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Abstract. Let G be a finite group and let cd(G) be the set of all complex irreducible character degrees

of G. B. Huppert conjectured that if H is a finite nonabelian simple group such that cd(G) = cd(H),

then G ∼= H ×A, where A is an abelian group. In this paper, we verify the conjecture for F4(2).

1. Introduction

Let G be a finite group and let Irr(G) be the set of all irreducible complex characters of G. We

denote by cd(G) = {χ(1) : χ ∈ Irr(G)} the set of character degrees of G. In [6], B. Huppert proposed

the following conjecture.

Huppert Conjecture. Let G be a finite group and let H be a finite nonabelian simple group such

that the sets of character degrees of G and H are the same. Then G ∼= H ×A, where A is an abelian

group.

Huppert himself verified the conjecture for the Suzuki groups, the family of simple groups PSL2(q)

for q ≥ 4, and many of the sporadic simple groups. For recent results on this conjecture, see [6,

7, 9, 10, 11]. In this paper, we extend Huppert’s arguments to verify the conjecture for the simple

exceptional group of Lie type F4(2). We prove the following theorem.

Theorem 1.1. Let G be a finite group such that the character degree sets of G and F4(2) are the

same. Then G ∼= F4(2)×A, where A is an abelian group.
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We note that this group is singled out from the infinite family F4(q), where q is a prime power,

since it has two distinct nontrivial power degrees (see Lemma 3.1) and an exceptional Schur cover.

For the proof of Theorem 1.1, we will follow the steps outlined by Huppert in [6]. Huppert’s proofs

rely upon the completion of the following five steps.

(1) Show G′ = G′′. Hence if G′/M is a chief factor of G, then G′/M ∼= Sk, where S is a nonabelian

simple group.

(2) Identify H as a chief factor G′/M of G.

(3) Show that if θ ∈ Irr(M) and θ(1) = 1, then θ is G′-invariant, which implies that [M,G′] = M ′.

(4) Show that M = 1.

(5) Show that G ∼= G′×CG(G′). As G/G′ ∼= CG(G′) is abelian and G′ ∼= H, Huppert’s Conjecture

is verified.

We note that a weaker version of Huppert’s Conjecture which asserts that nonabelian simple groups

are uniquely determined by their character degrees (counting multiplicities) or equivalently by their

complex group algebras has been answered positively (see [8]).

Notation. If n is an integer then we denote by π(n) the set of all prime divisors of n. If G is a group,

we will write π(G) instead of π(|G|) to denote the set of all prime divisors of the order of G. If N EG

and θ ∈ Irr(N), then the inertia group of θ in G is denoted by IG(θ). Finally, the set of all irreducible

constituents of θG is denoted by Irr(G|θ). Other notation is standard.

2. Background Results

In this section, we present some results that we will need for the proof of Huppert’s Conjecture.

Lemma 2.1. ([6, Lemma 2]). Suppose N EG and χ ∈ Irr(G).

(a) If χN = θ1 + θ2 + · · ·+ θk with θi ∈ Irr(N), then k divides |G/N |. In particular, if χ(1) is prime

to |G/N | then χN ∈ Irr(N).

(b) (Gallagher’s Theorem) If χN ∈ Irr(N), then χψ ∈ Irr(G) for every ψ ∈ Irr(G/N).

Lemma 2.2. ([6, Lemma 3]). Suppose N EG and θ ∈ Irr(N). Let I = IG(θ). Then

(a) If θI =
∑k

i=1 ϕi with ϕi ∈ Irr(I), then ϕGi ∈ Irr(G). Hence, ϕi(1)|G : I| ∈ cd(G).

(b) If ρ ∈ Irr(I) such that ρN = eθ, then ρ = θ0τ0, where θ0 is a character of an irreducible projective

representation of I of degree θ(1) while τ0 is the character of an irreducible projective representation

of I/N of degree e.

The following result will be used to verify step 1 of Huppert’s method.

Lemma 2.3. ([7, Lemma 2.3]). Let G/N be a solvable factor group of G, minimal with respect to

being nonabelian. Then two cases can occur.

(a) G/N is an r-group for some prime r. Hence there exists ψ ∈ Irr(G/N) such that ψ(1) = rb > 1.

If χ ∈ Irr(G) and r - χ(1), then χτ ∈ Irr(G) for all τ ∈ Irr(G/N).

(b) G/N is a Frobenius group with an elementary abelian Frobenius kernel F/N. Then f = |G :

F | ∈ cd(G) and |F/N | = ra for some prime r, and F/N is an irreducible module for the cyclic group
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G/F, hence a is the smallest integer such that ra ≡ 1(mod f). If ψ ∈ Irr(F ) then either fψ(1) ∈ cd(G)

or ra divides ψ(1)2. In the latter case, r divides ψ(1).

(1) If no proper multiple of f is in cd(G), then χ(1) divides f for all χ ∈ Irr(G) such that r - χ(1),

and if χ ∈ Irr(G) such that χ(1) - f, then ra | χ(1)2.

(2) If χ ∈ Irr(G) such that no proper multiple of χ(1) is in cd(G), then either f divides χ(1) or ra

divides χ(1)2. Moreover if χ(1) is divisible by no nontrivial proper character degree in G, then f = χ(1)

or ra | χ(1)2.

Let χ ∈ Irr(G). We say that χ(1) is an isolated degree of G if χ(1) is divisible by no proper nontrivial

character degree of G, and no proper multiple of χ(1) is a character degree of G.

Lemma 2.4. If S is a nonabelian simple group, then there exists a nontrivial irreducible character θ

of S that extends to Aut(S). Moreover the following hold:

(i) if S is an alternating group of degree at least 7, then S has two characters of consecutive degrees

n(n− 3)/2 and (n− 1)(n− 2)/2 that both extend to Aut(S).

(ii) if S is a sporadic simple group or the Tits group, then S has two nontrivial irreducible characters

of coprime degrees which both extend to Aut(S).

(iii) if S is a simple group of Lie type then the Steinberg character StS of S of degree |S|p extends

to Aut(S).

Proof. This is [1, Theorems 2, 3, 4]. �

Lemma 2.5. ([1, Lemma 5]). Let N be a minimal normal subgroup of G such that N ∼= Sk, where S

is a nonabelian simple group. If θ ∈ Irr(S) extends to Aut(S), then θk ∈ Irr(N) extends to G.

3. Verifying Huppert’s Conjecture for F4(2)

Assume from now on that H ∼= F4(2). Using [3], we collect some properties of the character degree

set of H in the following lemma. We first have that

π(F4(2)) = {2, 3, 5, 7, 13, 17}.

Lemma 3.1. Let a and b be nontrivial character degrees of H. The following hold.

(i) If (13 · 17, a) = 1, then a = 224 or a = 22 · 36 · 72.

(ii) The only nontrivial proper power degrees of G are 224 and 22 · 36 · 72.

(iii) H has no consecutive degrees.

(iv) H possesses two irreducible characters χi, i = 1, 2, with degrees 36 · 52 · 72 · 13 and 36 · 52 · 72 · 17,

respectively, such that for each i, no proper multiples of χi(1) is a degree of H.

(v) If a 6= 224, then the 2-part of a is at most 212.

Proof. These results are easily checked given the character table of F4(2) in [3]. �

We define a “mixed” degree of G to be a character degree of G which is divisible by 2 but is not a

power of 2.
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3.1. Verifying Step 1. Suppose that G′ 6= G′′. Then there exists a solvable factor group G/N of G

minimal with respect to being nonabelian. By Lemma 2.3, G/N is an r-group or a Frobenius group.

Case 1: G/N is an r-group for some prime r. Then there exists ψ ∈ Irr(G/N) such that ψ(1) =

rb > 1. As 224 is the only nontrivial prime power degree of H, we deduce that ψ(1) = 224 and so r = 2.

By [3], G has a nonlinear character χ ∈ Irr(G) such that χ(1) = 72 · 17 is odd. As (χ(1), |G : N |) = 1,

by Lemma 2.1, we have χN ∈ Irr(N) and hence by Gallagher’s Theorem, we obtain that χτ ∈ Irr(G)

for all τ ∈ Irr(G/N). Thus 224 < 224χ(1) ∈ cd(G), which is impossible.

Case 2: G/N is a Frobenius group with elementary abelian Frobenius kernel F/N , where |F :

N | = ra for some prime r. In addition, f = |G : F | ∈ cd(G) and f divides ra − 1.

Subcase 2(a): r 6= 2. As 224 is an isolated degree of G and r - 224, we deduce from Lemma 2.3(b)

that f = 224, and hence no multiples of f is in cd(G). Let ψ ∈ Irr(G) with ψ(1) = 72 · 17 and let

ϕ ∈ Irr(F ) be an irreducible constituent of ψ when restricted to F. As ψ(1)/ϕ(1) divides f = 224, we

deduce that ϕ(1) > 1 and hence ϕ(1)f is not a degree of G. Thus ra | ϕ(1)2
2′ = ψ(1)2

2′ = 74 · 172, and

so ra ≤ 74 · 172. As f | ra − 1, we obtain that f = 224 ≤ ra − 1 ≤ 74 · 172, which is impossible.

Subcase 2(b): r = 2. Let χi, i = 1, 2 be two irreducible characters of G in Lemma 3.1(iv). As

both χi(1) are odd, by Lemma 2.3(b), we have that f | χi(1) for all i, and hence f divides the greatest

common divisor of χi(1), which is 36 · 52 · 72. It follows that (f, 13 · 17) = 1 and so by Lemma 3.1(i),

f = 224 or f = 22 · 36 · 72. However both cases are impossible as f is odd. Thus G′ = G′′.

3.2. Verifying Step 2. We continue by proving Step 2 of Huppert’s method. Recall that Step 2

asserts that if G′/M is a chief factor of G, then G′/M ∼= H. Suppose G′/M is a chief factor of G.

As G′ = G′′ by Step 1, G′/M ∼= Sk, where S is a nonabelian simple group. We need to show that

G′/M ∼= F4(2).

(a) Eliminating the alternating groups of degree at least 7. By Lemma 2.4, S possesses two irre-

ducible characters θ1 and θ2 of degrees n(n− 3)/2 and n(n− 3)/2 + 1 = (n− 1)(n− 2)/2, respectively

and both θi extend to Sn. By Lemma 2.5, both θki extend to G and so θki (1) are degrees of G. Assume

first that k ≥ 2. Then both θki (1) are proper nontrivial power degrees and so by Lemma 3.1(ii), each

θki (1) is either 224 or 22 · 36 · 72. As (n− 1, n− 2) = 1, (n, n− 3) = (3, n) and n ≥ 7, we deduce that

both θki (1) cannot be 2-powers. Therefore both θki (1) must be 22 · 36 · 72, which is impossible as θk1(1)

and θk2(1) are distinct. Thus k = 1. But then by Lemma 3.1(iii), G has no consecutive degrees which

is a contradiction as θ2(1) = θ1(1) + 1. Therefore this case cannot happen.

(b) Eliminating the sporadic simple groups or the Tits group. We have π(F4(2)) = {2, 3, 5, 7, 13, 17}.
Since every character degree of S divides some degree of F4(2), we deduce that π(S) ⊆ π(F4(2)). Using

[3], we only need to consider two cases S ∼= J2 or S ∼= 2F4(2)′. In each case, the group S possesses

an irreducible character θ of degree 22 · 32 and 33, respectively and this character extends to its

corresponding automorphism group. Applying Lemma 2.5, we have that each θk(1) is a degree of G,

which is a nontrivial proper power. However 33k and 62k can never be 224 nor 22 ·36 ·72, contradicting

Lemma 3.1(ii).

(c) Eliminating simple groups of Lie type.
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If S is a simple group of Lie type and StS is the Steinberg character of S, then StS(1) is a power of

the prime p, where p is the defining characteristic of the group. Since StS extends to the automorphism

group of S, by Lemma 2.5 we have that StS(1)k is a degree of G. As the only composite power of a

prime among degrees of G is 224, we must have that StS(1)k = 224. Thus, the defining characteristic

of the simple group S must be 2. Let S = S(q1) be defined over a field of q1 elements, where q1 is a

power of the prime 2. Assume that StS(1) = qj1.

We first claim that k = 1. By way of contradiction, assume that k ≥ 2. Let τ ∈ Irr(S) such that

1 6= τ(1) 6= |S|2, and let ψ = τ × StS × · · · × StS ∈ Irr(G′/M). Then this degree which is not the

Steinberg character of F4(2) must divide some degree of G and so the 2-part of this degree which is

q
j(k−1)
1 is at most 212. As qjk1 = 224, we deduce that j(k − 1) ≤ jk/2, which implies that k ≤ 2. Thus

k = 2. Let C be a normal subgroup of G such that C/M = CG/M (G′/M). Then G′C/C ∼= S2 is a

unique minimal normal subgroup of G/C so G/C embeds into Aut(S)oZ2, where Z2 is a cyclic group of

order 2. Let B = Aut(S)2 ∩G/C. Then we obtain that |G/C : B| = 2. Let ψ = 1× StS ∈ Irr(G′C/C).

Since both 1 and StS extend to Aut(S), we deduce that ψ extends to Aut(S)2 and thus ψ extends to

B as G′C/C ∼= S2 ≤ B ≤ Aut(S)2. In particular ψ is B-invariant and since it is not G/C-invariant, we

deduce that B is the inertia group of ψ in G/C. By Lemma 2.2(a), |G/C : B|ψ(1) = 2ψ(1) ∈ cd(G).

Hence 2StS(1) ∈ cd(G). However 1 < 2StS(1) = 213 < 224 and 213 is a degree of G, which contradicts

Lemma 3.1(ii). Thus k = 1.

We will examine each of the families of simple groups of Lie type individually. We will show that if

S is a simple group of Lie type in characteristic 2 and S 6= 2F4(2)′, then S ∼= F4(2). We will prove this

by eliminating other possibilities for S. Assume that S is a simple group of Lie type in characteristic 2

and S is not the Tits group. We have shown that G′/M ∼= S and |S|2 = 224. Observe that if θ ∈ Irr(S)

is extendible to Aut(S), then θ extends to G/CG(G′) and thus θ(1) ∈ cd(G). In fact, we will choose θ

to be a unipotent character of S, and so by results of Lusztig, θ is extendible to Aut(S) apart from

some explicit exceptions. We refer to [2, 13.8, 13.9] for the classification of unipotent characters and

the notion of symbols. In Table 1, for each simple group of Lie type S in characteristic p, we list the

p-part of some unipotent character of S that is extendible to Aut(S).

Case 1: S ∼= G2(q1). Then 224 = q1
6, which implies q1 = 24. By [2, 13.9], S possesses a unipotent

character labeled by the symbol φ′1,3 of S of degree

1

3
q1(q1

4 + q2
1 + 1) =

1

3
24(216 + 28 + 1).

However this degree divides no degree of G.

Case 2: S ∼= F4(q1). We have that 224 = q1
24 and so q1 = 2. As the degrees of S are identical to

the degrees of G, we have that S is possibly F4(2).

Case 3: S ∼= 2B2(q1
2) or S ∼= 2F4(q1

2), q1
2 = 22n+1, n ≥ 1. Then q1

4 = 224 or q24
1 = 224, and hence

q1 = 26 or q1 = 2, respectively. But q1 is not an integer, a contradiction.

Case 4: S ∼= 2G2(q1
2), q1

2 = 32m+1, m ≥ 1. This case cannot happen as the characteristic of S is

3.
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Case 5: S ∼= 3D4(q1). We have that q1
12 = 224, so 22 = q1. Now by [4] S has a degree (q6

1 − 1)2

and hence this degree must divide a degree of G, so (212 − 1)2 must divide a degree of G, which is

impossible.

Case 6: S is isomorphic to one of the remaining simple groups of exceptional Lie type. For

the remaining simple groups of exceptional Lie type, we will use the same general argument. Let

Φy := Φy(q1) denote the yth cyclotomic polynomial. Recall S = S(q1) is a simple group of exceptional

Lie type defined over a field of q1 elements. Suppose the Steinberg character of S has degree q1
j . By

Lemma 2.5, 224 = q1
j , so 2 = q1

j/24. For each of the remaining possibilities for S, there is a mixed

degree of S whose power on q1 is greater than 12j/24 (see Table 1). As the mixed degrees of G have

power at most 12j/24 on q1, we have a contradiction.

Case 7: S ∼= Lεn(2b), where b ≥ 1 and n ≥ 2. We have bn(n− 1) = 48. If n = 2 then b = 24 and so

S = L2(224) and hence S has a character of degree 224 + 1. Obviously this degree divides no degree

of G. Next if n = 3 then b = 8 and so S = Lε3(28). By [2, 13.8], S possesses a unipotent character

parametrized by the partition (1, 2) of degree 28(28 + ε1). However F4(2) has no such degree. If n = 4,

then b = 4. So, S = Lε4(24). In this case, the unipotent character parametrized by the partition (2, 2)

has degree 28(28 + 1). As above, this degree does not belong to cd(G). Thus we can assume that

n ≥ 5. By Table 1, S possesses a unipotent character χ different from the Steinberg character with

χ(1)2 = 2b(n−1)(n−2)/2. Then b(n− 1)(n− 2)/2 ≤ 12. Multiplying both sides by 2n, we obtain

bn(n− 1)(n− 2) = 48(n− 2) ≤ 24n,

and so n ≤ 4, which is a contradiction.

Case 8: S ∼= S2n(q1), or O2n+1(q1), where q1 = 2b, b ≥ 1, n ≥ 2 and S 6= S4(2). As S2n(2b) ∼=
O2n+1(2b), we can assume S = S2n(q1) and S 6= S4(2). We have bn2 = 24. Then n2 divides 24, where

n ≥ 2, which implies that n = 2 and b = 6, thus S = S4(26). By [2, 13.8], S possesses a unipotent

character labeled by the symbol
(

0 1 2
−
)

of degree 26(26 − 1)2/2. However F4(2) has no such character

degree.

Case 9: S ∼= Oε2n(q1), where q1 = 2b, b ≥ 1, and n ≥ 4. We have bn(n − 1) = 24. As n(n − 1)

divides 24 and n ≥ 4, we deduce that n = 4 and b = 2 and so S = Oε8(4). If S = O+
8 (4), then S has a

unipotent character χ with χ(1)2 = 22(42−3·4+3) = 214 by Table 1. However G has no such degree by

[3]. Assume next that S = O−8 (4). By [2, 13.8], S has a unipotent character χ labeled by the symbol(
0 1 2 4

1 2

)
with degree χ(1) = 212(44 + 42 + 1) . However G has no such degree.

This completes the proof of Step 2.

3.3. Verifying Step 3. Let θ ∈ Irr(M) with θ(1) = 1 and let I = IG′(θ). Suppose I < G′. Write

θI = e1φ1 +e2φ2 + · · ·+esφs, where ei ≥ 1 and φi ∈ Irr(I). Since G′/M ∼= F4(2) and MEI < G′, there

exists I ≤ U < G′ such that U/M is maximal in G′/M. Let t = |U : I|. Then φG
′

i (1) = |G′ : U |tφi(1)

must divide some character degree of G and so the index |G′/M : U/M | divides some degree of F4(2).

It follows that one of the following holds:
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Table 1. Some unipotent characters of simple groups of Lie type

S = S(pb) Symbol p-part of degree

Lεn(pb), n ≥ 3 (1n−2, 2) pb(n−1)(n−2)/2

S2n(pb), p = 2
(

0 1 2 ··· n−2 n−1 n
1 2··· n−2

)
2b(n−1)2−1

O+
2n(pb)

(
0 1 2 ··· n−3 n−1
1 2 3··· n−2 n−1

)
pb(n

2−3n+3)

O−2n(pb)
(

0 1 2··· n−2 n
1 2··· n−2

)
pb(n

2−3n+2)

3D4(pb) φ′′1,3 p7b

F4(pb) φ9,10 p10b

2F4(q2) 2B2[a], ε 1√
2
q13

E6(pb) φ6,25 p25b

2E6(pb) φ′′2,16 p25b

E7(pb) φ7,46 p46b

E8(pb) φ8,91 p91b

Case 1: U/M ∼= (21+8
+ × 26) : S6(2). Then for each i, φUi (1) = tφi(1) divides one of the following

numbers in A, where

A = {5 · 23, 7 · 23, 23 · 32, 2 · 32 · 7, 33 · 5, 2 · 3 · 5 · 7}.

Let LE U be such that L/M ∼= 21+8
+ × 26. As L/M is nonabelian, we can always choose λ ∈ Irr(L|θ)

with λ(1) > 1. Since λ(1) = λ(1)/θ(1) divides |L/M | = 215, we deduce that λ(1) | 215 and so 2 | λ(1).

By the transitivity of character induction, we have that θU = (θL)U . As λ is an irreducible constituent

of θL, we deduce that θL = λ+ γ for some character γ of L. It follows that θU = (λ+ γ)U = λU + γU .

Thus every irreducible constituent of λU is also an irreducible constituent of θU . So, if χ ∈ Irr(U |λ),

then χ = φUj for some j with 1 ≤ j ≤ s. Therefore χ(1) = tφj(1) divides a number in A. Moreover

2 | χ(1) for any χ ∈ Irr(U |λ) as λ(1) | χ(1). It follows that the degree of every irreducible constituent

of λU divides some number in A1 = A− {33 · 5}. Let J = IU (λ) be the inertia group of λ in U. Write

λJ =
∑l

i=1 fiµi, where µi ∈ Irr(J |λ). Then for each i, |U : J |µi(1) divides some number in A1 and

µi(1) is even. Note that U/L ∼= S6(2) and LE J ≤ U.
Subcase J � U. As L ≤ J < U and U/L ∼= S6(2), we deduce that J ≤ K � U, where K/L is a

maximal subgroup of U/L ∼= S6(2). Hence some index of a maximal subgroup of S6(2) must divide

one of the numbers in A1. Consulting the list of maximal subgroups of S6(2) in [3], we have that K/L

is isomorphic to one of the following groups

U4(2) · 2, A8 · 2, or 25 : S6.

Assume that K/L ∼= U4(2) : 2. Then |U : K| = |U/L : K/L| = 22 · 7. It follows that |U : K||K :

J |µj(1) = 22 ·7 · |K : J |µj(1) divides 23 ·7, therefore |K : J |µj(1) divides 2 for all j. Hence µj(1) divides

2 for all j and |K : J | divides 2 and thus J E K with index at most 2 and hence J is nonsolvable.

By [5, Theorem B], J/L is solvable since all µj ∈ Irr(J |λ) have 2-power degrees and λ is J-invariant.

However this contradicts our previous claim that J/M is nonsolvable.
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Assume that K/L ∼= A8 · 2. Then |U : K| = 22 · 32. It follows that |U : K||K : J |µj(1) = 22 · 32 · |K :

J |µj(1) divides 23 · 32 and so |K : J |µj(1) divides 2 for all j. Now we can apply the same argument as

in the previous case to get a contradiction.

Assume that K/L ∼= 25 : S6. Then |U : K| = |U/L : K/L| = 32 · 7. It follows that |U : K||K :

J |µj(1) = 32 · 7 · |K : J |µj(1) divides 2 · 32 · 7, thus |K : J |µj(1) divides 2 for all j. Hence µj(1)

divide 2 for all j and |K : J | divides 2 and thus by applying the same argument as above, we get a

contradiction.

Subcase J = U. For each i, µi(1) = fiλ(1) divides one of the numbers in A1. If fj = 1 for some

j, then λ extends to λ0 ∈ Irr(U), so λ0τ ∈ Irr(U |λ) for any τ ∈ Irr(U/L) = Irr(S6(2)), and hence

τ(1)λ0(1) divides one of the numbers in A1. By choosing τ ∈ Irr(U/L) with τ(1) = 33, we obtain

a contradiction. Thus by Lemma 2.2(b), each fi > 1 is a degree of a proper projective irreducible

representation of S6(2), and each fi divides one of the numbers in A1. By [3], we have that fi = 8

for all i. Then µi(1) = fiλ(1) = 8λ(1) and hence µi(1)/λ(1) = 8 for all i, where λ is U -invariant, by

applying [5, Theorem B], we obtain a contradiction as U/L is nonsolvable.

Case 2: U/M ∼= S8(2). Then tφi(1) divides 22 · 3 · 7 or 2 · 5 · 17. Inspecting the list of maximal

subgroups of S8(2), we deduce that t = 1 and so I = U. As the Schur multiplier of S8(2) is trivial,

we deduce that θ extends to θ0 ∈ Irr(I). Gallagher’s Theorem yields that τθ0 are all the irreducible

constituents of θI , where τ ∈ Irr(I/M). If we choose τ ∈ Irr(I/M) such that τ(1) = 7 ·5, then τ(1)θ(1)

divides none of the numbers above.

Case 3: U/M ∼= [220] : (S3 × L3(2)). Then tφi(1) divides 3. Let M ≤ L ≤ U and L ≤ V ≤ U such

that L/M ∼= [220] and V/L ∼= L3(2). As tφi(1) | 3, we deduce that t and φi(1) are odd, so L ≤ I and

that θ extends to λ ∈ Irr(L|θ). Inspecting the list of maximal subgroups of L3(2) ∼= L2(7), we can

deduce that λ is V -invariant, and for any ϕ ∈ Irr(V |θ), as V E I, we deduce that ϕ(1) | φi(1) for some

i and so ϕ(1) | 3. Now [5, Theorem B] yields that V/L is solvable, a contradiction.

3.4. Step 4: Establishing M = 1. We now prove that the subgroup M of G is trivial. By Step 2,

we know that G′/M ∼= F4(2). Hence, when paired with this step, we have that G′ ∼= F4(2). By Step 3,

M ′ = [M,G′] so by [6, Lemma 6], we have that |M : M ′| divides the order of the Schur multiplier of

G′/M ∼= F4(2) which is 2. Thus |M : M ′| divides 2. Assume first that |M : M ′| = 2. It follows that

G′/M ′ ∼= 2 ·F4(2). By [3], 2 ·F4(2) possesses an irreducible character of degree 210 · 52 · 72 · 13 labelled

by χ169, which divides none of the degrees of G. Thus M = M ′. If M is abelian, then we are done. So

assume that M is nonabelian. It follows that if M/N is a chief factor of G′, then M/N ∼= Sk, where

S is a nonabelian simple group and k ≥ 1. By Lemmas 2.4 and 2.5, M/N has a nontrivial irreducible

character ϕ which extends to G′ and so if ψ ∈ Irr(G′/M) with ψ(1) = 224, then by Gallagher’s

Theorem, we deduce that G′ has an irreducible character of degree ψ(1)ϕ(1) = 224ϕ(1) > 224. However

this is impossible as 224ϕ(1) divides no degrees of G. Hence M = 1.

3.5. Step 5: Establishing G = G′ ×CG(G′). We can now conclude Huppert’s argument and verify

the conjecture for the simple group F4(2). If G′ × CG(G′) < G, then two characters of G′ ∼= F4(2) of

degree 1105 are fused in G, producing the forbidden degree 2210 ([3], page 169).
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Hence G = G′ × CG(G′). This concludes the verification of the five steps of Huppert’s argument and

proves Theorem 1.1.

Acknowledgments

The authors are grateful to the referee for the careful reading of the manuscript. His or her comments

and suggestions are very helpful. The first author is financially supported by the NRF (South Africa)

and North-West University (Mafikeng campus).

References

[1] M. Bianchi and et al., Character degree graphs that are complete graphs, Proc. Amer. Math. Soc., 135 no. 3 (2007)

671–676.

[2] R. W. Carter, Finite Groups of Lie Type. Conjugacy classes and complex characters, Pure Appl. Math., Wiley-

Interscience/John Wiley and Sons, New York, 1985.

[3] J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker and R. A. Wilson,Atlas of Finite Groups, Oxford University

Press, Eynsham, 1985.

[4] D. I. Deriziotis and G. O. Michler, Character table and blocks of finite simple Triality groups 3D4(q), Trans. AMS.,

303 (1987) 39–70.

[5] R. J. Higgs, Groups whose projective character degrees are powers of a prime, Glasgow Math. J., 30 no. 2 (1988)

177–180.

[6] B. Huppert, Some simple groups which are determined by the set of their character degrees, I, Illinois J. Math., 44

no. 4 (2000) 828–842.

[7] H. P. Tong-Viet, The simple Ree groups 2F4(q2) are determined by the set of their character degrees, J. Algebra,

339 no. 1 (2011) 357–369.

[8] H. P. Tong-Viet, Simple classical groups of Lie type are determined by their character degrees, J. Algebra, 357

no. 1 (2012) 61–68.

[9] H. P. Tong-Viet and T. P. Wakefield, On the Huppert’s Conjecture for G2(q), q ≥ 7, J. Pure Appl. Algebra., DOI

10.1016/j.jpaa.2012.03.028.

[10] H. P. Tong-Viet and T. P. Wakefield, On the Huppert’s Conjecture for 3D4(q), q ≥ 3, Algebr Represent Theor., DOI

10.1007/s10468-011-9316-0.

[11] T. P. Wakefield, Verifying Huppert’s conjecture for 2G2(q2), Algebr Represent Theor., 14 no. 14 (2011) 609–623.

Hung P. Tong-Viet

School of Mathematical Sciences, North-West University (Mafikeng), Mmabatho 2735 South Africa

Email: tvphihung@gmail.com

Thomas P. Wakefield

Department of Mathematics and Statistics, Youngstown State University, One University Plaza, Youngstown, Ohio 44555

U.S.

Email: tpwakefield@ysu.edu

www.SID.ir

www.SID.ir

