

International Journal of Group Theory
ISSN (print): 2251-7650, ISSN (on-line): 2251-7669
Vol. 2 No. 1 (2013), pp. 45-47.
© 2013 University of Isfahan

FACTORIZING PROFINITE GROUPS INTO TWO ABELIAN SUBGROUPS

WOLFGANG HERFORT

Communicated by Patrizia Longobardi

In memory of Narain Gupta

ABSTRACT. We prove that the class of profinite groups G that have a factorization G = AB with A and B abelian closed subgroups, is closed under taking inverse limits of surjective inverse systems. This is a generalization of a recent result by K.H. Hofmann and F.G. Russo. As an application we reprove their generalization of Iwasawa's structure theorem for quasihamiltonian pro-p groups.

1. Introduction

In a forthcoming paper, [3], Hofmann and Russo are concerned with pro-p quasihamiltonian groups. By definition, in such a group G every pair X, Y of closed subgroups commutes as sets, i.e. XY = YX. When G is finite then such a group satisfies Iwasawa's structure theorem – namely, $G = A\langle b \rangle$ with A abelian and $\langle b \rangle$ cyclic, and so that $b^{-1}ab = a^{1+p^s}$ holds for some $s \ge 1$ (and $s \ge 2$ if p = 2) and all $a \in A$ – see e.g. [1, Theorem 1.4.3]. Hofmann and Russo term a group *nearabelian* if it satisfies Iwasawa's structure theorem without the restriction on s for p = 2. One of their main results is the fact that nearabelian pro-p groups form a category that is closed under taking strict inverse limits. Here it is meant that the inverse limit over an inverse system (G_i, I, \leq) is *strict* provided that all the bonding maps $\psi_{ij} : G_i \to G_j$ for $i \ge j$ are epimorphisms. We are going to reprove this inverse limit result in a slightly more general context and want to use a well-known result from topology.

For a boolean space X let $\mathcal{C}(X)$ denote the subset of all nonempty closed subsets. The latter set can be equipped with the *Vietoris topology*, namely, when $X = \varprojlim_i X_i$ is the inverse limit of finite discrete spaces, then $\mathcal{C}(X) = \varprojlim_i \mathcal{C}(X_i)$ and we consider the initial topology with respect to canonical epimorphisms $\mathcal{C}(X) \to \mathcal{C}(X_i)$. See e.g. [2].

MSC(2010): Primary: 20E18; Secondary: 20F20.

Keywords: group factorization, pro-p groups, limits.

Received: 1 November 2012, Accepted: 28 December 2012.

Lemma 1.1. Let (X_j, ϕ_{jk}, I) be an inverse system of compact spaces with bonding maps ϕ_{jk} . Suppose there are non-empty closed subsets $F_j \subseteq C(X_j)$ none of them containing the empty set such that $(F_j, C(\phi_{jk}), I)$ is an inverse system of closed subsets of $C(X_j)$ then

- (1) $F := \lim_{i \to j} F_j \in \mathcal{C}(X)$ is not empty; and
- (2) Every $A \in F$ is the inverse limit $A = \lim_{i \to j} \phi_j(A)$ and $\phi_j(A) \in F_j$.

Proof. (1) is a general property of inverse limits.

(2). Note first that $C(\phi_j)(F) \subseteq F_j$. Therefore, for all $j \in I$, $A_j := \phi_j(A) \in F_j$. For $j \leq k$ we have $A_j = \phi_j(A) = \phi_{jk}\phi_k(A) = \phi_{jk}(A_k)$. Now [4, Corollary 1.1.8] shows that $A = \varprojlim_j \phi_j(A_j)$.

2. The Main Result

Theorem 2.1. Let $G = \lim_{i \to i} G_i$ be a strict inverse limit of profinite groups G_i that allow a factorization $G_i = A_i B_i$ with A_i and B_i closed abelian subgroups. Then G = AB for suitable abelian closed subgroups A and B of G.

Proof. We want to employ Lemma 1.1 and set $X_i := G_i \times G_i$. The inverse system (G_i, ψ_{ij}, I) gives rise to an inverse system (X_i, ϕ_{ij}, I) with bonding maps defined by $\phi_{ij}(g, h) := (\psi_{ij}(g), \psi_{ij}(h))$ for all $(g, h) \in G_i \times G_i$. As $G = \lim_{i \to i} G_i$ is strict so is $X := \lim_{i \to i} G_i \times G_i$. Define F_i to be the set of all cartesian products $A \times B$ of closed abelian subgroups A and B in G_i with $G_i = AB$ and note that F_i is not the empty set by assumption. Moreover, if $A \times B \in F_i$ then certainly $C(\phi_{ij})(A \times B) = \psi_{ij}(A) \times \psi_{ij}(B) \in F_j$ since $G_i = AB$ implies $\psi_{ij}(G_i) = \psi_{ij}(AB) = \psi_{ij}(A)\psi_{ij}(B)$.

Having thus established the premises of the Lemma we find that $\lim_{i \to i} F_i$ is not empty. Hence there are closed sets A and B with $\phi_i(A \times B) = \psi_i(A) \times \psi_i(B) \in F_i$, i.e. $G_i = \psi_i(A)\psi_i(B)$, for every $i \in I$. By (2) of the Lemma the sets A and B must be closed subgroups of G and, since all $\psi_i(A)$ and $\psi_i(B)$ are abelian, so are A and B.

For showing that G = AB pick $x \in G$ arbitrary. Then there are $(a_i, b_i) \in A \times B$ with $\psi_i(x) = \psi_i(a_i)\psi_i(b_i)$, i.e. $a_ib_ix^{-1} \in \ker \psi_i$. Fix any open normal subgroup N of G and pass to a cofinal subset of I so that a_i and b_i converge respectively to elements $a \in A$ and $b \in B$. Then $a_i \in aN$ and $b_i \in bN$ holds for a cofinal subset of I and, for the same subset we have $abx^{-1} \in N \ker \psi_i$. Since $\bigcap_i N \ker \psi_i = N$ by [4, Lemma 1.1.16] we can conclude that $abx^{-1} \in N$. As N was an arbitrary open normal subgroup and $\bigcap_N N = 1$ we arrive at x = ab as desired.

Remark that G in the theorem is metabelian since, by Iwasawa's result, every finite factorizable group is metabelian. As a consequence we can reprove [3, Theorem 7.2] in a more direct way.

Corollary 2.2. Let G be a pro-p group in which any two closed subgroups commute as sets. Then there is a closed normal abelian subgroup A of G, an element $b \in G$ and $s \ge 1$ ($s \ge 2$ if p = 2) such that $G = A\overline{\langle b \rangle}$ and, for every $a \in A$, $b^{-1}ab = a^{1+p^s}$.

Proof. For any clopen normal subgroup N of G the quotient group G/N is a finite quasihamiltonian p-group. Therefore we can present $G = \lim_{i \to i} G_i$ as the strict inverse limit of finite quasihamiltonian *www.SID.ir* *p*-groups. Then, by Iwasawa's theorem for finite groups, [1, Theorem 1.4.3], $G_i = A_i \langle b_i \rangle$ with A_i normal in G_i and abelian in G_i and $a_i^{b_i} = a_i^{1+p^{s_i}}$ where $s_i \ge 2$ for p = 2. By Theorem 2.1 there are abelian subgroups A and B such that G = AB. Restricting in the proof of the main theorem the groups A_i to be normal and B_i to be cyclic this proof also yields that A is normal and B is procyclic – the inverse limit of cyclic finite *p*-groups.

Finally observe that $\psi_i(a^b) = \psi_i(a)^{\psi_i(b)} = \psi_i(a)^{1+p^{s_i}}$ holds for all $a \in A$ and the topological generator b of B. We claim that for a cofinal subset of indices i we must have $s_i = s$ for a fixed number $s \in \mathbb{N}$. Indeed

$$\psi_i(a)^{1+p^{s_j}} = \psi_i(a^{1+p^{s_j}}) = \psi_{ij}(\psi_j(a^{1+p^{s_j}})) = \psi_{ij}(\psi_j(a^b)) = \psi_i(a)^{\psi_i(b)} = \psi_i(a)^{1+p^{s_i}}$$

hence $\psi_i(a)^{p^{s_i}-p^{s_j}} = 1$. So, if for a cofinal subset of I we have $s_i \neq s_j$, the latter equation implies that a = 1. If $s_i \geq 2$ for a cofinal subset of I then certainly $s \geq 2$.

The same Lemma from topology can be used to derive a inverse limit result on profinite Frobenius groups. Recall from [4, page 142] that the semidirect product $G = F \rtimes H$ of profinite groups H and F so that for every open normal subgroup N of G the orders |HN/N| and |FN/N| are coprime and $C_G(f) \leq F$ holds for all $1 \neq f \in F$ is termed profinite Frobenius group.

Proof. Using the Lemma as before one can find F and H so that G = FH. Note that $G_i = \psi_i(F) \rtimes \psi_i(H)$ and F becomes normal in G since all F_i are normal in G_i . When N is any open normal subgroup of G then $|\psi_i(FN)/\psi_i(N)|$ and $|\psi_i(HN)/\psi_i(N)|$ are coprime and therefore so are |FN/N| and |HN/N|. Suppose next that $f^g = f \neq 1$ for some $g \in G$. Then $\psi_i(f)^{\psi_i(g)} = \psi_i(f) \neq 1$ holds for a cofinal subset of indices $i \in I$. Hence $\psi_i(g) \in \psi_i(F)$ for these indices i and so $g \in F$. Thus $G = F \rtimes H$ is Frobenius group.

Acknowledgments

The author wishes to thank K.H. Hofmann and F.G. Russo for lively email discussions on the subject.

References

- A. Ballester-Bolinches, R. Esteban-Romero and M. Asaad, *Products of finite groups*, de Gruyter Expositions in Mathematics, Walter de Gruyter GmbH & Co. KG, Berlin, **53** 2010.
- [2] K. H. Hofmann and P. S. Mostert, *Elements of Compact Semigroups*, Charles E. Merrill, Columbus, OH, 1966.
- [3] K. H. Hofmann and F. G. Russo, Near Abelian Profinite Groups, Forum Mathematicum, DOI 10.1515/forum-2012-0125.
- [4] L. Ribes and P. Zalesskii, Profinite Groups, Springer, Berlin, 2nd edition, 2009.

Wolfgang Herfort

Institute of Analysis and Scientific Computation, University of Technology Vienna, Austria Email: wolfgang.herfort@tuwien.ac.at