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Abstract. The aim of this paper is to study the («,~y)-prolongation of central extensions. We ob-
tain the obstruction theory for (a,-y)-prolongations and classify («,)-prolongations thanks to low-

dimensional cohomology groups of groups.

1. Introduction

A description of group extensions by means of factor sets leads to a close relationship between the
extension problem of a type of algebras and the corresponding cohomology theory. This allows to
study extension problems using cohomology as an effective method [3], 5] [9].

For a group extension

£:05A%B5C o1

and for any homomerphism v : ¢’ — C, from the existence of the pull-back of a pair (v, 3), there is

always an extension & = £7 making the following diagram

o B’
E - 0 A B’ C’ 1
Ak
oY B
& 0 A B C 1

commute.
This shows the contravariance of a functor Ext(C, A) in terms of the first variable. The notion of

pull-backs has been widely applied in works related to group extensions (see [6, [7]).
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Given an extension £ and a homomorphism v : ¢/ — C, the problem here is that of finding
whether there is any corresponding extension £ of A by C such that & = £~. This problem is still
unsolved for the general case. However, a description where the morphism id : A — A in the above
diagram is replaced by a homomorphism « : A" — A, and A’, A are abelian groups, is presented in
[8]. In this paper, our purpose is to show a better description when £’ is a central extension. We
study the obstruction theory for such extensions and classify those extensions due to low-dimensional
cohomology groups.

Firstly, we introduce the notion of («, v)-prolongations of central extensions & and show that each
such (a,y)-prolongation induces a crossed module. The relationship between group extensions and
crossed modules leads to many interesting results (see [I], 4, [9]). Here, the notion of pre-prolongation
of &y is derived from the induced crossed module. The obstruction of such a pre-prolongation is an
element in the cohomology group H?3(Coker vy, A) whose vanishing is necessary and sufficient for there
to exist an (a, y)-prolongation (Theorem [3.5). Moreover, each such (a,v)-prolongation is a central
extension (Theorem [4.3). Finally, we state the Schreier theory for (a,)-prolongations (Theorem [4.8).

2. (a,7y)-prolongations of central extensions

Given a diagram of group homomorphisms

50 . 0 Ao 7 Bo PO Go 0
Kl |
£ 0 a—2sp-—L-g 0,

where the rows are exact, joAg C ZBy, 7 is a normal monomorphism (in the sense that Gy is a
normal subgroup of GG) and a/is an epimorphism. Then £ is said to be an (a,7)-prolongation of &.

No loss of generality in assuming that jg is an inclusion map and Ag can be identified with the
subgroup jpAg of By. In addition, we denote Iy = Coker~y, Ey = By/ Kera and let o : G — Il be
the natural projection. Obviously, Ker 8 = jy Ker a.

For convenience, we write the operation in Ily as multiplication and in other groups as addition,
even though the groups By, Gy, B, G are non-necessarily abelian.

The factor group Coker v plays a fundamental role in our study, as well as in the first literature [5]

and in the recent ones [2].

Lemma 2.1. Any («,7y)-prolongation of & induces an exact sequence of group homomorphisms
(2.1) 0= Ey S BT, — 1,

where £(bp + Ker a) = S(by).

Proof. First, we show that the sequence

By 2 By -1
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is exact. In fact, since opf = (07)po = 1, the above sequence is semi-exact. Further, for any b €
Ker(op), (op)(b) = 1. It follows that

p(b) € Kero = Imy = p(b) = v(g0),
for some go € Go. Then, there is by € By such that py(by) = go, and hence p(b) = pS(bp). This implies
b= B(bo) + ja(ao) = B(bo) + B(ao) = B(bo + ao)

for ag € Ag. Thus b € ImpB. This proves that the above sequence is exact.

The homomorphism § induces the unique monomorphism
e:Ey— B, e(bp+ Kera) = 5(bo)
and one has Ime = Imf. Therefore, the sequence ([2.1)) is exact. O

Since Ap/Kera = A via the canonical isomorphism ag + Kerev — a(ap), Lemma yields the

following commutative diagram

(2.2) 0 A—> By Go 0
e
0 A—>B—>Q 0,

where

i(aag) = ap + Kera, m(by + Ker o) = po(bo).

Definition 2.2 ([I]). A crossed module is a quadruple (B, D,d, ), where d: B — D,0 : D — Aut B
are group homomorphisms satisfying the following relations:

Cy. 0d(b) = up,b € B,

Ca. d(0.(b)) = pa(d(b)),@ €D, bE B,

where p, is the inner automorphism given by conjugation with x.

Theorem 2.3. Any (a,)=prolongation of & induces a homomorphism 0 : G — Aut Ey such that the
quadruple (Eg, G,ym,0) is a crossed module.

Proof. The exact sequence induces the group homomorphism
¢: B — AutEy, b— ¢y

given by

(2.3) bu(eq) = e Lup(eeg), eo € Ep.

It is easy to see that ¢j = idg,. In fact, for all a € A, ¢j(a) = ¢jq. Since ia € ZEy,

22) _4

2.3) _ _
"ja(geg) = €

bjalen) = €

= liq(€0) = €o.

Heia (560)
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Then, by the universal property of Coker, there is a group homomorphism 6 : G — Aut FEy such
that the following diagram ‘
0 —+A4-"+B-"+G—0

v

Aut Eo

commutes. The homomorphism 6 is defined by

(2.4) 0y = ¢p, Pb=g.

The homomorphisms 0 : G — Aut Ey and 7 : Ey — G satisfy the rules C1,C5 in the definition of

a crossed module, that is,
(2.5) O(ym) = u,

(2.6) (vm)04(e0) = pg(ym(eo)), g€ G, €o € Ep.

In fact, for eg, c € Ey, we get

©
IS

2.4)

Oym(eo)(c) = Ope(en)(c)

(bs(eo) (C)

™ teeo (EC) = freg (©).

I

Now, we show that the relation (2.6) holds. Let g.= pb, then

24) 22) 23
n8y(e) B van(eo) B pean(eo) B pluseco)]
24)
= (e (e0)) & 11y (v (e0)),
and the proof is completed. O

Corollary 2.4. If & has an (a,7)-prolongation, then the homomorphism 6 : G — Aut Ey induces the
homomorphism 6% =G — Aut A given by 0(a) = i~ '0y(ia). Further, A is Ilg-module with action

ra =0, (a),

where uy € G, o(ug) = .

Proof. By Theorem the quadruple (Ey, G,~m,0) is a crossed module. Then, it is easy to see that
if eg € Ker(ym) = Kerm, then 6,(eg) € Ker 7, and hence for any g € G, the restriction of 8, to Ker 7 is
an endomorphism of Ker 7. Since iA = Ker 7, each such endomorphism also induces an endomorphism
of A.

We now can check that the correspondence Iy — Aut A,z — 6} , is a homomorphism. Therefore,

A is a Ilp-module with action
za =i "0, (ia) = 0} (a),

as required. O
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3. Obstructions of (a, ) -prolongations

Given a diagram of group homomorphisms

&o 0 Ap > By > Gy 0,
| |
A G

where the row is exact, joAdg C ZBp, 7 is a normal monomorphism, « is an epimorphism, and a
group homomorphism 6 : G — Aut(By/Kera) such that the quadruple (By/Ker o, G,ym,0) is a
crossed module. These data denoted by the triple («,~, ) is said to be the pre-prolongation of &. An
(a, y)-prolongation of & inducing 6 is called a covering of the pre-prolongation (a -y, ).

The “prolongation problem” is that of finding whether there is anycovering of the pre-prolongation
(ar,7,0) of & and, if so, how many.

First, we show an obstruction of an («,)-prolongation. For any z € Ilp, choose a representative
Uy in G such that o(u,) = z, in particular, choose u; = 0. This set of representatives yields a factor
set f(x,y) € vGo, that is,

Uz +uy = f(z,y) + ugy, Yo,y € Ilj.
Because u; = 0, f(x,y) satisfies the normalized condition f(z,1) = f(1,y) = 0.

The associativity of the operation in G implies

(3.1) o, f (Y, 2) + f(zyyz) = f(2,y) + f(2y, 2),

where 1, is the inner automorphism of G given by conjugation with u,.

The given homomorphism 6 induces the homomorphism ¢ : Iy — G O Aut Ey, that is,

(3.2) p(x) = by,

Hereafter, we refer to'u,, f(z,v), ¢(x) as before.

Now, we choose h(z,y) € Ey such that

(3-3) yrlh(z,y)] = f(z,y),
in particular, choose h(z,1) = h(1,y) = 0. Thus,

s £, 2) & by, 2)] & by, (b, 2) B2 ymo(@)h(y, 2).

Take inverse image in Ey for two sides of the equation (3.1)) via the homomorphism 7 : Ey — G, we

obtain
(3.4) e(x)h(y, z) + Mz, yz) = h(z,y) + h(zy, 2) + k(z,y, 2),

where k(z,y,z) € Ker(yr) = Kerm = A C ZEj.
The relation (3.4) can be formally written in the form k = dh, even though Ej is non-abelian.

Lemma 3.1. The function k given by (3.4)) is a 3-cocycle in Z3(Ily, A).
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Proof. Consider the following commutative diagram
0 — Go - G % Ty — 1,
o
Aut Ey
by the condition (2.5)), (87)Go = pEo. Then, there is a homomorphism 1 : Il — AutExtE, making

the following diagram

Aut By — AutExtEy — 1

commute, where v is the natural projection. Thus, k is just an obstruction of the abstract kernel
(ITo, Ey, ). Due to Lemma 8.4 ([5] -Chapter IV), k is a 3-cocycle of B(ZIly). Moreover, because of

its construction, k takes values in A, as required. O

Lemma 3.2. For given representatives u, in G, a change in the choice of h : 113 — Eq replaces k
by a cohomologous cocycle. Moreover, by suitably changing the choice of h, k may be replaced by any

cohomologous cocycle.

Proof. In the proof of Lemma 8.5 ([5] -Chapter IV), replacing the functions with values in the central
C by those in A, we obtain the proof of Lemma [3.2 O

Lemma 3.3. A change in the choice of u, in G may be followed by a suitable new selection of h
satisfying (3.3]) such as to leave the funetion k unchanged.

Proof. If u, is replaced by u! such that ] = 0, then v, = g, + uy, where g : IIy — Gy satisfies
g1 = 0. Thus, there is a function ¢ : Illy — Ey such that y7(t;) = ga.

Now, one determines a/function b’ : H% — Fjy, given by
(3.5) B (z,y) =ty + Ou, (ty) + h(z,y) — tay.
Thanks to the condition ([2.6)), it is easy to check that
yrh! (2, y) = w, +uy — uy, = f(2,y).
Hence, h/(z,y) is just a factor set of B induced by the representatives v}, in G. Thanks to (2.5) and

(3.5), we can transform ¢(x)[h/(y, 2)] + h'(x,yz) into h'(z,y) + k' (xy, 2) + k(x,y, z). This proves that
k is unchanged. d

From the above proved lemmas, we obtain the following proposition.

Proposition 3.4. For any triple (a,v,0), the cohomology class [k] € H3(Ily, A), where k is given by
(3.4), does not depend on the choice of the representatives u, and the factor set h(z,y).

The cohomology class [k] € H3(Ilp, A) is called an obstruction to an («,v)-prolongation, and we
denote [k] = Obs(a, v, 0).
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Theorem 3.5. An extension & has an («,7y)-prolongation if and only if Obs(a,7y,8) vanishes in
H3(IIy, A).

Proof. Necessary condition. Let £ be an (a,7)-prolongation of & inducing 6. Recall that for the
representatives u, in G, we have a factor set f(x,y) satisfying the relation (3.1). By Lemma B
is an extension of Fy by Ily, and hence we can choose the representatives v, in B, x € Ilj, such that
p(vy) = uy. This set of representatives gives a factor set eh, where h : H(Q) — FEjy, that is,

eh(z,y) = vy + vy — Vgy.
Then,

peh(

’Yﬂ'h(‘%y) x, y) = p(va: + vy — ny) = Uy + Uy — Ugy = f(x,y),

that is, h satisfies (3.3]).

Since eh is a factor set of the extension B corresponding to the representatives v,, we obtain
/"va [€h(y, Z)] + €h($, yZ) = 5h($7 y) + Eh('rya Z)‘

We need to turn the above equality into the equality (3.4]) to determine the function k. Thanks to the

monomorphic property of € and the relation

(12.3)) (2.4]) (3.2
&2 26, by, h(yy) B2

fo, [P (Y, 2 Y, 2) =" ep(z)h(y, 2),

the above equality becomes
(3.6) e(@)h(y, z) + h(@, yz).= h(z,y) + h(zy, 2).

According to the determination of k in (3.4]), we deduce that [k] = 0.
Sufficient condition. Conversely, let Obs(e,~,6) = 0 in H3(Ily, A), that is,

k=06l,1:112 - A.
Now, for ' = h — [, we obtain
E=6h=06h—06l=k—k=0.

This means that one can choose h : IIZ — Ej such that [k] = 0 in Z3(Ily, A). Then, the relation (3.4)

becomes dh = 0.
According to the relations (2.5) and (3.3)), the function ¢ given by (]3.2)) satisfies

(3.7) 0(@)e(Y) = tn(ay)P(Ty)-

Clearly, ¢(1) = idg,. Thus, we can construct the crossed product B, = [Ep, ¢, h,Ip], that is,
Bj, = Ey x Il under the operation

(e0, ) + (€, y) = (e + p(x)ef + h(z,y), zy),
and there is an exact sequence

0545 B, % aoo,
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where
j'(a) = (ia,1), p'(eo,z) = ymeg + ug.
Moreover, the correspondence 3’ : By — Bj, given by
(3.8) B'(bo) = (bo, 1)

is a group homomorphism.

Now, it is easy to check that the following diagram

Jo Po

Eo: 0 Ag By Gy 0
|
& 0 A—Lep, Lo 0
commutes. Therefore, &, is an («a,7y)-prolongation of &. This completes the proof. O

4. Classification theorem

Definition 4.1. Two («,y)-prolongations of &

0-ALBL G0,

0ALBY 60

are said to be equivalent if there is a morphism of exact sequences

: 8
0 Aa-L-p-Loq 0, By — B
“ lﬂ*
J' P’ B’
0 A B’ G 0, By — B’

such that 8*3 = 3.
Lemma 4.2. Any (a,7y)-prolongation of & is equivalent to a crossed product extension.

Proof. Let £ be an («,~)-prolongation of & inducing 6 : G — Aut Ey. By the exact sequence ,
we choose representatives v, in B such that p(v;) = u,. This set of representatives yields a function
h : H% — FEy satisfing . Then, due to Theorem E the functions ¢ and h satisfy the relations
and . Thus, there is the crossed product By, = [Ey, ¢, h, p], and hence the crossed product
extension &, is an («, y)-prolongation of &. Now we show that £ is equivalent to &.

Thanks to the exact sequence , each element of B is written in the form b = ceg + v,. Then,

it is easy to check that the correspondence

ﬁ* :B— Bh, ey + Vg — (60,:6)


www.SID.ir

The prolongation of central extensions 47

is an isomorphism satisfying the following commutative diagram

E:0 A B G 0, By —— B
|-
3’ P’ g’
EL:0 A By, G 0, By —— By,.
Finally, for all by € By we have
* * (T * (13.8)
B*B(bo) = B (bo) = (bo, 1) =" ' (bo).
Therefore, two extensions £ and &, are equivalent, as claimed. U

Theorem 4.3. Any («,7)-prolongation of & is a central extension.

Proof. First, it is easy to check that the crossed product extension &, mentioned in the proof of
Theorem is a central extension. This follows directly from the definition of operation in the
crossed product By and the hypothesis Ag C ZBy. Now, if £ is an («, v)-prolongation of &, then by
Lemmal[4.2] € is equivalent to &,. Therefore, £ is a centralextension and so the proof is completed. [

Lemma 4.4. The function h : 113 — Ey satisfying ([3.3)) determines a 2-cocycle h, with values in A.

Proof. For representatives {b,|r € G} of an extension
0-4L BRGS0,

a factor set k(r, s) = by +bs — by takes values in jA. Then, for r = u,, s = u, choose b, = vy, bs = vy,
one has

eh(x,y) =0y + Vy— Vgy = by + bs — byryps = K(1,5) € jA.
Hence, we obtain a 2-cocycle hy, = (j_ls)*h : H% — A. O

Lemma 4.5. Let £ be an («,)-prolongation of E. Then, the 2-cocycle hy : Hg — A in Lemma
is uniquely determinedup to a coboundary 6(t,) € B*(Ily, A).

Proof. If v/, is another representative of IIy in B such that p(v,) = p(v,) = uy, then there exists a
function ¢ : Iy — Ey such that v/, = et, + v,. This set of representatives gives a factor set eh’, where
K 1% — Ej is a function satisfying (3.3)). Then,
el (x,y) = v, + vy, — v,
= (ety + vg) + (ety +vy) — (Etay + Vay)
= ety + flo, (Ely) + Va + Uy — Vgy — Elay
= ety +ep(x)(ty) + eh(x,y) — etay.
Since ety € Kerp =Imj and since jA C Z(8By) = Z(eEp), one has

e (@,y) = elts + p(@)(ty) — toy] + hle,y).
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Again, since € is a monomorphism so
W(x,y) = h(z,y) = te + p(x)(ty) =ty = 6t(z,y).
Set t, = (¢71j)«t, we have hl, — h, = 6(t.), as claimed. O
It follows from Lemmas [4.4] and [4.5] that
Corollary 4.6. The cohomology class of h. is uniquely determined in H?(Ily, A).
The following corollary is deduced from Lemma [4.2

Corollary 4.7. Two crossed products By, = [Ey, ¢, h,Ily] and By = [Ey, oyl ;1] are equivalent if
and only if the cohomology classes of h and h' are equal in H?(Iy, A).

Denote by Ext(, (G, A) the set of all equivalence classes of (a,4)-prolongations of &, we obtain

the following main result.

Theorem 4.8 (Schreier theory for (a,~)-prolongations of central extensions). If & has an (a,7)-

prolongation, then the set Ext(, (G, A) is torseur under<the group H?(IIy, A).

Proof. Firstly, we show that Ext,,)(G,A) is torseur under the group H?(Ily,e15(A)). In fact,
by Corollary we define a map w from HZ%(Tlp,e 'j(A)) onto the group of transformations of
Ext(q,,) (G, A) by formula

w(T)(cls[Ey, ¢, hyITy]) = cls[Eo, ¢, h + 7,Tg].

From the above arguments, w is really an element of the group of transformations of Ext, (G, A).
Furthermore, w is a group homoemorphism.

To prove that Ext, ) (G, A) is atorseur under H?(IIp,e~1j(A)), we also point out that for any two
(v, 7y)-prolongations &£1,€s, there'is always the only element 7 € H?(Ily,e 1j(A)) such that

cls€ = w(T)(cls&r).

In fact, we have cls&; = cls[Fy, ¢, hi, IIg], i = 1,2, where p(x) = 6,,,, and h;’s are functions defined by
i
xr

sets of representatives v’ € By,,, where vl’s satisfy p(vi) = u,. Then, thanks to the proof of Theorem

.5 one has
yr[hi(z,y)] = f(z,y).
It follows that hy = hy + 7, r(x,y) € Ker(yn) = Kerm = ¢~ 1j(A).
By transformations based on the established formula, we have dr = 0, that is, r € Z2(Ilp, e~ 'j(A)).

Finally, by the canonical isomorphism
HQ(H(% 5_1j<A)) A Hz(H(]: A):

the theorem is proved. O
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