

International Journal of Group Theory ISSN (print): 2251-7650 , ISSN (on-line): 2251-7669 Vol. 01 No. 2 (2012), pp. 19-24. c 2012 University of Isfahan

SOME SPECIAL CLASSES OF n-ABELIAN GROUPS

C. DELIZIA AND A. TORTORA[∗]

Communicated by Alireza Abdollahi

ABSTRACT. Given an integer n, we denote by \mathfrak{B}_n and \mathfrak{C}_n the classes of all groups G for which the map $\phi_n : g \mapsto g^n$ is a monomorphism and an epimorphism of G, respectively. In this paper we give a characterization for groups in \mathfrak{B}_n and for groups in \mathfrak{C}_n . We also obtain an arithmetic description of the set of all integers n such that a group G is in $\mathfrak{B}_n \cap \mathfrak{C}_n$.

Introduction

C. DELIZIA AND A. TORTORA
 ACT. Given an integer *n*, we denote by \mathfrak{B}_n and \mathfrak{C}_n the classes of all groups *G* for $\colon g \mapsto g^n$ is a monomorphism and an epimorphism of *G*, respectively. In this paper eriz Let n be an integer. A group G is said to be n-abelian if the map $\phi_n : g \mapsto g^n$ is an endomorphism of G. Then $(xy)^n = x^n y^n$ for all $x, y \in G$, from which it follows $[x^n, y] = [x, y]^n = [x, y^n]$. It is also easy to see that a group G is n-abelian if and only if it is $(1 - n)$ -abelian. The structure of n-abelian groups has been described in [2] and [1]. If $n \neq 0, 1$ and G is an *n*-abelian group, then the quotient group $G/Z(G)$ has finite exponent dividing $n(n-1)$. This implies that every torsion-free *n*-abelian group is abelian.

In this paper we denote by \mathfrak{B}_n and \mathfrak{C}_n the classes of all groups G for which ϕ_n is a monomorphism and an epimorphism of G, respectively. Then $\mathfrak{B}_0 = \mathfrak{C}_0$ contains only the trivial group, $\mathfrak{B}_1 = \mathfrak{C}_1$ is the class of all groups, and $\mathfrak{B}_{-1} = \mathfrak{C}_{-1}$ is the class of all abelian groups. Furthermore, with $|n| > 1$, $G \in \mathfrak{B}_n$ if and only if G is an *n*-abelian group having no elements of order dividing |n|. Similarly, $G \in \mathfrak{C}_n$ if and only if G is n-abelian and for every $g \in G$ there exists an element $x \in G$ such that $g = x^n$. We also set $\mathfrak{A}_n = \mathfrak{B}_n \cap \mathfrak{C}_n$. This class has been studied in [6], [7] and [5]. Of course, groups of exponent dividing $|n-1|$ are in \mathfrak{A}_n .

MSC(2010): Primary: 20E36; Secondary: 20D45, 20F50.

Keywords: n-abelian group, abelian group, finite exponent.

Received: 20 September 2011, Accepted: 26 January 2012.

[∗]Corresponding author.

For all integers $n \neq 0$, every divisible abelian group is in \mathfrak{C}_n . In particular, the additive group Q of rational numbers is in \mathfrak{A}_n , as well as every Prüfer group $\mathbb{Z}(p^{\infty})$, with $gcd(p,n) = 1$. The class \mathfrak{B}_n is subgroup closed, but the class \mathfrak{C}_n is not: in fact the group Z of all integer numbers is not in \mathfrak{C}_n . The class \mathfrak{C}_n is quotient closed, but the class \mathfrak{B}_n is not: for example \mathbb{Q}/\mathbb{Z} is not in \mathfrak{B}_n . Each of these classes is closed under forming direct products of its members. However, they are both not closed under extensions. For, let G be the wreath product of a cyclic group of order p by $\mathbb{Z}(p^{\infty})$. Then G is an extension of groups in \mathfrak{A}_n , for all integers n with $gcd(p, n) = 1$. But $Z(G)$ is trivial and so G is not *n*-abelian when $n \neq 0, 1$.

We describe the structure of groups in \mathfrak{B}_n and \mathfrak{C}_n in Section 2. In Section 3, we provide an arithmetic description of the set of all integers n such that a group G is in \mathfrak{A}_n .

2. Groups in $\mathfrak{B}_n \cup \mathfrak{C}_n$

Given an integer n, a group G is said to be n-central if $[x^n, y] = 1$ for all $x, y \in G$. If $n \neq 0$ then *n*-central is equivalent to $G/Z(G)$ having finite exponent dividing |n.

Lemma 2.1. Let G be an n-abelian group. Then G is $(n-1)$ -central if and only if it is $(n-1)$ -abelian.

Proof. Since G is n-abelian, for all $x, y \in G$, we get

$$
x^{n}y^{n-1}x^{-1} = x^{n}y^{n}y^{-1}x^{-1} = (xy)^{n}(xy)^{-1} = (xy)^{n-1}.
$$

Thus, the group G is $(n-1)$ -abelian if and only if we have $x^n y^{n-1} x^{-1} = x^{n-1} y^{n-1}$, which is equivalent to $[y^{n-1}]$ $|x| = 1.$

scription of the set of all integers *n* such that a group *G* is in \mathfrak{A}_n

2. **Groups in** $\mathfrak{B}_n \cup \mathfrak{C}_n$

atteger *n*, a group *G* is said to be *n*-central if $[x^n, y] = 1$ for all $x, y \in G$

quivalent to $G/Z(G)$ In the sequel, we always assume $|n| > 1$. Moreover, we denote by $\mathbb P$ the set of all (positive) primes and, with n integer, by π_n the set of all primes dividing n. Finally, if π is a set of primes, we set $\pi' = \mathbb{P} \setminus \pi$.

Proposition 2.2. If $G \in \mathfrak{B}_n \cup \mathfrak{C}_n$, then G is $(n-1)$ -central and $(n-1)$ -abelian. In particular, G' has finite exponent dividing $|n-1|$.

Proof. The group G is n-abelian, so $1 = [x^{n(n-1)}, y] = [x^{n-1}, y]^n$ for all $x, y \in G$. If $G \in \mathfrak{B}_n$, then G has no elements of order dividing |n| and therefore $[x^{n-1}, y] = 1$. If $G \in \mathfrak{C}_n$, there exists $z \in G$ such that $x = z^n$. Hence $[x^{n-1}, y] = [z^{n(n-1)}, y] = 1$. In both cases G is $(n-1)$ -abelian by Lemma 2.1. \Box

It is well-known that, for every *n*-abelian group G , the elements of finite order form a subgroup T such that G/T is abelian and T is the direct product of a π_{n-1} -group, a π_n -group and an abelian $\pi'_{n(n-1)}$ -group (see [2]). This allows us to characterize torsion groups in $\mathfrak{B}_n \cup \mathfrak{C}_n$.

Theorem 2.3. Let G be a torsion group. Then:

- (i) $G \in \mathfrak{B}_n$ if and only if $G = A \times B$ where A is an n-abelian π_{n-1} -group and B is an abelian $\pi'_{n(n-1)}$ -group;
- (ii) $G \in \mathfrak{C}_n$ if and only if $G = A \times B$ where A is an n-abelian π_{n-1} -group and $B = B^n$ is an abelian π'_{n-1} -group.

<www.SID.ir>

Proof. (i) Suppose $G \in \mathfrak{B}_n$. Since G has no elements of order dividing |n|, by Theorem A of [2], we get $G = A \times B$ where A is an n-abelian π_{n-1} -group and B is an abelian $\pi'_{n(n-1)}$ -group. The converse is clear.

(ii) Let $G \in \mathfrak{C}_n$. Then $G = A \times C \times D$ where A is a π_{n-1} -group, C is π_n -group and D is an abelian $\pi'_{n(n-1)}$ -group (see [2], Theorem A). In particular C is abelian by Proposition 2.2. Thus, $B = C \times D$ is an abelian π'_{n-1} -group. Since $G/A \in \mathfrak{C}_n$, we also have $B = B^n$.

Conversely, for all $g \in A$, there exist integers α and β , depending on g, such that $1 = \alpha |g| + \beta n$. Then $g = g^{\beta n}$ and $A = A^n$. This implies $G \in \mathfrak{C}_n$.

The following is an immediate consequence of Theorem 2.3.

Corollary 2.4. Let G be a torsion group in \mathfrak{B}_n . Then $G \in \mathfrak{A}_n$.

Hence, if $\mathfrak T$ denotes the class of all torsion groups, we have

$$
\mathfrak{A}_n\cap\mathfrak{T}=\mathfrak{B}_n\cap\mathfrak{T}\subseteq\mathfrak{C}_n\cap\mathfrak{T}
$$

for all integers n, where the inclusion can be proper: for each prime p, the group $\mathbb{Z}(p^{\infty})$ is in $\mathfrak{C}_p \setminus \mathfrak{B}_p$. However, for groups of finite exponent we have:

Proposition 2.5. Let $G \in \mathfrak{C}_n$ be a group of finite exponent. Then $G \in \mathfrak{A}_n$.

Proof. Let $exp(G) = k$ and suppose $gcd(k, n) = d \neq 1$. Then $k = \alpha d$ for some $\alpha < k$ and $n = \beta d$. Now, for all $g \in G$, there exists $x \in G$ such that $g = x^n = (x^{\beta})^d$, so $g^{\alpha} = 1$. Therefore $\exp(G)$ divides α , which is a contradiction.

Now we use Theorem 2.3 to obtain characterizations of groups in \mathfrak{B}_n and in \mathfrak{C}_n .

Theorem 2.6. Let G be a group. Then $G \in \mathfrak{B}_n$ if and only if G is isomorphic to a subgroup of the direct product of an n-abelian π_{n-1} -group by an abelian group without elements of order dividing |n|.

4. Let *G* be a torsion group in \mathfrak{B}_n . Then $G \in \mathfrak{A}_n$.

denotes the class of all torsion groups, we have
 $\mathfrak{A}_n \cap \mathfrak{T} = \mathfrak{B}_n \cap \mathfrak{T} \subseteq \mathfrak{C}_n \cap \mathfrak{T}$

or groups of finite exponent we have:
 2.5. Le *Proof.* Assume $G \in \mathfrak{B}_n$. Let V be a maximal torsion-free subgroup of $Z(G)$ and let W/V be the subgroup consisting of all π_n -elements of $Z(G)/V$. Notice that G/W is torsion because so are $G/Z(G)$ and $Z(G)/V$. Furthermore, if $x \in W \cap G'$, then there exists a π_n -number m such that $x^m \in V$. As $gcd(m, n-1) = 1$ and $x^{n-1} = 1$, we get $x = 1$. Hence, W has trivial intersection with G'.

Let $x \in G$. First, suppose $(xW)^n = W$. Then $x^n V \in W/V$ and $x^{ns} V = V$ for some π_n -number s. By Proposition 2.2 we have $x^{n-1} \in Z(G)$, so that $x \in Z(G)$. Thus $xV \in Z(G)/V$ is a π_n -element. Therefore $x \in W$ and G/W has no elements of order dividing |n|, that is $G/W \in \mathfrak{B}_n$. Suppose now $(xG)^n = G'$. Then $x^n \in G'$, so $x^{n(n-1)} = 1$ by Proposition 2.2. This implies $x^{n-1} = 1$. Hence $x \in G'$ and $G/G' \in \mathfrak{B}_n$.

Finally, since G is isomorphic to a subgroup of $G/W \times G/G'$, the claim follows by (i) of Theorem 2.3. The converse is clear.

Theorem 2.7. Let G be an n-abelian group and denote by T its torsion group. Then $G \in \mathfrak{C}_n$ if and only if $T = A \times B$, where A is a π_{n-1} -group, $B = B^n$ is an abelian π'_{n-1} -group, and G/T is a p-divisible abelian group for every prime p dividing n.

Proof. Assume $G \in \mathfrak{C}_n$ and let p be a prime dividing n. Then $n = \alpha p$ for some integer α and, for all $g \in G$, there exists $x \in G$ such that $g = x^n = (x^\alpha)^p \in G^p$. This means that G/T is in \mathfrak{C}_p . The rest follows by (ii) of Theorem 2.3.

Conversely, given $g \in G$, we have $gT = x^nT$ for some $x \in G$: in fact, G/T is *n*-divisible. Thus $g^{-1}x^n \in T$ and, by Corollary 2.4, there exists $y \in T$ such that $g^{-1}x^n = y^n$. Therefore $g = x^n y^{-n} = (xy^{-1})^n$, that is $G = G^n$. В последните поставите на селото на се
Селото на селото на

Notice that in Theorem 2.7 one cannot replace the hypothesis that G is n-abelian by the weaker hypothesis that A is n-abelian. For example, consider the wreath product G of the cyclic group of order 2 by \mathbb{O} . The torsion part T of G is the base group, that is an infinite group of exponent 2. Moreover, $G/T = Q$. Finally $Z(G) = 1$ and so G is not *n*-abelian for all $n \neq 0, 1$. In particular, $G \notin \mathfrak{C}_n$.

3. The semigroup $\mathbb{A}(G)$

Let G be a group. In [4] F.W. Levi introduced the set

$$
\mathbb{E}(G) = \{ n \in \mathbb{Z} : (xy)^n = x^n y^n \text{ for all } x, y \in G \},
$$

T = Q. Finally $Z(G) = 1$ and so *G* is not *n*-abelian for all $n \neq 0, 1$.

3. **The semigroup** $A(G)$

group. In [4] F.W. Levi introduced the set
 $\mathbb{E}(G) = \{n \in \mathbb{Z} : (xy)^n = x^n y^n$ for all $x, y \in G\}$,

exponent semigroup the so-called *exponent semigroup* of G. It is a multiplicative subsemigroup of $\mathbb Z$ containing 0 and 1; moreover, $n \in \mathbb{E}(G)$ if and only if $1-n \in \mathbb{E}(G)$. It has been shown (see [4] and [3]) that $\mathbb{E}(G)$ is either $\{0,1\}$, or \mathbb{Z} , or the union of certain residue classes modulo some integers depending on G.

Similarly, starting from the map $\phi_n : g \in G \mapsto g^n \in G$, we introduce the set

$$
\mathbb{A}(G) = \{ n \in \mathbb{Z} \, : \, \phi_n \in Aut(G) \}.
$$

This is a subsemigroup of $\mathbb{E}(G)$ containing 1. Obviously $0 \in \mathbb{A}(G)$ if and only if $G = \{1\}$; in that case $\mathbb{A}(G) = \mathbb{Z}$. From now on, we assume $G \neq \{1\}.$

Lemma 3.1. With H and K groups, we have $\mathbb{A}(H \times K) = \mathbb{A}(H) \cap \mathbb{A}(K)$.

Proof. A direct product is in \mathfrak{A}_n if and only if each of its direct factors is.

Lemma 3.2. Let G be a group and suppose that $\mathbb{A}(G)$ satisfies one of the following conditions:

- (i) 2 $\in \mathbb{A}(G);$
- (ii) 3 $\in \mathbb{A}(G)$;
- (iii) $n \in \mathbb{A}(G)$ and $-n \in \mathbb{A}(G)$ for some $n \neq 0;$
- (iv) $n \in A(G)$ and $m \in A(G)$ with $gcd(n-1, m-1) \leq 2$.

Then G is abelian.

Proof. (i) is trivial, (ii) follows from Proposition 2.2.

(iii) The group G is n and $(n + 1)$ -abelian and so, by Lemma 2.1, it is n-central. It is also $(n - 1)$ central by Proposition 2.2. This means that G is abelian.

 (iv) Let $gcd(n-1, m-1) = 1$. By Proposition 2.2 the quotient group $G/Z(G)$ has exponent dividing $n-1$ and $m-1$. Hence G is abelian. Assume $gcd(n-1, m-1) = 2$. Then $G/Z(G)$ has exponent 2

by Proposition 2.2 and so G is nilpotent of class \leq 2. In particular, we have $[x^2, y] = [x, y]^2 = 1$ for all $x, y \in G$. This implies that, for every integer k with $k \equiv 0 \pmod{4}$ and for all $x, y \in G$,

$$
(xy)^k = x^k y^k [y, x]^{k(k-1)/2} = x^k y^k.
$$

Without loss of generality we can suppose $n \equiv -1 \pmod{4}$. Thus G is $(n+1)$ -abelian and, as in (iii), we conclude that G is abelian.

Notice that $\mathbb{E}(G) = \mathbb{Z}$ if and only if G is abelian. On the other hand, it is easy to show that $\mathbb{A}(G) = \mathbb{Z} \setminus \{0\}$ if and only if G is isomorphic to a direct sum of copies of Q. However, G is abelian if and only if $-1 \in A(G)$. So, in that case, $-n \in A(G)$ for all $n \in A(G)$. Furthermore, if G is abelian, $n \in \mathbb{A}(G)$ if and only if $p \in \mathbb{A}(G)$ for all primes p dividing n. The semigroup $\mathbb{A}(G)$ is thus generated by -1 and all primes in $\mathbb{A}(G)$. Therefore, if $\pi(G)$ denotes the set of all primes involved in the decomposition of orders of elements of G, and $\delta(G)$ denotes the set of all primes p such that G is p-divisible, one can easily realize that:

Theorem 3.3. Let G be an abelian group. Then $\mathbb{A}(G)$ is the multiplicative subsemigroup of Z generated by $(\delta(G) \setminus \pi(G)) \cup \{-1\}$. Moreover:

- (i) if G is torsion then $\mathbb{A}(G)$ is generated by $(\mathbb{P} \setminus \pi(G)) \cup \{-1\};$
- (ii) if G is torsion-free then $\mathbb{A}(G)$ is generated by $\delta(G) \cup \{-1\}.$

By Theorem 3.3, $\mathbb{A}(\mathbb{Z}) = \{-1, 1\} = \mathbb{A}(\mathbb{Q}/\mathbb{Z})$ and, if G is a torsion abelian group, then

$$
\mathbb{A}(G) = \mathbb{Z} \setminus \bigcup_{p \in \pi(G)} p\mathbb{Z}.
$$

Concerning (ii) of Theorem 3.3 we also point out that, given a set π of primes, there always exists a torsion-free abelian group G such that $\mathbb{A}(G)$ is the multiplicative subsemigroup of Z generated by $\pi \cup \{-1\}$. For example, the additive group of all rational numbers with a π -number as denominator has the above properties.

A(*G*) if and only if $p \in A(G)$ for all primes p dividing n . The semigroution of orders of elements of G , and $\delta(G)$ denotes the set of all primes p can easily realize that:
 A. *Let G be an abelian group.* Now let G be a non-abelian group and suppose that G is *n*-abelian for some integer $n \neq 0, 1$, so ${0,1}\subset \mathbb{E}(G) \subset \mathbb{Z}$. It has been shown in [4] (see also [3]) that the set $\mathbb{E}_0(G)$ of all integers n such that G is both n-abelian and n-central is an ideal of Z. Let $\mathbb{E}_0(G) = w\mathbb{Z}$. Then $w > 2$, G is both w-abelian and w-central, and w is the least positive integer with such properties. Let $w = q_1q_2 \ldots q_t$ be a factorization of w, with $t \geq 1$, $q_i > 2$ for all $i = 1, 2, ..., t$ and $gcd(q_i, q_j) = 1$ for $i \neq j$. Then $\mathbb{E}(G)$ is the union of the 2^t residue classes modulo w which are the solutions of the 2^t systems of congruential equations $x \equiv \delta_i \pmod{q_i}$, where $i = 1, 2, \ldots, t$ and $\delta_i \in \{0, 1\}$. In [4] and [3] it has also been shown that, if $n, n + 1 \in \mathbb{E}(G)$, then $n \equiv 0 \pmod{w}$. This, together with Proposition 2.2, gives $n-1 \equiv 0 \pmod{w}$ for all $n \in A(G)$. Therefore we have:

Theorem 3.4. For each group G , $\mathbb{A}(G) \subseteq [1]_w$.

In general, the equality does not hold in the theorem above. For example, consider a non-abelian group H of exponent 3, and the direct product G of H by the cyclic group of order 4. Clearly, $\mathbb{E}_0(G) = 3\mathbb{Z}$. However, $4 \notin \mathbb{A}(G)$ since G has an element of order 4. Thus $\mathbb{A}(G) \neq [1]_3$.

REFERENCES

- [1] J.L. Alperin, A classification of n-abelian groups, Canad. J. Math. 21 (1969), 1238-1244.
- [2] R. Baer, Factorization of n-soluble and n-nilpotent groups, Proc. Amer. Math. Soc. 4 (1953), 15–26.
- [3] L.-C. Kappe, *On n-Levi groups*, Arch. Math. **47** (1986), 198-210.
- [4] F.W. Levi, Notes on group theory VII, J. Indian Math. Soc. 9 (1945), 37–42.
- [5] D. MacHale, Power mappings and group morphisms, Proc. Roy. Irish. Acad. Sect. A 74 (1974), 91–93.
- [6] E. Schenkman and L. I.Wade, The mapping which takes each element of a group onto its nth power, Amer. Math. Monthly 65 (1958), 33–34.
- [7] H.F. Trotter, Groups in which raising to a power is an automorphism, Canad. Math. Bull. 8 (1965), 825–827.

Costantino Delizia

Dipartimento di Matematica, Università di Salerno, Via Ponte don Melillo, 84084 Fisciano (SA), Italy Email: cdelizia@unisa.it

Antonio Tortora

Dipartimento di Matematica, Università di Salerno, Via Ponte don Melillo, 84084 Fisciano (SA), Italy Email: antortora@unisa.it

Archive 0

<www.SID.ir>