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Abstract. Given a non-abelian finite group G, let π(G) denote the set of prime divisors of the order

of G and denote by Z(G) the center of G. The prime graph of G is the graph with vertex set π(G)

where two distinct primes p and q are joined by an edge if and only if G contains an element of order

pq and the non-commuting graph of G is the graph with the vertex set G−Z(G) where two non-central

elements x and y are joined by an edge if and only if xy 6= yx. Let G and H be non-abelian finite

groups with isomorphic non-commuting graphs. In this article, we show that if |Z(G)| = |Z(H)|, then

G and H have the same prime graphs and also, the set of orders of the maximal abelian subgroups of

G and H are the same.

1. Introduction

For an integer z > 1, we denote by π(z) the set of all prime divisors of z. If G is a finite group,

then π(|G|) is denoted by π(G). The prime graph GK(G) of a finite group G is the graph with vertex

set π(G) where two distinct primes p and q are joined by an edge (we write (p, q) ∈ GK(G)) if and

only if G contains an element of order pq. Let G be a non-abelian group and Z(G) be its center.

We will associate a graph Γ(G) to G which is called the non-commuting graph of G. The vertex

set V (Γ(G)) is G − Z(G) and the edge set E(Γ(G)) consists of (x, y), where x and y are distinct

non-central elements of G such that xy 6= yx. The commuting graph associated to a non-abelian

group G is the complement of Γ(G), i.e., a graph with vertex set G−Z(G) where distinct non-central

elements x and y of G are joined by an edge if and only if xy = yx. Obviously, we are considering

simple graphs, i.e., graphs with no loops or directed or repeated edges. The non-commuting graph

of a non-abelian finite group has received some attention in existing literature. In [1], the authors
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studied some properties of non-commuting graph, especially, they showed that two non-abelian finite

groups with isomorphic non-commuting graphs have the same set of lengths of conjugacy classes. In

[5], it has been proved that the commuting graph of a non-abelian finite group G is disconnected if

and only if GK(G) is disconnected, where Z(G) = 1 and in [4], it has been proved that if S is a finite

non-abelian simple group and G is a finite group such that Γ(S) ∼= Γ(G), then |G| = |S|. But until

now, there doesn’t exist enough information about the non-commuting graph of a non-abelian finite

simple group and also, the structure of a finite group with given non-commuting graph. On the other

hand, in [9], the authors pointed out the prime graph of a given non-abelian finite simple group and

in [8], the structure of a finite group with given prime graph has been studied. Thus it is interesting

to find a link between the non-commuting graph and the prime graph of a non-abelian finite group.

The aim of this article is finding this link.

2. The Main Results

In the following, let G and H be non-abelian finite groups and let M(G) denote the set of orders

of maximal abelian subgroups of G. A subset of the vertices of a graph is called an independent set if

its elements are pairwise non-adjacent and the independent set of maximal size is named a maximal

independent set.

Lemma 2.1. [3] If M(G) = M(H), then G and H have the same prime graphs.

Lemma 2.2. [4] Let S be a non-abelian finite simple group. If G is a finite group such that Γ(G) ∼=
Γ(S), then Z(G) = 1.

Lemma 2.3. If T is a maximal independent set of Γ(G), then CG(T )− Z(G) = T .

Proof. Obviously, for x, y ∈ G − Z(G), x and y are non-adjacent in Γ(G) if and only if xy = yx,

so we can see at once that for every x, y ∈ T , xy = yx. This shows that T ⊆ CG(T ) − Z(G). If

z ∈ CG(T ) − Z(G), then for every x ∈ T , zx = xz, so T ∪ {z} is an independent set of Γ(G). But

T is a maximal independent set of Γ(G) and hence, T ∪ {z} = T . This implies that z ∈ T . Thus

CG(T )− Z(G) ⊆ T , so CG(T )− Z(G) = T . �

Lemma 2.4. If T is a maximal independent set of Γ(G) and M is a maximal abelian subgroup of G,

then

(i) T ∪ Z(G) is a maximal abelian subgroup of G;

(ii) M − Z(G) is a maximal independent set of Γ(G).

Proof. It is easy to see that CG(T ) is a subgroup of G. Thus Lemma 2.3 forces T ∪ Z(G) to be an

abelian subgroup of G. If M is a maximal abelian subgroup of G containing T ∪Z(G), then we can see

that by Lemma 2.3, M ⊆ CG(T ) = T ∪Z(G). This shows that M = T ∪Z(G). Therefore, (i) follows.

It remains to prove (ii). Of course for every x, y ∈M−Z(G), xy = yx, so M−Z(G) is an independent

subset of V (Γ(G)). Thus there exists a maximal independent set U of Γ(G) containing M − Z(G).
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Since by (i), U ∪ Z(G) is an abelian subgroup of G and M = (M − Z(G)) ∪ Z(G) ⊆ U ∪ Z(G), we

conclude that M = U ∪ Z(G), because by our assumption, M is a maximal abelian subgroup of G.

This shows that M − Z(G) = U , so the lemma follows. �

Theorem 2.5. If |Z(G)| = |Z(H)| and Γ(G) ∼= Γ(H), then

(i) M(G) = M(H);

(ii) GK(G) = GK(H).

Proof. Since Γ(G) ∼= Γ(H), |V (Γ(G))| = |V (Γ(H))| and hence, |G| − |Z(G)| = |H| − |Z(H)|. But

by assumption |Z(G)| = |Z(H)|, so we conclude that |G| = |H|. Thus π(G) = π(H). Also, there

exists a bijection ϕ : V (Γ(H)) −→ V (Γ(G)) such that for every vertices a, b ∈ V (Γ(H)), (a, b) ∈ Γ(H)

if and only if (ϕ(a), ϕ(b)) ∈ Γ(G). If M is an arbitrary maximal abelian subgroup of H, then by

Lemma 2.4(ii), M − Z(H) is a maximal independent set of Γ(H) and hence ϕ(M − Z(H)) is a

maximal independent set of Γ(G). Thus by Lemma 2.4(i), ϕ(M −Z(H))∪Z(G) is a maximal abelian

subgroup of G. Also, |M − Z(H)| = |ϕ(M − Z(H))| and ϕ(M − Z(H)) ⊆ G − Z(G). Therefore,

|M | = |M −Z(H)|+ |Z(H)| = |ϕ(M −Z(H))|+ |Z(G)| = |ϕ(M −Z(H))∪Z(G)| ∈M(G) and hence,

M(H) ⊆ M(G). Similarly, we can see that M(G) ⊆ M(H), so the proof of (i) is complete. Also, (i)

and Lemma 2.1 complete the proof of (ii). �

The following corollary follows immediately from Lemma 2.2 and Theorem 2.5:

Corollary 2.6. Let S be a non-abelian finite simple group. If Γ(S) ∼= Γ(G), then

(i) M(G) = M(S);

(ii) GK(G) = GK(S).

From Theorem 2.5, we also obtain:

Corollary 2.7. If Γ1 is a maximal complete subgraph of the commuting graph of G, then the vertex

set of Γ1 is M − Z(G) for some maximal abelian subgroups M of G.

Problem 16.1 in the Kourovka notebook [6] contains the following conjecture:

Conjecture. (AAM’s conjecture) Let S be a non-abelian finite simple group and let G be a group

such that Γ(S) ∼= Γ(G). Then S ∼= G.

In several papers, it has been proved that AAM’s conjecture is true for the finite simple groups

with disconnected commuting graphs, but one can see easily that those methods used for the groups

with disconnected commuting graphs fail for finite simple groups with connected commuting graphs.

According to [5], [7] and [10], if n ≥ 4 is even, then the commuting graph of Bn(q) is connected if

and only if n 6= 2m, for every natural number m. Here, as a main consequence of our result, we see

that AAM’s conjecture holds for an infinite series of finite simple groups of Lie type with connected

commuting graphs.

Corollary 2.8. Let n ≥ 4 be even. If G is a finite group with Γ(G) ∼= Γ(Bn(q)), then G ∼= Bn(q).
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Proof. Since Γ(G) ∼= Γ(Bn(q)), by Theorem 2.5, we deduce that M(G) = M(Bn(q)), so [2, Main The-

orem] shows that G ∼= Bn(q), as claimed. �

After considering Theorem 2.5, the questions below may engage the reader’s mind:

Problem 1. Let G and H be finite groups with isomorphic non-commuting graphs. If π(Z(G)) =

π(Z(H)) and |Z(G)| 6= |Z(H)|, then what can we say about GK(G) and GK(H)?

Let G be an infinite group such that T (G) = {x ∈ G : O(x) <∞} 6= {1}. Then the prime graph of

G is a graph with ∪x∈T (G)π(O(x)) as its vertex set and in this graph primes p and q are joined by an

edge if and only if G contains an element of order pq.

Problem 2. Let G and H be non-abelian infinite groups with isomorphic non-commuting graphs. If

T (G), T (H) 6= {1}, then what can we say about the prime graphs of G and H?
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