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Abstract. This is a survey article on centralizers of finite subgroups in locally finite, simple groups or

LFS-groups as we will call them. We mention some of the open problems about centralizers of subgroups

in LFS-groups and applications of the known information about the centralizers of subgroups to the

structure of the locally finite group. We also prove the following: Let G be a countably infinite non-

linear LFS-group with a Kegel sequence K = {(Gi, Ni) | i ∈ N }. If there exists an upper bound for

{|Ni| | i ∈ N }, then for any finite semisimple subgroup F in G the subgroup CG(F ) has elements of

order pi for infinitely many distinct prime pi. In particular CG(F ) is an infinite group. This answers

Hartley’s question provided that there exists a bound on {|Ni| | i ∈ N }.

1. Brief History

In 1954 World Mathematical Congress R. Brauer indicated the importance of the centralizers of

involutions in the classification of the finite simple groups. He asked whether it is possible to detect

the finite simple group from the structure of the centralizers of its involutions. Then it became a

program in the classification of the finite simple groups. There were two types of questions:

1) Given the finite simple group G, find the structure of CG(i) for all involutions i ∈ G.

2) Find the structure of the simple group G when the group H = CG(i) is known for an involution

i ∈ G.
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One may ask similar questions for the locally finite, simple groups or LFS-groups as we will call

them. One may generalize these questions from the centralizers of involutions to the centralizers of

arbitrary elements or subgroups.

1′) Given an infinite LFS-group, find the structure of the centralizers of elements (or subgroups) in

particular, centralizers of involutions.

2′) Given the structure of the centralizer of an element in a LFS-group G, find the structure of G.

In order to study the centralizers of elements in LFS-groups one needs to use the information for

the centralizers of elements in finite simple groups. In this case, one of the indispensable tool is to use

the notion of Kegel covers.

2. Kegel Covers and Centralizers

Recall that a Kegel cover K of a locally finite group G is a set K = {(Hi,Mi) | i ∈ I} such that

for all i ∈ I, the group Hi is a finite subgroup of G, Mi is a maximal normal subgroup of Hi and for

each finite subgroup K of G, there exists i ∈ I such that K ≤ Hi and K ∩Mi = 1. The simple groups

Hi/Mi are called Kegel factors of K. Kegel proved that every infinite simple locally finite group has

such a Kegel cover [14], [15, Lemma 4.5]. In the case of G has countably infinite order, we have an

increasing chain of finite subgroups G1 ≤ G2 ≤ G3 ≤ . . . such that G =
⋃
i∈N

Gi, and Gi ∩Mi+1 = 1,

and Gi/Mi is a finite simple group. In this case K = {(Gi,Mi) | i ∈ N} is called a Kegel sequence of

G.

For the study of centralizers of elements in infinite LFS-groups one of the obstacle is the following:

We know the structure of the centralizers of subgroups or elements X in the finite simple section

Hi/Mi and in general CHi/Mi
(X) is not isomorphic or equal to CHi(X)Mi/Mi, for this reason the

information about the centralizers in the finite simple group, in general does not transform directly

to the information on CG(X) =
⋃
i∈I
CHi(X). For the LFS-groups which have a certain type of Kegel

cover, it is possible to transfer, the structure of centralizers of elements in simple finite groups to the

structure in the centralizers of elements in LFS-groups. One obtains quite nice, similar structures

in infinite LFS-groups as in the case of finite simple groups. One can rediscover the importance of

the Jordan-Hölder theorem for finite groups and the extension of this to the groups which has this

property locally. For this, recall that, the class of all locally finite groups having a series of finite length

in which there are at most n, non-abelian simple factors and the rest are locally soluble is denoted by

Fn.

Lemma 2.1. [10, Lemma 2.3] If all finitely generated subgroups of a locally finite group lie in Fn,

then the group also lies in Fn.

The examples of LFS-groups which do not have a certain kind of Kegel cover may have quite different

types of structures in centralizers of elements. Therefore we need to assume that our LFS-group has

a certain type of Kegel cover which enables us to get the required information for this class of groups.

Let L denote the class of all LFS-groups. Let L1 denote the class of LFS-groups G satisfying:
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For a finite subgroup F of order n in G, there exists a Kegel cover K = {(Gi, Ni) | i ∈ I} of G such

that, if π is the set of prime divisors of n,

(i) Oπ′ (Ni) is soluble.

(ii) Ni/Oπ′ (Ni) is hypercentral in Gi.

(iii) Gi/Ni is either an alternating group or a simple group of Lie type over a field of characteristic

not in π.

Let L2 = L \ L1. Then L = L1 ∪ L2.

In the next theorem B. Hartley and the author proved that for a non-linear LFS-group G and an

element x ∈ G of order n, such that G ∈ L1, the structure of centralizers are similar to the case in

finite simple groups.

Theorem 2.2. [10, Theorem B′] Let G be a non-linear LFS-group, and x be an element of G of order

n. Suppose that there exists a Kegel Sequence K = {(Gi, Ni) | i ∈ N} of G such that, if π is the set of

prime divisors of n, then

(i) Oπ′ (Ni) is soluble.

(ii) Ni/Oπ′ (Ni) is hypercentral in Gi.

(iii) Gi/Ni is either an alternating group or a simple group of Lie type over a field of characteristic

not in π.

Then CG(x) belongs to Fn+[ 4
n

] and involves a non-linear simple group.

In the special case in which every finite subset of elements lies in a finite simple group we have the

following.

Theorem 2.3. ([10, Theorem B]) Suppose that every finite set of elements of G lies in a finite simple

subgroup, and suppose that G is a non-linear LFS-group. Then there exists a prime p with the following

property.

Let n be any natural number not divisible by p, let g be any element of order n in G, and let

r(n) = n + [ 4
n ]. Then CG(g) has a series of finite length at most 2r(n) + 1 in which each factor is

either non-abelian simple or soluble. The number of non-abelian simple factors is at most r(n) and at

least one of them is non-linear. The derived length of each soluble factor is at most 6, and there are

at most r(n) + 1 of them.

For simplicity, we will mention the class L1a which denotes the class of LFS-groups in which for a

finite subgroup F of order n there exists a Kegel sequence (Gi, Ni) with Ni = 1 for all i ∈ N and when

Gi is a simple group of Lie type over a field of characteristic p, then p is not in π, the set of prime

divisors of n.

Clearly L1a ⊂ L1. In general there is a standard technique that the results in the class L1a can be

transferred to the class L1 see the proof of Theorem 2.2 and [18, Theorem 5]. The class of simple

linear locally finite groups is in the class L1a see [15, Theorem 4.6].

Let V be a vector space which has finite or infinite dimension over a field K. An invertible linear

transformation g : V → V is called finitary if dim(g − 1)V < ∞. The set of all finitary linear maps
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on V generates the finitary linear, general linear group FGL(V ) and the subgroups of FGL(V ) are

called the finitary linear groups. An arbitrary group G is called a finitary linear group, if it has a

finitary representation on a vector space V over a field K. If the field K is a locally finite field, then

the finitary linear groups are locally finite groups. The class of finitary linear LFS-groups is in L1, by

the classification of J. I. Hall in [8, Page 165] and [7].

But the involvement in these classes are proper L % L1 % L1a. In particular for the groups in L1a

we have Mi = 1, for all i ∈ I. Then G has a local system consisting of finite simple subgroups. But not

all simple locally finite groups has such a type of Kegel cover see [24], [13] and Theorem 2.4. For the

structure of the centralizers of elements in the groups in class L1 and the ones, in class L2 the behavior

are quite different. For this, consider the infinite simple groups constructed by Meierfrankenfeld in

[21]. In fact, this construction of infinite non-linear LFS-groups answers negatively many conjectures

about centralizers of elements in LFS-groups.

Theorem 2.4. (Meierfrankenfeld [21]) Let Π be a non-empty set of primes. Then there exists a

non-linear, locally finite, simple group G such that

(a) The centralizer of every non-trivial Π-element has a locally soluble Π-subgroup of finite index.

(b) There exists an element whose centralizer is a locally soluble Π-group.

Observe that the above groups are defined for any subset of the set of prime numbers. If we choose

the set Π to contain all primes and only one prime p respectively, then it is a consequence of the above

theorem that:

Corollary 2.5. [21, Theorem A] (a) There exists a non-linear LFS-group such that the centralizer of

every non-trivial element is locally soluble-by-finite.

(b) Let p be a prime. Then there exists a non-linear LFS-group with an element whose centralizer

is a p-group.

Then by this construction there are non-linear LFS-groups such that the centralizer of every non-

trivial element is a locally soluble by finite group i.e. has a locally soluble subgroup of finite index.

On the other hand, we proved in Theorem 2.2 that, if a non-linear LFS-group G ∈ L1, then there are

infinitely many elements whose centralizers involve an infinite simple group. Recall that a group X

involves an infinite simple group if there exist subgroups A and B of X such that ACB and B/A is

isomorphic to an infinite simple group. Therefore we may use this information about the centralizers

of elements to decide whether such groups are in class L1 or not. For example, the groups in Theorem

2.4 do not belong to L1. This property answers the question of type 2′, namely whether a group G is

in L1 or not, whenever we know the structure of the centralizers of elements or subgroups.

We asked the following question to B. Hartley as mentioned in [8, Question 3.8].

Question 2.6. Does there exist a non-linear LFS-group in which the centralizer of every non-trivial

element is almost soluble?

Observe that by [8, Lemma 3.7], we cannot expect CG(x) is soluble. But observe also that for the

almost locally soluble case the examples exist by Theorem 2.4.
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Infinite simple locally finite groups are studied in two classes:

(i) Infinite linear LFS-groups.

(ii) Infinite non-linear LFS-groups.

The infinite linear ones are classified in [1], [4], [12], [22], they are the simple groups of Lie type over

a locally finite field. A group is called a non-linear group if it does not have a faithful representation

on a finite dimensional vector space V over a field F . For an infinite set Ω, the group Alt(Ω) forms a

natural example of a non-linear LFS-group.

The following question is asked by Otto H. Kegel in [20, Question 5.18]. Let G be an infinite locally

finite simple group. Is the order |CG(g)| infinite for every element g ∈ G. An affirmative answer is

given in [10].

Theorem 2.7. (Hartley -Kuzucuoğlu ) In an infinite LFS-group, the centralizer of every element is

infinite.

Then a natural generalization of this is the following: Is the centralizer of every finite subgroup in

an infinite simple locally finite group infinite?

The answer is no, even for abelian subgroups, as the following easy example shows. One can see

that in PSL(2, F ) where F is an algebraically closed, locally finite field of odd characteristic, the

subgroup

A = 〈

(
0 1

−1 0

)
Z,

(
λ 0

0 −λ

)
Z | λ2 = −1〉

is an abelian subgroup of order 4 and CPSL(2,F )(A) = A. In fact, it is easy to see that for an infinite

simple linear locally finite group G one can always find, finite subgroups with finite centralizer in G.

Then as was pointed out in [8, Lemma 3.11], for a locally finite group G with Z(G) = 1 having a finite

subgroup H with CG(H) finite is equivalent to having a finite subgroup F ≥ H such that CG(F ) = 1.

For simple non-linear LFS-groups the question of whether centralizers of finite subgroups are infinite

or not is still open, namely:

Question 2.8. (Hartley) Is the centralizer of every finite subgroup in a simple non-linear locally finite

group infinite?

Stronger question:

Question 2.9. Does the centralizer of every element in non-linear LFS-groups contain infinite abelian

subgroups which has elements of order pi for infinitely many distinct prime pi.

The answer to this question in this generality is negative by Theorem 2.4. The question of whether

the centralizer of every involution in an infinite LFS-group involves an infinite simple group is answered

negatively also by Theorem 2.4. On the other hand if we assume that the non-linear LFS-group

belongs to class L1, then the answer to the above question for the involutions is affirmative. This

can be extracted from [3, Theorem]. In fact we proved in [17, Theorem 1] that, centralizer of every
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element of odd order in a non-linear LFS-group involves a non-linear LFS-group provided that every

element lies in a finite simple group.

On the other hand the structure of centralizers of elements in simple locally finite groups gives

information about the structure of proper subgroups and internal structure of subgroup lattice of the

group. We have applied our results also for minimal non-℘-groups. Let ℘ be a group theoretical

property. A group G is called a minimal non-℘ group if G does not have the property ℘ but every

proper subgroup has the property ℘. For minimal non-℘ groups one needs to understand whether such

a group could be a simple group or not, or one needs to classify those locally finite simple minimal

non-℘ groups. For these type of questions, if the centralizers of elements do not have the property

℘, then we may conclude that such a group cannot be a minimal non-℘ group. This technique is

used to show that there exists no simple locally finite minimal non-FC-group [19] and there exists no

simple locally finite barely transitive group [11]. Recall that a group H is an FC-group if for every

element x ∈ H the index |H : CH(x)| is finite. The group G is a minimal non-FC-group, if it is not an

FC-group, but every proper subgroup of G is an FC-group. The group X is called a barely transitive

group if it has a subgroup H of infinite index in X and ∩
g∈X

Hg = 1 and for every proper subgroup K

of X, the index |K : K ∩H| <∞.

In this respect for infinite LFS-groups, centralizers of elements are a natural source to find proper

subgroups. Therefore the information of the structure of the centralizers of elements plays an important

rôle. The question by Kleidman and Wilson in [16]: ”Classify all simple locally finite minimal almost

locally soluble groups” can be considered in this fashion. They proved that, every infinite simple

locally finite minimal non-almost locally soluble group is isomorphic to PSL(2,F) or Sz(F) for some

locally finite field F which has no infinite proper subfields. In particular such groups are linear.

In this spirit we will ask the following:

Question 2.10. Classify all infinite simple locally finite groups in which the centralizer of an involution

is almost locally soluble.

The examples of Meierfrankenfeld in Theorem 2.4 show that, there are infinitely many non-isomorphic

non-linear LFS-groups such that in these groups centralizer of every involution is almost locally sol-

uble. So there are non-linear LFS-groups in which centralizer of every involution (element) is almost

locally soluble. In order to get rid of non-linear LFS-groups of this type, we restrict the question for

those groups G ∈ L1. Then one can extract the following theorem from [3, Theorem 4].

Theorem 2.11. Let G be an infinite simple locally finite group in which centralizer of an involution has

a locally soluble subgroup of finite index. If G has a Kegel cover K such that (Hi,Mi) ∈ K, Mi/O2′(Mi)

is hypercentral in Hi/O2′(Mi). Then G is isomorphic to one of the following:

(i) PSL(2,K) where K is an infinite locally finite field of arbitrary characteristic, PSL(3,F),

PSU(3,F) and Sz(F) where F is an infinite locally finite field of characteristic 2. In this case,

centralizers of involutions are soluble.

(ii) There exist involutions i, j ∈ G such that CG(i) is locally soluble by finite and CG(j) involves

an infinite simple group if and only if G ∼= PSp(4,F) and the characteristic of F is 2.
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Corollary 2.12. If G is as in the above Theorem and if we assume that centralizer of every involution

has a locally soluble subgroup of finite index, then G is as in (i) in the above Theorem.

One of the other question in LFS-groups about the centralizers which is also discussed in [2] is the

following:

Question 2.13. Let G be a LFS-group. Is it true that, if CG(F ) is a linear group for a finite subgroup

F of G, then G is a linear group?

Yet again if we assume that G is in the class L1a, then we have a positive answer for involutions by

a Corollary of [3, Theorem 4].

Corollary 2.14. Let G be an infinite simple locally finite group such that every finite subset lies in a

finite simple subgroup. Let i ∈ G be an involution. Then the following statements hold.

(1) CG(i) is linear if and only if G is linear.

(2) If CG(i) involves a finite non-abelian simple group for some involution i ∈ G, then CG(i)

involves an infinite simple group.

If G ∈ L1a and for every element x ∈ G the group CG(x) is linear, then G is linear can be extracted

from [10, Theorem B] for abelian semisimple subgroups of odd order see [18, Theorem 1].

One may ask the above questions about centralizers of subgroups in LFS-groups for the fixed point

subgroups of finite subgroups of the automorphism groups. For the structure of the centralizers of

elements and fixed points of automorphism see Hartley’s survey in [8] and the paper [9].

Recall that an element in a simple group of Lie type is semisimple if its order and the characteristic

of the field is relatively prime. In the alternating groups all elements are semisimple.

Definition 2.15. Let G be a simple group of Lie type. A finite subgroup A of G is called a totally

semisimple subgroup (the name suggested by A. E. Zalesski) if every element of A is a semisimple

element in G.

For the centralizers of finite abelian semisimple subgroups in infinite LFS-group G we have the

following [18, Theorem 2].

Theorem 2.16. Suppose that G is infinite non-linear and every finite set of elements of G lies in a

finite simple group. Then

(i) There exist infinitely many finite abelian semisimple subgroups F of G and local systems L of G

consisting of simple subgroups such that F is abelian totally semisimple in every member of L.

(ii) There exists a function f from natural numbers to natural numbers independent of G such that

C = CG(F ) has a series of finite length in which at most f(|F |) factors are simple non-abelian groups

for any F as in (i). Furthermore C involves a non-linear simple group. In particular CG(F ) is an

infinite group.
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Definition 2.17. Let G be a countably infinite simple locally finite group and F be a finite subgroup

of G. The group F is called a K-semisimple subgroup of G, if G has a Kegel sequence K = {(Gi,Mi) :

i ∈ N } such that (|Mi|, |F |) = 1, Mi are soluble for all i and if Gi/Mi is a linear group over a field

of characteristic pi, then (pi, |F |) = 1.

In the following Theorem the finite subgroups are not necessarily abelian. Then the proof technique

in Theorem 2.16 and in Theorem 2.18 are quite different. For details see [6].

Theorem 2.18. ([6] Ersoy-Kuzucuoğlu) Let G be a non-linear simple locally finite group which has

a Kegel sequence K = {(Gi, 1) : i ∈ N } consisting of finite simple subgroups. Then for any finite

K-semisimple subgroup F , the centralizer CG(F ) is an infinite group.

Moreover CG(F ) has an infinite abelian subgroup A isomorphic to the restricted direct product of

Zpi for infinitely many distinct prime pi.

By using the above Theorem from the information on the structure of the centralizers of elements

we may decide whether such a simple group is in class L1 or not.

Question 2.19. Is it true that in all LFS-groups centralizers of elements are in class =n for some

n ∈ N.

As we have mentioned in Page 2 one needs a control on the index |CG/N (FN/N) : CG(F )N/N |.
The following lemma gives such a control which is a generalization of [2, Theorem 4.5] from cyclic

subgroups to arbitrary subgroups.

Lemma 2.20. Let G be a finite group and N E G. Let F be a subgroup generated by the set

{a1, a2, . . . ak}. Then

|CG/N (FN/N) : CG(F )N/N | ≤ |CN (F )||N |k−1

Proof. Let {ḡ1, ḡ2, . . . , ḡm} be a set of cosets of CG(F )N/N in CG/N (FN/N) and let {g1, , . . . gm} ⊆
G be a set of coset representatives in G of the above cosets. Let {h1, h2, , . . . hn} ⊆ N be the set of

coset representatives of CN (F ) in N .

Let

M = { ([a1, higj ], [a2, higj ], . . . , [ak, higj ]) : i = 1, . . . n, j = 1, . . .m }

We first observe that |M | = mn. Indeed if x and y are two elements of M , then

x = ([a1, higj ], [a2, higj ], . . . , [ak, higj ]) and y = ([a1, hsgt], [a2, hsgt], . . . , [ak, hsgt]). If x = y, then

[ar, higj ] = [ar, hsgt] for all r = 1, . . . , k. Hence (higj)(hsgt)
−1 ∈ CG(ar) for all r = 1, . . . , t. Since ar’s

generate the group F for r = 1, . . . , k, we have (higj)(hsgt)
−1 = hi(gjg

−1
t )h−1

s ∈ CG(F ). It follows

that (ḡj ḡ
−1
t ) ∈ CG(F )N/N . Hence j = t. Then we have [ar, hi] = [ar, hs] for all r = 1, . . . , k. It

follows that hih
−1
s ∈ CN (ar) for all r = 1, . . . , k and so hih

−1
s ∈ CN (F ). Hence we obtain hi = hs. So

whenever i 6= s or j 6= t we have x 6= y. Hence |M | = mn.

It is clear that, for any r and for any i and j, the element [ar, higj ] ∈ N . Then define a map
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θ : M → N ×N . . .×N︸ ︷︷ ︸
k−times

([a1, higj ], [a2, higj ], . . . , [ak, higj ])→ [a1, higj ], [a2, higj ], . . . , [ak, higj ].

The map θ is one-to-one. Then mn ≤ |N |k and so

|CG/N (FN/N) : CG(F )N/N | = m ≤ |N |
k

n
=

|N |k

|N : CN (F )|
= |CN (F )| |N |k−1.

Remark. Observe that if F is cyclic and CN (F ) = 1, then CG/N (FN/N) = CG(F )N/N .

We call a subgroup F in a LFS-group G with a Kegel cover K = {(Gi, Ni) | i ∈ I} semisimple if

FNi/Ni is a totally semisimple subgroup in the finite simple group Gi/Ni for all i ∈ I.

The following Lemma will extend most of the results for the centralizers of finite subgroups in

LFS-groups.

Proposition 2.21. Let G be a countably infinite non-linear LFS-group with a Kegel sequence K =

{(Gi, Ni) | i ∈ N }. If there exists an upper bound for {|Ni| | i ∈ N }, then for any finite semisimple

subgroup F in G the subgroup CG(F ) has elements of order pi for infinitely many distinct prime pi.

In particular CG(F ) is an infinite group.

Proof. If FNi/Ni is a semisimple subgroup in Gi/Ni, then one can extract from the proof of [6,

Theorem 1.2] that CGi/Ni
(FNi/Ni) has elements of order pi and pi 6= pj when i 6= j. Since by Propo-

sition 2.20 we have a bound for the index |CGi/Ni
(FNi/Ni) : CGiNi/Ni|, for i sufficiently large, the

elements of order pi ∈ CGi/Ni
(FNi/Ni) become elements of CGi(F )Ni/Ni, hence there exist elements

of order pi in CG(F ) for infinitely many distinct prime pi.
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