. Thus, for every $k \ge 1$:
 $(1, z, 0)t^k = \left(1, z, v_2 \sum_{j=0}^{k-1} g_2^j\right)$.

Since p > 0 and g_2 is an $m \times m$ unipotent matrix, $g_2^{p^{m-1}} = I$. From

$$\sum_{j=0}^{p^m-1} g_2^j = p \sum_{j=0}^{p^{m-1}-1} g_2^j$$

we have that t^{p^m} fixes (1, z, 0). By the regularity assumption it follows that $t^{p^m} = I$, a contradiction.

www.SID.ir

4. Abelian regular subgroups as linear maps

In this section, following [1], we consider a vector space V over \mathbb{F} , whose dimension may be infinite. The results of the previous sections apply to the case $V = \mathbb{F}^n$, the space of row vectors. We recall that a regular subgroup T of AGL(V) may be identified with a function $T: V \to \text{GL}(V)$. We may also consider the constant function $I: V \to \text{End}_{\mathbb{F}}(V)$ such that $I(v) = \text{identity for all } v \in V$.

Theorem 4.1. If T is abelian, then the map $T - I : V \to \operatorname{End}_{\mathbb{F}}(V)$ is linear. Moreover the set $\{t - I \mid t \in T\}$ is a subalgebra of $\operatorname{End}_{\mathbb{F}}(\mathbb{F} \oplus V)$. When V has finite dimension, this subalgebra is nilpotent.

Proof. Set $\delta = T - I$. By abuse of notation, which should create no confusion, we may represent the elements of T as "matrices" of shape

$$\left\{ \begin{pmatrix} 1 & v \\ 0 & I + \delta(v) \end{pmatrix} \mid v \in V \right\}.$$

As observed in [1], the commutativity of T gives:

(4.1)
$$v\delta(w) = w\delta(v), \quad \forall \ v, w \in V$$

and this implies that δ is linear. For the reader's convenience we give a proof of this fact. For all $v \in V$, we have:

$$v\delta(u+w) = (u+w)\delta(v) = u\delta(v) + w\delta(v) = v\delta(u) + v\delta(w) = v\left(\delta(u) + \delta(w)\right)$$
$$v\delta(\lambda u) = \lambda u\delta(v) = \lambda \left(u\delta(v)\right) = \lambda v\delta(u) = v\left(\lambda\delta(u)\right)$$

where $u, w \in V$ and $\lambda \in \mathbb{F}$. Thus $\delta(V)$ is a subspace of $\operatorname{End}_{\mathbb{F}}(V)$. By the shape of the matrices in T it follows that also the set $\{t - I \mid t \in T\}$ is a subspace of $\operatorname{End}_{\mathbb{F}}(\mathbb{F} \oplus V)$. In particular it is an additive subgroup. It follows that it is also closed under multiplication, hence a subalgebra. Indeed, for all $t_1, t_2 \in T$:

$$(t_1 - I)(t_2 - I) = (t_1t_2 - I) - (t_1 - I) - (t_2 - I).$$

When V is finite dimensional, by Theorem 3.1 the group T is unipotent. Thus the corresponding subalgebra is nilpotent, hence a radical ring. \Box

5. Low dimensional cases

Clearly Theorem 4.1 allows to construct abelian regular subgroups starting from appropriate definitions of $T(v_i)$, where v_1, \ldots, v_n is a basis of \mathbb{F}^n , and applying the linearity of T - I. So, in this Section, we exploit this observation to construct regular subgroups of $AGL_n(\mathbb{F})$, at least for n small. **Lemma 5.1.** The only regular subgroup of $AGL_1(\mathbb{F})$ is the translation group. Every unipotent regular subgroup T of $AGL_2(\mathbb{F})$ is conjugate to one of the form

(5.1)
$$T = \left\{ \begin{pmatrix} 1 & a & b \\ 0 & 1 & \tau(a) \\ 0 & 0 & 1 \end{pmatrix} \mid a, b \in \mathbb{F} \right\},$$

where τ is any additive endomorphism of \mathbb{F} .

Proof. The case n = 1 follows immediately from Lemma 2.2. If n = 2, up to conjugation, $T \leq U_3(\mathbb{F})$. Further use of the same Lemma gives that, for all $a, b \in \mathbb{F}$, the group T contains matrices of the form

$$\left(\begin{array}{rrrr}1&a&0\\0&1&\tau(a)\\0&0&1\end{array}\right), \left(\begin{array}{rrrr}1&0&b\\0&1&0\\0&0&1\end{array}\right).$$

Noting that the matrices of the second type form a central subgroup Z of T and considering the quotient T/Z, one gets $\tau(a_1 + a_1) = \tau(a_1) + \tau(a_2)$ for all a_1 and a_2 .

This group is abelian precisely when $a\tau(b) = b\tau(a)$ for all $a, b \in \mathbb{F}$, i.e., when τ is linear. This gives rise to non-abelian examples. E.g. take $\mathbb{F} = \mathbb{K}(\alpha)$ a quadratic extension of the field \mathbb{K} . Then any non-scalar matrix of $A \in \operatorname{GL}_2(\mathbb{K})$ gives rise to the endomorphism $k_0 + k_1 \alpha \mapsto h_0 + h_1 \alpha$, where $(h_0, k_0) = (k_0, h_0)A$. Since A is non-scalar, this group is not abelian.

Lemma 5.2. Let $T \leq U_{n+1}(\mathbb{F})$ be abelian. Denote by $\{e_1, \ldots, e_n\}$ the canonical basis of \mathbb{F}^n . Then $T(e_n) = I$.

Proof. By the commutativity, for all $v, w \in \mathbb{F}^n$ we have:

(5.2)
$$v - w = vT(w) - wT(v)$$

Since T(v) fixes e_n for all v, taking $w = e_n$ in relation (5.2) we get $v = v T(e_n)$ for all v, i.e. $T(e_n) = I$, whence our claim.

Inductive use of this Lemma gives that the matrix $T(e_{n-1})$ has the first n-1 columns equal to the (transposes of the) vectors of the canonical basis, etc.... So, for example, we have the following.

Corollary 5.3. Every abelian regular subgroup T of $AGL_3(\mathbb{F})$ is conjugate to one of the following, for some $a, b, c \in \mathbb{F}$:

$$T_{1} = \left\{ \begin{pmatrix} 1 & x_{1} & x_{2} & x_{3} \\ 0 & 1 & 0 & x_{1}a + x_{2}b \\ 0 & 0 & 1 & x_{1}b + x_{2}c \\ 0 & 0 & 0 & 1 \end{pmatrix} \mid x_{1}, x_{2}, x_{3} \in \mathbb{F} \right\}$$
$$T_{2} = \left\{ \begin{pmatrix} 1 & x_{1} & x_{2} & x_{3} \\ 0 & 1 & x_{1}a & x_{1}b + x_{2}c \\ 0 & 0 & 1 & x_{1}c \\ 0 & 0 & 0 & 1 \end{pmatrix} \mid x_{1}, x_{2}, x_{3} \in \mathbb{F} \right\}$$

or

www.SID.ir

Proof. Up to conjugation $T \leq U_4(\mathbb{F})$. By the previous lemma

$$T\left((0,0,1)\right) = \begin{pmatrix} 1 & 0 & 0\\ 0 & 1 & 0\\ 0 & 0 & 1 \end{pmatrix}, \ T\left((0,1,0)\right) = \begin{pmatrix} 1 & 0 & d\\ 0 & 1 & e\\ 0 & 0 & 1 \end{pmatrix}$$

for some $d, e \in \mathbb{F}$. Assume that

$$T\left((1,0,0)\right) = \begin{pmatrix} 1 & a & b \\ 0 & 1 & c \\ 0 & 0 & 1 \end{pmatrix},$$

for some $a, b, c \in \mathbb{F}$. Imposing commutativity we get d = c and ae = 0. Taking a = 0 we obtain T_1 . Taking e = 0 we obtain T_2 (up to the names of parameters). In general, T_1 and T_2 are not isomorphic. For example, for p = 3, the group T_1 is elementary abelian for all a, b, c, whereas T_2 may have elements of order 9. This happens, for example, when a = 2, b = 1, c = 1.

One might also try to characterize unipotent regular subgroups T of $AGL_n(\mathbb{F})$ via the Jordan form of an element in the centre. For example, if the Jordan form of an element of the center of T consists of a unique block J of size n + 1, then T is conjugate to $C_U(J)$.

References

- A. Caranti, F. Dalla Volta and M. Sala, Abelian regular subgroups of the affine group and radical rings, Publ. Math. Debrecen 69 (2006), 297–308.
- [2] P. Hegedus, Regular subgroups of the Affine group, J. Algebra 225 (2000), 740-742.
- [3] J. E. Humphreys, Linear algebraic groups, Springer 1975.

Maria Chiara Tamburini Bellani

Department of Mathematics, Università Cattolica del Sacro Cuore, Via dei Musei 41, Brescia, Italy Email: c.tamburini@dmf.unicatt.it