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Abstract. Given an integer n, we denote by Bn and Cn the classes of all groups G for which the

map φn : g 7→ gn is a monomorphism and an epimorphism of G, respectively. In this paper we give a

characterization for groups in Bn and for groups in Cn. We also obtain an arithmetic description of

the set of all integers n such that a group G is in Bn ∩ Cn.

1. Introduction

Let n be an integer. A group G is said to be n-abelian if the map φn : g 7→ gn is an endomorphism

of G. Then (xy)n = xnyn for all x, y ∈ G, from which it follows [xn, y] = [x, y]n = [x, yn]. It is also

easy to see that a group G is n-abelian if and only if it is (1− n)-abelian. The structure of n-abelian

groups has been described in [2] and [1]. If n 6= 0, 1 and G is an n-abelian group, then the quotient

group G/Z(G) has finite exponent dividing n(n − 1). This implies that every torsion-free n-abelian

group is abelian.

In this paper we denote by Bn and Cn the classes of all groups G for which φn is a monomorphism

and an epimorphism of G, respectively. Then B0 = C0 contains only the trivial group, B1 = C1 is

the class of all groups, and B−1 = C−1 is the class of all abelian groups. Furthermore, with |n| > 1,

G ∈ Bn if and only if G is an n-abelian group having no elements of order dividing |n|. Similarly,

G ∈ Cn if and only if G is n-abelian and for every g ∈ G there exists an element x ∈ G such that

g = xn. We also set An = Bn ∩ Cn. This class has been studied in [6], [7] and [5]. Of course, groups

of exponent dividing |n− 1| are in An.
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For all integers n 6= 0, every divisible abelian group is in Cn. In particular, the additive group Q
of rational numbers is in An, as well as every Prüfer group Z(p∞), with gcd(p, n) = 1. The class Bn

is subgroup closed, but the class Cn is not: in fact the group Z of all integer numbers is not in Cn.

The class Cn is quotient closed, but the class Bn is not: for example Q/Z is not in Bn. Each of these

classes is closed under forming direct products of its members. However, they are both not closed

under extensions. For, let G be the wreath product of a cyclic group of order p by Z(p∞). Then G

is an extension of groups in An, for all integers n with gcd(p, n) = 1. But Z(G) is trivial and so G is

not n-abelian when n 6= 0, 1.

We describe the structure of groups in Bn and Cn in Section 2. In Section 3, we provide an

arithmetic description of the set of all integers n such that a group G is in An.

2. Groups in Bn ∪ Cn

Given an integer n, a group G is said to be n-central if [xn, y] = 1 for all x, y ∈ G. If n 6= 0 then

n-central is equivalent to G/Z(G) having finite exponent dividing |n|.

Lemma 2.1. Let G be an n-abelian group. Then G is (n−1)-central if and only if it is (n−1)-abelian.

Proof. Since G is n-abelian, for all x, y ∈ G, we get

xnyn−1x−1 = xnyny−1x−1 = (xy)n(xy)−1 = (xy)n−1.

Thus, the group G is (n−1)-abelian if and only if we have xnyn−1x−1 = xn−1yn−1, which is equivalent

to [yn−1, x] = 1. �

In the sequel, we always assume |n| > 1. Moreover, we denote by P the set of all (positive) primes

and, with n integer, by πn the set of all primes dividing n. Finally, if π is a set of primes, we set

π′ = P \π.

Proposition 2.2. If G ∈ Bn ∪ Cn, then G is (n − 1)-central and (n − 1)-abelian. In particular, G′

has finite exponent dividing |n− 1|.

Proof. The group G is n-abelian, so 1 = [xn(n−1), y] = [xn−1, y]n for all x, y ∈ G. If G ∈ Bn, then G

has no elements of order dividing |n| and therefore [xn−1, y] = 1. If G ∈ Cn, there exists z ∈ G such

that x = zn. Hence [xn−1, y] = [zn(n−1), y] = 1. In both cases G is (n− 1)-abelian by Lemma 2.1. �

It is well-known that, for every n-abelian group G, the elements of finite order form a subgroup

T such that G/T is abelian and T is the direct product of a πn−1-group, a πn-group and an abelian

π′n(n−1)-group (see [2]). This allows us to characterize torsion groups in Bn ∪ Cn.

Theorem 2.3. Let G be a torsion group. Then:

(i) G ∈ Bn if and only if G = A × B where A is an n-abelian πn−1-group and B is an abelian

π′n(n−1)-group;

(ii) G ∈ Cn if and only if G = A × B where A is an n-abelian πn−1-group and B = Bn is an

abelian π′n−1-group.
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Proof. (i) Suppose G ∈ Bn. Since G has no elements of order dividing |n|, by Theorem A of [2], we

get G = A×B where A is an n-abelian πn−1-group and B is an abelian π′n(n−1)-group. The converse

is clear.

(ii) Let G ∈ Cn. Then G = A×C ×D where A is a πn−1-group, C is πn-group and D is an abelian

π′n(n−1)-group (see [2], Theorem A). In particular C is abelian by Proposition 2.2. Thus, B = C ×D
is an abelian π′n−1-group. Since G/A ∈ Cn, we also have B = Bn.

Conversely, for all g ∈ A, there exist integers α and β, depending on g, such that 1 = α|g| + βn.

Then g = gβn and A = An. This implies G ∈ Cn. �

The following is an immediate consequence of Theorem 2.3.

Corollary 2.4. Let G be a torsion group in Bn. Then G ∈ An.

Hence, if T denotes the class of all torsion groups, we have

An ∩ T = Bn ∩ T ⊆ Cn ∩ T

for all integers n, where the inclusion can be proper: for each prime p, the group Z(p∞) is in Cp \Bp.

However, for groups of finite exponent we have:

Proposition 2.5. Let G ∈ Cn be a group of finite exponent. Then G ∈ An.

Proof. Let exp(G) = k and suppose gcd(k, n) = d 6= 1. Then k = αd for some α < k and n = βd.

Now, for all g ∈ G, there exists x ∈ G such that g = xn = (xβ)d, so gα = 1. Therefore exp(G) divides

α, which is a contradiction. �

Now we use Theorem 2.3 to obtain characterizations of groups in Bn and in Cn.

Theorem 2.6. Let G be a group. Then G ∈ Bn if and only if G is isomorphic to a subgroup of the

direct product of an n-abelian πn−1-group by an abelian group without elements of order dividing |n|.

Proof. Assume G ∈ Bn. Let V be a maximal torsion-free subgroup of Z(G) and let W/V be the

subgroup consisting of all πn-elements of Z(G)/V . Notice that G/W is torsion because so are G/Z(G)

and Z(G)/V . Furthermore, if x ∈ W ∩ G′, then there exists a πn-number m such that xm ∈ V . As

gcd(m,n− 1) = 1 and xn−1 = 1, we get x = 1. Hence, W has trivial intersection with G′.

Let x ∈ G. First, suppose (xW )n = W . Then xnV ∈ W/V and xnsV = V for some πn-number s.

By Proposition 2.2 we have xn−1 ∈ Z(G), so that x ∈ Z(G). Thus xV ∈ Z(G)/V is a πn-element.

Therefore x ∈ W and G/W has no elements of order dividing |n|, that is G/W ∈ Bn. Suppose now

(xG′)n = G′. Then xn ∈ G′, so xn(n−1) = 1 by Proposition 2.2. This implies xn−1 = 1. Hence x ∈ G′

and G/G′ ∈ Bn.

Finally, since G is isomorphic to a subgroup of G/W×G/G′, the claim follows by (i) of Theorem 2.3.

The converse is clear. �

Theorem 2.7. Let G be an n-abelian group and denote by T its torsion group. Then G ∈ Cn if

and only if T = A × B, where A is a πn−1-group, B = Bn is an abelian π′n−1-group, and G/T is a

p-divisible abelian group for every prime p dividing n.
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Proof. Assume G ∈ Cn and let p be a prime dividing n. Then n = αp for some integer α and, for all

g ∈ G, there exists x ∈ G such that g = xn = (xα)p ∈ Gp. This means that G/T is in Cp. The rest

follows by (ii) of Theorem 2.3.

Conversely, given g ∈ G, we have gT = xnT for some x ∈ G: in fact, G/T is n-divisible. Thus

g−1xn ∈ T and, by Corollary 2.4, there exists y ∈ T such that g−1xn = yn.

Thereforeg = xny−n = (xy−1)n, that is G = Gn. �

Notice that in Theorem 2.7 one cannot replace the hypothesis that G is n-abelian by the weaker

hypothesis that A is n-abelian. For example, consider the wreath product G of the cyclic group of

order 2 by Q. The torsion part T of G is the base group, that is an infinite group of exponent 2.

Moreover, G/T = Q. Finally Z(G) = 1 and so G is not n-abelian for all n 6= 0, 1. In particular,

G /∈ Cn.

3. The semigroup A(G)

Let G be a group. In [4] F. W. Levi introduced the set

E(G) = {n ∈ Z : (xy)n = xnyn for all x, y ∈ G},

the so-called exponent semigroup of G. It is a multiplicative subsemigroup of Z containing 0 and 1;

moreover, n ∈ E(G) if and only if 1−n ∈ E(G). It has been shown (see [4] and [3]) that E(G) is either

{0, 1}, or Z, or the union of certain residue classes modulo some integers depending on G.

Similarly, starting from the map φn : g ∈ G 7→ gn ∈ G, we introduce the set

A(G) = {n ∈ Z : φn ∈ Aut (G)}.

This is a subsemigroup of E(G) containing 1. Obviously 0 ∈ A(G) if and only if G = {1}; in that case

A(G) = Z. From now on, we assume G 6= {1}.

Lemma 3.1. With H and K groups, we have A(H ×K) = A(H) ∩ A(K).

Proof. A direct product is in An if and only if each of its direct factors is. �

Lemma 3.2. Let G be a group and suppose that A(G) satisfies one of the following conditions:

(i) 2 ∈ A(G);

(ii) 3 ∈ A(G);

(iii) n ∈ A(G) and −n ∈ A(G) for some n 6= 0;

(iv) n ∈ A(G) and m ∈ A(G) with gcd(n− 1,m− 1) ≤ 2.

Then G is abelian.

Proof. (i) is trivial, (ii) follows from Proposition 2.2.

(iii) The group G is n and (n+ 1)-abelian and so, by Lemma 2.1, it is n-central. It is also (n− 1)-

central by Proposition 2.2. This means that G is abelian.

(iv) Let gcd(n−1,m−1) = 1. By Proposition 2.2 the quotient group G/Z(G) has exponent dividing

n− 1 and m− 1. Hence G is abelian. Assume gcd(n− 1,m− 1) = 2. Then G/Z(G) has exponent 2
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by Proposition 2.2 and so G is nilpotent of class ≤ 2. In particular, we have [x2, y] = [x, y]2 = 1 for

all x, y ∈ G. This implies that, for every integer k with k ≡ 0 (mod 4) and for all x, y ∈ G,

(xy)k = xkyk[y, x]k(k−1)/2 = xkyk.

Without loss of generality we can suppose n ≡ −1 (mod 4). Thus G is (n+ 1)-abelian and, as in (iii),

we conclude that G is abelian. �

Notice that E(G) = Z if and only if G is abelian. On the other hand, it is easy to show that

A(G) = Z \ {0} if and only if G is isomorphic to a direct sum of copies of Q. However, G is abelian

if and only if −1 ∈ A(G). So, in that case, −n ∈ A(G) for all n ∈ A(G). Furthermore, if G is

abelian, n ∈ A(G) if and only if p ∈ A(G) for all primes p dividing n. The semigroup A(G) is thus

generated by −1 and all primes in A(G). Therefore, if π(G) denotes the set of all primes involved in

the decomposition of orders of elements of G, and δ(G) denotes the set of all primes p such that G is

p-divisible, one can easily realize that:

Theorem 3.3. Let G be an abelian group. Then A(G) is the multiplicative subsemigroup of Z generated

by (δ(G) \ π(G)) ∪ {−1}. Moreover:

(i) if G is torsion then A(G) is generated by (P \ π(G)) ∪ {−1};
(ii) if G is torsion-free then A(G) is generated by δ(G) ∪ {−1}.

By Theorem 3.3, A(Z) = {−1, 1} = A(Q/Z) and, if G is a torsion abelian group, then

A(G) = Z \ ∪p∈π(G)pZ.

Concerning (ii) of Theorem 3.3 we also point out that, given a set π of primes, there always exists

a torsion-free abelian group G such that A(G) is the multiplicative subsemigroup of Z generated by

π ∪ {−1}. For example, the additive group of all rational numbers with a π-number as denominator

has the above properties.

Now let G be a non-abelian group and suppose that G is n-abelian for some integer n 6= 0, 1, so

{0, 1} ⊂ E(G) ⊂ Z. It has been shown in [4] (see also [3]) that the set E0(G) of all integers n such

that G is both n-abelian and n-central is an ideal of Z. Let E0(G) = wZ. Then w > 2, G is both

w-abelian and w-central, and w is the least positive integer with such properties. Let w = q1q2 . . . qt

be a factorization of w, with t ≥ 1, qi > 2 for all i = 1, 2, . . . , t and gcd(qi, qj) = 1 for i 6= j. Then

E(G) is the union of the 2t residue classes modulo w which are the solutions of the 2t systems of

congruential equations x ≡ δi (mod qi), where i = 1, 2, . . . , t and δi ∈ {0, 1}. In [4] and [3] it has also

been shown that, if n, n+ 1 ∈ E(G), then n ≡ 0 (mod w). This, together with Proposition 2.2, gives

n− 1 ≡ 0 (mod w) for all n ∈ A(G). Therefore we have:

Theorem 3.4. For each group G, A(G) ⊆ [1]w.

In general, the equality does not hold in the theorem above. For example, consider a non-abelian

group H of exponent 3, and the direct product G of H by the cyclic group of order 4. Clearly,

E0(G) = 3Z. However, 4 /∈ A(G) since G has an element of order 4. Thus A(G) 6= [1]3.
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