

International Journal of Group Theory

ISSN (print): 2251-7650, ISSN (on-line): 2251-7669 Vol. 01 No. 3 (2012), pp. 33-37. © 2012 University of Isfahan

www.ui.ac.ir

ON VARIETAL CAPABILITY OF INFINITE DIRECT PRODUCTS OF GROUPS

H. MIREBRAHIMI* AND B. MASHAYEKHY

Communicated by Hamid Mousavi

ABSTRACT. Recently, the authors gave some conditions under which a direct product of finitely many groups is \mathcal{V} -capable if and only if each of its factors is \mathcal{V} -capable for some varieties \mathcal{V} . In this paper, we extend this fact to any infinite direct product of groups. Moreover, we conclude some results for \mathcal{V} -capability of direct products of infinitely many groups in varieties of abelian, nilpotent and polynilpotent groups.

1. Introduction

R. Baer [1] initiated an investigation of the question "which conditions a group G must fulfill in order to be the group of inner automorphisms of a group E?", that is $G \cong E/Z(E)$. Following M. Hall and J. K. Senior [5], such a group G is called *capable*. Baer [1] determined all capable groups which are direct sums of cyclic groups. As P. Hall [4] mentioned, characterizations of capable groups are important in classifying groups of prime-power order.

F. R. Beyl, U. Felgner and P. Schmid [2] proved that every group G possesses a uniquely determined central subgroup $Z^*(G)$ which is minimal subject to being the image in G of the center of some central extension of G. This $Z^*(G)$ is characteristic in G and is the image of the center of every stem cover of G. Moreover, $Z^*(G)$ is the smallest central subgroup of G whose factor group is capable [2]. Hence G is capable if and only if $Z^*(G) = 1$. They showed that the class of all capable groups is closed under the direct products. Also, they presented a condition in which the capability of a direct product of finitely many of groups implies the capability of each of the factors. Moreover, they proved that if N

MSC(2010): Primary: 20E10; Secondary: 20K25, 20E34, 20D15, 20F18.

Keywords: Capable group, Direct product, Variety of groups, V-capable group, direct limit.

Received: 19 Feburary 2012, Accepted: 14 May 2012.

 $* Corresponding \ author. \\$

is a central subgroup of G, then $N \subseteq Z^*(G)$ if and only if the mapping $M(G) \to M(G/N)$ induced by the natural epimorphism, is monomorphism.

Then M. R. R. Moghadam and S. Kayvanfar [10] generalized the concept of capability to \mathcal{V} -capability for a group G. They introduced the subgroup $(V^*)^*(G)$ which is associated with the variety \mathcal{V} defined by a set of laws V and a group G in order to establish a necessary and sufficient condition under which G can be \mathcal{V} -capable. They also showed that the class of all \mathcal{V} -capable groups is closed under the direct products. Moreover, they exhibited a close relationship between the groups $\mathcal{V}M(G)$ and $\mathcal{V}M(G/N)$, where N is a normal subgroup contained in the marginal subgroup of G with respect to the variety \mathcal{V} . Using this relationship, they gave a necessary and sufficient condition for a group G to be \mathcal{V} -capable.

The authors [7] presented some conditions in which the V-capability of a direct product of finitely many groups implies the V-capability of each of its factors. In this paper, we extend this fact to direct product of an infinite family of groups. Also, we deduce some new results about the V-capability of direct product of infinitely many groups, where V is the variety of abelian, nilpotent, or polynilpotent groups.

2. Main Results

Suppose that \mathcal{V} is a variety of groups defined by the set of laws V. A group G is said to be \mathcal{V} -capable if there exists a group E such that $G \cong E/V^*(E)$, where $V^*(E)$ is the marginal subgroup of E, which is defined as follows [6]:

$$\{g \in E \mid v(x_1, x_2, ..., x_n) = v(x_1, x_2, ..., gx_i, x_{i+1}, ..., x_n)$$

$$\forall x_1, x_2, ..., x_n \in E, \ \forall i \in \{1, 2, ..., n\}\}.$$

If $\psi: E \to G$ is a surjective homomorphism with $\ker \psi \subseteq V^*(E)$, then the intersection of all subgroups of the form $\psi(V^*(E))$ is denoted by $(V^*)^*(G)$. It is obvious that $(V^*)^*(G)$ is a characteristic subgroup of G contained in $V^*(G)$. If $\mathcal V$ is the variety of abelian groups, then the subgroup $(V^*)^*(G)$ is the same as $Z^*(G)$ and in this case $\mathcal V$ -capability is equal to capability [10]. In the following, there are some results which we need them in sequel.

Theorem 2.1. [10] (i) A group G is
$$\mathcal{V}$$
-capable if and only if $(V^*)^*(G) = 1$.
(ii) If $\{G_i\}_{i\in I}$ is a family of groups, then $(V^*)^*(\prod_{i\in I}G_i)\subseteq\prod_{i\in I}(V^*)^*(G_i)$.

As a consequence, if the G_i 's are \mathcal{V} -capable groups, then $G = \prod_{i \in I} G_i$ is also \mathcal{V} -capable. In the above theorem, the equality does not hold in general (see Example 2.3 of [7]).

Theorem 2.2. [10] Let V be a variety of groups with a set of laws V. Let G be a group and N be a normal subgroup with the property $N \subseteq V^*(G)$. Then $N \subseteq (V^*)^*(G)$ if and only if the homomorphism induced by the natural map $VM(G) \to VM(G/N)$ is a monomorphism.

We recall that the Baer-invariant of a group G, with the free presentation F/R, with respect to the variety V, denoted by VM(G), is

$$\mathcal{V}M(G) = \frac{R \cap V(F)}{[RV^*F]} ,$$

where V(F) is the verbal subgroup of F with respect to \mathcal{V} and

$$[RV^*F] = \langle v(f_1, \dots, f_{i-1}, f_i r, f_{i+1}, \dots, f_n) v(f_1, \dots, f_i, \dots, f_n)^{-1} | r \in R,$$

$$f_i \in F, v \in V, 1 \le i \le n, n \in \mathbf{N} > .$$

It is known that the Baer-invariant of a group G is always abelian and independent of the choice of the presentation of G. Also if \mathcal{V} is the variety of abelian groups, then the Baer-invariant of G will be $R \cap F'/[R, F] \cong M(G)$, where M(G) is the Schur multiplier of G (see [6]).

Theorem 2.3. [7] Let V be a variety, A and B be two groups with $VM(A \times B) \cong VM(A) \times VM(B)$, then $(V^*)^*(A \times B) = (V^*)^*(A) \times (V^*)^*(B)$. Consequently, $A \times B$ is V-capable if and only if A and B are both V-capable.

Theorem 2.4. [8] Let $\{G_i; \phi_i^j, I\}$ be a directed system of groups. Then, for a given variety \mathcal{V} , the Baer-invariant preserves direct limit, that is $\mathcal{V}M(\lim G_i) = \lim \mathcal{V}M(G_i)$.

Lemma 2.5. For any family of groups $\{G_i\}_{i\in I}$, consider the directed system $\{\mathcal{G}_{I_{\lambda}}, \phi_{\lambda}^{\lambda'}, \Lambda\}$ consisting of all finite direct products $\mathcal{G}_{I_{\lambda}} = \prod_{i\in I_{\lambda}} G_i$ (I_{λ} is a finite subset of I), with the natural embedding homomorphisms $\phi_{\lambda}^{\lambda'}: \mathcal{G}_{I_{\lambda}} \to \mathcal{G}_{I_{\lambda'}}$ ($I_{\lambda} \subseteq I_{\lambda'}$). Also, the index set Λ is ordered in a directed way so that for any $\lambda, \lambda' \in \Lambda$, $\lambda \leq \lambda'$ if and only if $I_{\lambda} \subseteq I_{\lambda'}$. Then the direct product $\mathcal{G}_{I} = \prod_{i\in I} G_i$ is a direct limit of this directed system.

Proof. Let $\mathcal{G} = \lim_{\stackrel{\longrightarrow}{\to}} \mathcal{G}_{I_{\lambda}}$ be a direct limit of this directed system, with homomorphisms $\phi_{\lambda}: \mathcal{G}_{I_{\lambda}} \to \mathcal{G}$. Also, for any $\lambda \in \Lambda$, consider the embedding homomorphism $\tau_{\lambda}: \mathcal{G}_{I_{\lambda}} \to \mathcal{G}_{I}$. Clearly, for any $\lambda, \lambda' \in \Lambda$ with $\lambda \leq \lambda'$, $\tau_{\lambda'}\tau_{\lambda}^{\lambda'} = \tau_{\lambda}$. Now, by universal property of \mathcal{G} , there exists a unique homomorphism $\phi: \mathcal{G} \to \mathcal{G}_{I}$ such that for any $\lambda \in \Lambda$, $\phi\phi_{\lambda} = \tau_{\lambda}$. To define the inverse homomorphism $\tau: \mathcal{G}_{I} \to \mathcal{G}$, recall that for any $x = \{x_i\}_{i \in I} \in \mathcal{G}_{I}$, there exists a finite subset I_{λ} of I that for any $i \in I \setminus I_{\lambda}$, x_i is trivial in G_i . Hence we can consider x as an element of $\mathcal{G}_{I_{\lambda}}$ and define $\tau(x) = \phi_{\lambda}(x)$. It is easy to see that for any $\lambda \in \Lambda$, $\tau\tau_{\lambda} = \phi_{\lambda}$. Finally, we see that for any $x \in \mathcal{G}_{I}$, $\phi\tau(x) = \phi\phi_{\lambda}(x)$, for some $\lambda \in \Lambda$; and so $\phi\tau(x) = \tau_{\lambda}(x) = x$. Conversely, the equation $\tau\phi = id_{\mathcal{G}}$ holds because of the universal property of the direct limit \mathcal{G} .

By the above notations, we conclude that $\prod_{i\in I}G_i$, $\prod_{i\in I}V^{**}(G_i)$, and $\prod_{i\in I}G_i/V^{**}(G_i)$ are direct limits of directed systems $\{\prod_{i\in I_\lambda}G_i,\phi_\lambda^{\lambda'},\Lambda\}$, $\{\prod_{i\in I_\lambda}V^{**}(G_i),\bar{\phi}_\lambda^{\lambda'},\Lambda\}$, and $\{\prod_{i\in I_\lambda}G_i/V^{**}(G_i),\psi_\lambda^{\lambda'},\Lambda\}$ respectively, where $\bar{\phi}_\lambda^{\lambda'}$'s are restrictions of $\phi_\lambda^{\lambda'}$'s and $\psi_\lambda^{\lambda'}$'s are quotient homomorphisms induced by $\phi_\lambda^{\lambda'}$'s.

Now, suppose that $\{G_i\}_{i\in I}$ is a family of groups in which for any G_i and G_j $(i, j \in I)$, $\mathcal{V}M(G_i \times G_j) \cong \mathcal{V}M(G_i) \times \mathcal{V}M(G_j)$. By Theorem 2.3, $\prod_{i\in I_\lambda} (V^*)^*(G_i) \subseteq (V^*)^*(\prod_{i\in I_\lambda} G_i)$, for any finite subset I_λ of I. Thus, using Theorem 2.2, we have the following monomorphism

$$\mathcal{V}M(\prod_{i\in I_{\lambda}}G_{i})\hookrightarrow \mathcal{V}M(\frac{\prod_{i\in I_{\lambda}}G_{i}}{\prod_{i\in I_{\lambda}}(V^{*})^{*}(G_{i})}).$$

By the fact that direct limit of a directed system preserves exactness of a sequence [8], we obtain the following monomorphism

$$\lim_{i \to I_{\lambda}} \mathcal{V}M(\prod_{i \in I_{\lambda}} G_i) \hookrightarrow \lim_{i \to I_{\lambda}} \mathcal{V}M(\frac{\prod_{i \in I_{\lambda}} G_i}{\prod_{i \in I_{\lambda}} (V^*)^*(G_i)}).$$

Using Theorem 2.4, we conclude the monomorphism

$$\mathcal{V}M(\lim_{\to}\prod_{i\in I_{\lambda}}G_{i})\hookrightarrow \mathcal{V}M(\lim_{\to}\frac{\prod_{i\in I_{\lambda}}G_{i}}{\prod_{i\in I_{\lambda}}(V^{*})^{*}(G_{i})}),$$

and so we have the monomorphism

$$\mathcal{V}M(\prod_{i\in I}G_i)\hookrightarrow \mathcal{V}M(\frac{\prod_{i\in I}G_i}{\prod_{i\in I}(V^*)^*(G_i)}).$$

Finally, by Theorem 2.2, we conclude that

$$\prod_{i \in I} (V^*)^*(G_i) \subseteq (V^*)^*(\prod_{i \in I} G_i).$$

Using these notes, we deduce the following theorem.

Theorem 2.6. Let V be a variety, $\{G_i\}_{i\in I}$ be a family of groups such that for any $i, j \in I$, $VM(G_i \times G_j)$ $\cong VM(G_i) \times VM(G_j)$. Then $(V^*)^*(\prod_{i\in I} G_i) = \prod_{i\in I} (V^*)^*(G_i)$. Consequently, $\prod_{i\in I} G_i$ is V-capable if and only if each G_i is V-capable.

Remark 2.7. (i) In the above theorem, the sufficient condition

$$\mathcal{V}M(A \times B) \cong \mathcal{V}M(A) \times \mathcal{V}M(B)$$

is not necessary (see Example 2.3(iii) of [7]). Also, this condition is essential and can not be omitted (see Example 2.3(i), (ii) of [7]).

(ii) It is known that for varieties of abelian and nilpotent groups, and for any groups A and B, $\mathcal{V}M(A\times B)\cong\mathcal{V}M(A)\times\mathcal{V}M(B)\times T$, where T is an abelian group whose elements are tensor products of the elements of A^{ab} and B^{ab} [3], [9]. Hence in these known varieties, the isomorphism $\mathcal{V}M(A\times B)\cong\mathcal{V}M(A)\times\mathcal{V}M(B)$ holds, where both A^{ab} and B^{ab} have finite exponent with $(\exp(A^{ab}), \exp(B^{ab}))=1$.

In the following, using the main theorem and the above remark, we deduce some corollaries which are generalizations of some results of [7] (Remark 2.4(ii), Corollary 2.5 and Example 2.2).

Corollary 2.8. Let $\{G_i\}_{i\in I}$ be a family of groups whose abelianizations have mutually coprime exponents. Then $\prod_{i\in I} G_i$ is capable $(\mathcal{N}_c$ -capable) if and only if each G_i is capable $(\mathcal{N}_c$ -capable).

Corollary 2.9. Suppose that $\{G_i\}_{i\in I}$ is a family of groups whose abelianizations have mutually coprime exponents. If $\prod_{i\in I} G_i$ is nilpotent of class at most c_1 , then it is $\mathcal{N}_{c_1,\dots,c_s}$ -capable if and only if every G_i is $\mathcal{N}_{c_1,\dots,c_s}$ -capable.

Corollary 2.10. If $\{G_i\}_{i\in I}$ is a family of perfect groups, then $\prod_{i\in I} G_i$ is \mathcal{V} -capable if and only if each G_i is \mathcal{V} -capable, where \mathcal{V} may be each of these three varieties:

- (1) variety of abelian groups,
- (2) variety of nilpotent groups,
- (3) variety of polynilpotent groups.

References

- [1] R. Baer, Groups with preassigned central and central quotient groups, Trans. Amer. Math. Soc., 44 (1938) 378-412.
- [2] F. R. Beyl, U. Felgner, P. Schmid, On groups occurring as center factor groups, J. Algebra, 61 (1979) 161-177.
- [3] G. Ellis, On groups with a finite nilpotent upper central quotient, Arch. Math., 70 (1998) 89-96.
- [4] P. Hall, The classification of prime-power groups, J. reine angew. Math., 182 (1940) 130-141.
- [5] M. Hall, Jr., J. K. Senior, The Groups of Order $2^n (n \le 6)$, Macmillan, New York, 1964.
- [6] G. Karpilovsky, The Schur Multiplier, London Math. Soc. Monographs, New Series 2, Clarendon Press, Oxford University Press, Oxford, 1987.
- [7] H. Mirebrahimi, B. Mashayekhy, On varietal capability of direct product of groups, J. Adv. Res. Pure Math., to appear.
- [8] M. R. R. Moghaddam, The Baer-invarient and the direct limit, Monatsh. Math., 90 (1980) 37-43.
- [9] M. R. R. Moghaddam, The Baer-invarient of a direct product, Arch. Math., 33 (1980) 504-511.
- [10] M. R. R. Moghaddam, S. Keyvanfar, A new notion derived from varieties of groups. Algebra Colloq., 4 no. 1 (1997) 1-11.
- [11] D. J. S. Robinson, A Course in the Theory of Groups, Second Edition, Springer-Verlag, 1996.

Hanieh Mirebrahimi

Department of Pure Mathematics, Center of Excellence in Analysis on Algebraic Structures, Ferdowsi University of Mashhad, P. O. Box 1159-91775, Mashhad, Iran

Email: h_mirebrahimi@um.ac.ir

Behrooz Mashayekhy

Department of Pure Mathematics, Center of Excellence in Analysis on Algebraic Structures, Ferdowsi University of Mashhad, P. O. Box 1159-91775, Mashhad, Iran

Email: bmashf@um.ac.ir