

International Journal of Group Theory ISSN (print): 2251-7650, ISSN (on-line): 2251-7669 Vol. 01 No. 3 (2012), pp. 15-19. © 2012 University of Isfahan

www.ui.ac.ir

A NEW CHARACTERIZATION OF PSL(2,25)

A. KHALILI ASBOEI* AND S. S. SALEHI AMIRI

Communicated by Alireza Abdollahi

ABSTRACT. Let G be a finite group and $\pi_e(G)$ be the set of element orders of G. Let $k \in \pi_e(G)$ and m_k be the number of elements of order k in G. Set $nse(G):=\{m_k | k \in \pi_e(G)\}$. In this paper, we prove that if G is a group such that nse(G)=nse(PSL(2,25)), then $G \cong PSL(2,25)$.

1. Introduction

If n is an integer, then we denote by $\pi(n)$ the set of all prime divisors of n. Let G be a finite group. Denote by $\pi(G)$ the set of primes p such that G contains an element of order p. Also the set of element orders of G is denoted by $\pi_e(G)$. A finite group G is called a simple K_n -group, if G is a simple group with $|\pi(G)| = n$. Set $m_i = m_i(G) = |\{g \in G| \text{ the order of } g \text{ is } i\}$. In fact, m_i is the number of elements of order i in G, and $\operatorname{nse}(G) := \{m_i | i \in \pi_e(G)\}$, the set of sizes of elements with the same order. Throughout this paper, we denote by $\phi(n)$ the Euler totient function. If G is a finite group, then we denote by P_q a Sylow q- subgroup of G and $n_q(G)$ is the number of Sylow q-subgroups of G, that is, $n_q(G) = |Syl_q(G)|$. All further unexplained notations are standard and refer to [1], for example. In [2], it is proved that all simple K_4 -groups can be uniquely determined by $\operatorname{nse}(G)$ and |G|. But, in [3], it is proved that the groups A_4 , A_5 and A_6 , and in [4], the groups PSL(2, q), for $q \in \{7, 8, 11, 13\}$ are uniquely determined by only $\operatorname{nse}(G)$. In [4], the authors gave the following problem:

Problem: Let G be a group such that nse(G) = nse(PSL(2,q)), where q is a prime power. Is G isomorphic to PSL(2,q)?

MSC(2010): Primary: 20D06; Secondary: 20D20.

Keywords: Element order, set of the numbers of elements of the same order, Sylow subgroup.

Received: 15 January 2012, Accepted: 9 April 2012.

^{*}Corresponding author.

In this paper, we give a positive answer to this problem and show that the group PSL(2,q) is characterizable by only nse(G) for q = 25. In fact the main theorem of our paper is as follow:

Main Theorem: Let G be a group such that nse(G)=nse(PSL(2,25)), then $G \cong PSL(2,25)$.

In this paper, we use a new technique for the proof of our main result. Also we apply the technique of used in [4].

2. Preliminary Results

In this section we bring some preliminary lemmas to be used in the proof of main theorem theorem. **Lemma 2.1.** [6] Let G be a finite solvable group and $|G| = m \cdot n$, where $m = p_1^{\alpha_1} \cdots p_r^{\alpha_r}$, (m, n) = 1. Let $\pi = \{p_1, \ldots, p_r\}$ and h_m be the number of π -Hall subgroups of G. Then $h_m = q_1^{\beta_1} \ldots q_s^{\beta_s}$, satisfies the following conditions for all $i \in \{1, 2, \ldots, s\}$:

- (1) $q_i^{\beta_i} \equiv 1 \pmod{p_i}$, for some p_i .
- (2) The order of some chief factor of G is divisible by $q_i^{\beta_i}$.

Lemma 2.2. [7] If G is a simple K_3 - group, then G is isomorphic to one of the following groups: $A_5, A_6, PSL(2,7), PSL(2,8), PSL(2,17), PSL(3,3), PSU(3,3)$ or PSU(4,2).

Lemma 2.3. [8] Let G be a simple K_4 -group. Then G is isomorphic to one of the following groups: (1) A_7 , A_8 , A_9 , A_{10} .

(2) M_{11}, M_{11}, J_2 .

(3) (a) $L_2(r)$, where r is a prime and satisfies $r^2 - 1 = 2^a \cdot 3^b \cdot v^c$ with $a \ge 1, b \ge 1, c \ge 1, v > 3$, is a prime;

(b) $L_2(2^m)$, where satisfies $2^m - 1 = u$, $2^m + 1 = 3t^b$, with $m \ge 2$, u, t are primes, t > 3, $b \ge 1$; (c) $L_2(3^m)$, where m satisfies $3^m + 1 = 4t$, $3^m - 1 = 2u^c$ or $3^m + 1 = 4t^b$, $3^m - 1 = 2u$, with $m \ge 2$, u, t are odd primes, $b \ge 1$, $c \ge 1$;

(d) $L_2(16)$, $L_2(25)$, $L_2(49)$, $L_2(81)$, $L_3(4)$, $L_3(5)$, $L_3(7)$, $L_3(8)$, $L_3(17)$, $L_4(3)$, $S_4(4)$, $S_4(5)$, $S_4(7)$, $S_4(9)$, $S_6(2)$, $O_8^+(2)$, $G_2(3)$, $U_3(4)$, $U_3(5)$, $U_3(7)$, $U_3(8)$, $U_3(9)$, $U_4(3)$, $U_5(2)$, Sz(8), Sz(32), ${}^3D_4(2)$, $2F_4(2)'$.

Lemma 2.4. [2] Let G be a finite group, $P \in Syl_p(G)$, where $p \in \pi(G)$. Let G have a normal series $K \leq L \leq G$. If $P \leq L$ and $p \nmid |K|$, then the following hold: (1) $N_{G/K}(PK/K) = N_G(P)K/K$; (2) $|G : N_G(P)| = |L : N_L(P)|$, that is, $n_p(G) = n_p(L)$; (3) $|L/K : N_{L/K}(PK/K)|t = |G : N_G(P)| = |L : N_L(P)|$, that is, $n_p(L/K)t = n_p(G) = n_p(L)$ for some positive integer t, and $|N_K(P)|t = |K|$.

www.SID.ir

Lemma 2.5. [5] Let G be a finite group and m be a positive integer dividing |G|. If $L_m(G) = \{g \in G | g^m = 1\}$, then $m \mid |L_m(G)|$.

Lemma 2.6. [3] Let G be a group containing more than two elements. Let $k \in \pi_e(G)$ and m_k be the number of elements of order k in G. If $s = \sup\{m_k | k \in \pi_e(G)\}$ is finite, then G is finite and $|G| \leq s(s^2 - 1)$.

Let G be a group such that nse(G)=nse(PSL(2,25)). By Lemma 2.6, we can assume that G is finite. Let m_n be the number of elements of order n. We note that $m_n=k\phi(n)$, where k is the number of cyclic subgroups of order n in G. Also we note that if n > 2, then $\phi(n)$ is even. If $n \in \pi_e(G)$, then by Lemma 2.5 and the above notation we have:

In the proof of the main theorem, we almost apply (*) and the above comments.

3. Proof of the Main Theorem

Let G be a group, such that $\operatorname{nse}(G) = \operatorname{nse}(PSL(2,25)) = \{1,325,624,650,1300,3600\}$. At first, we prove that $\pi(G) \subseteq \{2,3,5,13\}$. Since $325 \in \operatorname{nse}(G)$, it follows that by (*), $2 \in \pi(G)$ and $m_2 = 325$. Let $2 \neq p \in \pi(G)$, by (*), $p|(1 + m_p)$ and $(p - 1)|m_p$, which implies that $p \in \{3,5,13,1301\}$. If $1301 \in \pi(G)$, then by (*), $m_{1301} = 3600$. On the other hand, by (*), we conclude that if $2602 \in \pi_e(G)$, then $m_{2602} = 3600$ and $2602|(1 + m_2 + m_{1301} + m_{2602})$, and hence 2602| 7526, which is a contradiction. That is $2602 \notin \pi_e(G)$. Thus P_{1301} acts fixed point freely on the set of elements of order 2, and $|P_{1301}| |m_2$, which is a contradiction. Hence $1301 \notin \pi(G)$. If 3, 5 and $13 \in \pi_e(G)$, then $m_3 = 650$, $m_5 = 624$ and $m_{13} = 3600$, by (*). Now let $3 \in \pi(G)$, we can see easily that G does not contain any elements of order 9. Hence $\exp(P_3) = 3$. By Lemma 2.5, with considering $m = |P_3|$, we have $|P_3| | (1 + m_3) = 651$. Hence $|P_3| = 3$, then $n_3 = m_3/\phi(3) = 325 | |G|$. Therefore if $3 \in \pi(G)$, then 5 and $13 \in \pi(G)$. If $13 \in \pi(G)$, then we can see easily that G does not contain any elements of order $P_3 = 3.$ By Lemma 2.5, we have $|P_{13}| | (1 + m_{13}) = 3601$. Hence $|P_{13}| = 13$, then $n_{13} = m_{13}/\phi(13) = 300 | |G|$. Therefore if $13 \in \pi(G)$, then 3 and $5 \in \pi(G)$. By above discussion in follow, we show that $\pi(G)$ could not be the sets $\{2\}$ and $\{2,5\}$, and $\pi(G)$ must be equal to $\{2,3,5,13\}$.

<u>**Case a.**</u> Let $\pi(G) = \{2\}$, then $\pi_e(G) \subseteq \{1, 2, 2^2, \dots, 2^5\}$. Hence $|G| = 2^m = 6500 + 624k_1 + 650k_2 + 1300k_3 + 3600k_4$, where m, k_1, k_2, k_3 and k_4 are non-negative integers and $k_1 + k_2 + k_3 + k_4 = 0$. It is easy to check that the equation has no solution. Therefore this case is impossible.

www.SID.ir

Case b. Let $\pi(G) = \{2, 5\}$. Since $5^3 \notin \pi_e(G)$, we have $exp(P_5) = 5$ or 25. If $exp(P_5) = 5$, then $|P_5| | (1 + m_5) = 625$. Hence $|P_5| | 5^4$. If $|P_5| = 5$, then $n_5 = m_5/\phi(5) = 156 | |G|$, since $3 \notin \pi(G)$, we get a contradiction. If $|P_5| = 25$, then $|G| = 2^m \times 25 = 6500 + 624k_1 + 650k_2 + 1300k_3 + 3600k_4$, where m, k_1, k_2, k_3 and k_4 are non-negative integers. Since $\pi_e(G) \subseteq \{1, 2, 2^2, 2^3, 2^4, 2^5, 2^5\} \cup \{5, 5 \times 2^2, 5 \times 2^3\}$, then $0 \leq k_1 + k_2 + k_3 + k_4 \leq 4$. Therefore $6500 \leq |G| \leq 3600 \times 4 + 6500$, then m = 9. Hence $6300 = 624k_1 + 650k_2 + 1300k_3 + 3600k_4$. It is easy to check that the equation has no solution. If $|P_5| = 125$, then $|G| = 2^m \times 125 = 6500 + 624k_1 + 650k_2 + 1300k_3 + 3600k_4$, it is easy to check that these equation has no solution. Similarly if $|P_5| = 625$, we can get a contradiction. Now suppose that $exp(P_5) = 25$. By (*), we have $m_{25} = 650$, 1300 or 3600. Since $|P_5| \mid (1 + m_5 + m_{25})$, we can conclude that $|P_5| = 25$, then $n_5 = m_{25}/\phi(25)$. As $m_{25} = 650$, 1300 or 3600, by Sylow theorem we get a contradiction.

Therefore $\pi(G) = \{2, 3, 5, 13\}$. Now we show that G does not contain any element of order 5×13 . Suppose that $5 \times 13 \in \pi_e(G)$, we know that if P and Q are Sylow 13-subgroups of G, then P and Q are conjugate, which implies that $C_G(P)$ and $C_G(Q)$ are conjugate in G. Therefore $m_{5\times 13} = \phi(5\times 13)$ 13). n_{13} , where k is the number of cyclic subgroups of order 5 in $C_G(P_{13})$. Since $n_{13} = m_{13}/\phi(13) =$ 300, we have $3600 \mid m_{5\times 13}$. On the other hand we have, $5 \times 13 \mid (1 + m_5 + m_{13} + m_{5\times 13}) = 7824$, which is a contradiction. Hence $5 \times 13 \notin \pi_e(G)$. Since $5 \times 13 \notin \pi_e(G)$, then the group P_5 acts fixed point freely on the set of elements of order 13, and so $|P_5| | m_{13} = 3600$, which implies that $|P_5| | 25$. Also we can prove that $26 \notin \pi_e(G)$, then the group P_2 acts fixed point freely on the set of elements of order 13, and so $|P_2| | m_{13} = 3600$, which implies that $|P_2| | 2^4$. We had $|P_3| = 3$ and $|P_{13}| = 13$, since $6500 \le |G|$, hence $|G| = 2^4 \times 3 \times 25 \times 13$ or $|G| = 2^3 \times 3 \times 25 \times 13$. If $|G| = 2^4 \times 3 \times 25 \times 13$, we claim that G is unsolvable group. Suppose G is a solvable group, since $n_{13} = 300$, then by Lemma 2.1, $4 \equiv 1$ (mod 13), which is a contradiction. Hence G is a unsolvable group. Since G is a unsolvable group and $p \parallel |G|$ for $p \in \{3, 13\}$, then G has a normal series $1 \triangleleft N \triangleleft H \triangleleft G$, such that N is a maximal solvable normal subgroup of G and H/N is an unsolvable minimal normal subgroup of G/N. Then H/N is a non-abelian simple K_3 -group or K_4 -group. Let H/N be a non-abelian simple K_3 -group, then by Lemma 2.2, $H/N \cong A_5$. If $P_3 \in Syl_3(G)$, then $P_3N/N \in Syl_3(H/N)$ and $n_3(H/N)t = n_3(G)$ for some positive integer t and $3 \nmid t$, by Lemma 2.4. Since $n_3(H/N) = n_3(A_5) = 10$, then 325 = 10t, which is a contradiction. Hence H/N is a non-abelian simple K_4 -group. By Lemma 2.3, $H/N \equiv PSL(2,25)$. Now set $\overline{H} := H/N \cong PSL(2,25)$ and $\overline{G} := G/N$. On the other hand, we have:

$PSL(2,25)\cong \overline{H}\cong \overline{H}C_{\overline{G}}(\overline{H})/C_{\overline{G}}(\overline{H})\leq \overline{G}/C_{\overline{G}}(\overline{H})=N_{\overline{G}}(\overline{H})/C_{\overline{G}}(\overline{H})\leq Aut(\overline{H}).$

Let $K = \{x \in G \mid xN \in C_{\overline{G}}(\overline{H})\}$, then $G/K \cong \overline{G}/C_{\overline{G}}(\overline{H})$. Hence $PSL(2,25) \leq G/K \leq Aut(PSL(2,25))$, then $G/K \cong PSL(2,25)$, PGL(2,25), $P\Gamma L(2,25)$ or $P\Sigma L(2,25)$. If $G/K \cong P\Sigma L(2,25)$ or $P\Gamma L(2,25)$, since $|G| = 2^4 \times 3 \times 25 \times 13$, which is a contradiction. If $G/K \cong PGL(2,25)$, since |G| = 2 |PSL(2,25)|, then |K| = 1 and $G \cong PGL(2,25)$, on the other hand $nse(G) \neq nse(PGL(2,25))$, we get a contradiction. If $G/K \cong PSL(2,25)$, then |K| = 1. We have $N \leq K$, and N is a maximal

solvable normal subgroup of G, then N = K. Hence $G/N \cong PSL(2, 25)$ and G has a normal subgroup G of order 2, generated by a central involution z. Let x be an element of order 13 in G. Since xz = zx and (o(x), o(z)) = 1, then o(xz) = 26, which is a contradiction. Therefore $|G| = 2^3 \times 3 \times 13 \times 25$. Now we have |G| = |PSL(2, 25)| and nse(G) = nse(PSL(2, 25)). By [2], since PSL(2, 25) is simple K_4 -group, we can conclude that $G \cong PSL(2, 25)$, and the proof is completed.

Acknowledgments

The authors wish to express thanks to Professor Ali Iranmanesh for his guidance and help, and to the referee.

References

- [1] J. H. Conway, R. T. Curtis, S. P. Norton and et al., Atlas of finite groups, Clarendon, Oxford, 1985.
- [2] C. G. Shao, W. Shi and Q. Jiang, Characterization of simple K₄-groups, Front Math., China, 3 (2008) 355-370.
- [3] R. Shen, C. G. Shao, Q. Jiang, W. Shi and V. Mazurov, A New Characterization of A₅, Monatsh Math., (2010) 337-341.
- [4] M. Khatami, B. Khosravi and Z. Akhlaghi, A new characterization for some linear groups, *Monatsh Math.*, 163 no. 1 (2011) 3950.
- [5] G. Frobenius, Verallgemeinerung des sylowschen satze, Berliner sitz, 1895 981-993.
- [6] M. Hall, The Theory of Groups, Macmillan, New York, 1959.
- [7] M. Herzog, On finite simple groups of order divisible by three primes only, J. Algebra, 120 no. 10 (1968) 383-388.
- [8] W. Shi, On simple K_4 -groups, Chinese Science Bull., in Chinese, **36** no. 7 (1991) 1281–1283.

Alireza Khalili Asboei

Department of Mathematics, Babol Education, Mazandaran, Iran Email: khaliliasbo@yahoo.com

Syyed Sadegh Salehi Amiri

Department of Mathematics, Babol Branch, Islamic Azad University, Babol, Iran Email: salehisss@baboliau.ac.ir