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Abstract. We survey some recent results on cocharacters of upper triangular matrices. In particular,

we deal both with ordinary and graded cocharacter sequence; we list the principal combinatorial results;

we show different techniques in order to solve similar problems.

1. Introduction

The theory of algebras with polynomial identities (or PI-algebras) has been largely investigated

since the previous century. Moreover, we have that the set of polynomial identities of any associative

algebra A, i.e. T (A), is a two sided ideal of F 〈X〉, called the T-ideal of A. It is well known that if F

is a field of characteristic 0, all the polynomial identities of an algebra A come from the multilinear

ones. If we set Vn be the set of polynomials that are linear in the variables x1, . . . , xn, (multilinear),

we can form for any n ∈ N, the factor space

Vn(A) = Vn/(Vn ∩ T (A)).

We call n-th codimension of A the dimension of Vn(A) and we denote it by the symbol cn(A). Notice

that Vn(A) is an Sn-module so it affords a character called n-th cocharacter of A and we shall denote

it by χn(A). Actually is more efficient to study Vn(A) than Vn ∩ T (A). In fact, as a vector space,

Vn ∩ T (A) grows factorially; on the other hand in [43], Regev, proved that if A is a PI-algebra, its

codimension sequence is exponentially bounded.
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Suppose A is a PI-algebra, then Giambruno and Zaicev proved that the limit

lim
n→∞

n
√
cn(A)

always exists and is a non-negative integer called the PI-exponent of A or, in symbol, exp(A). If we

use the language of varieties, we say that the variety generated by the algebra A is the class

V = V(A) = {B associative algebra | T (A) ⊆ T (B)}.

We say that a variety of algebra V is minimal with respect to its exponent if and only if for any proper

subvariety U of V one has that exp(U) < exp(V). We say that a PI-algebra is minimal if it generates a

minimal variety. If S is any commutative ring with 1, we denote by UTn(S) the set of upper triangular

matrices with entries from S. The T-ideals of the algebras UTn(F ) and UTn(E) have an interesting

property: they are examples of maximal T-ideals of a given exponent of the codimension sequences

(and the corresponding varieties of algebras are minimal varieties of this exponent).

In [23] and [24] Genov and in [33] Latyshev, they proved that every algebra satisfying the identities

of UTn(F ) has a finite basis of its polynomial identities. Later this result was generalized by Latyshev

[32] and Popov [53] for PI-algebras satisfying the identity

[x1, x2, x3] · · · [x3n−2, x3n−1, x3n]

which generates the T-ideal T (UTn(E)) = T (E)n of the algebra UTn(E) of upper triangular matrices

with entries from the infinite dimensional Grassmann algebra E. A famous theorem by Kemer says

that if A is a PI-algebra over F, its T -ideal is finitely generated. For a long time, until Kemer developed

his structure theory, the theorems of Genov, Latyshev and Popov covered all known examples of classes

of PI-algebras with the finite basis property. By the way, the explicit set of generators for the T -ideal

is well known only for a small number of algebras like the 2×2 matrix algebra M2(F ) (Razmyzlov [40],

Drensky [17]), the infinite dimensional Grassmann algebra E (Krakovsky and Regev [31]), the tensor

square of the infinite dimensional Grassmann algebra E ⊗ E (Popov [39]), UTn(F ) and UTn(E).

The explicit form of the multiplicities of χn(A) is also known for few algebras only, among them

the Grassmann algebra E (Olsson and Regev [38]), the 2× 2 matrix algebra M2(F ) (Formanek [22],

Drensky [14]), the algebra UT2(F ) of the 2 × 2 upper triangular matrices (Mishchenko, Regev and

Zaicev [37]), the tensor square E ⊗E of the Grassmann algebra (Popov [39], Carini and Di Vincenzo

[5]).

We consider now the set of indeterminates Xk := {x1, . . . , xk}. The algebra

Fk(A) := F 〈Xk〉/(F 〈Xk〉 ∩ T (A))

is called the relatively free algebra of rank k in the variety of algebras generated by the algebra A.

The Hilbert series H(Fk(A), Tk(A)) of Fk(A) in the indeterminates Tk = {t1, . . . , tk} is a symmetric

function and looks like ∑
λ

mλ(A)Sλ(Tk), λ = (λ1, . . . , λk).
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By a result of Berele [2] and Drensky [18, 17], the multiplicities mλ(A) are the same as in the cochar-

acter sequence {χn(A)}n∈N. Hence, in principle, if we know the Hilbert series H(Fk(A), Tk(A)),

we can find the multiplicities mλ(A) in χn(A) for those λ which are partitions in not more than k

parts. When A is a finite dimensional algebra, the multiplicities mλ(A) are equal to zero for parti-

tions λ = (λ1, . . . , λk), λk = 0, for k > dim(A), see [42]. Hence all mλ(A) can be recovered from

H(Fk(A), Tk) for k sufficiently large.

As we said above, the explicit knowledge of the generators of the T-ideals of PI-algebras is given

for few algebras. In order to understand better the T-ideal of algebras, a useful tool consists in the

study of some “weaker” polynomial identities. In fact, suppose that A is a G-graded algebra, where

G is any group. Consider the disjoint union X =
⋃
g∈GX

g, where for any g ∈ G, Xg is a countable

set of indeterminates, then consider the free algebra F 〈X〉 generated by X. Similarly to the ordinary

case, we can define the G-graded polynomial identities, the TG-ideal, the G-graded codimension and

cocharacter sequences, the G PI-exponent of a G-graded PI-algebra A. Under opportune hypothesis,

some of the theorems for ordinary PI-algebras can be generalized for the graded case.

In this paper we survey some results about the cocharacter sequence of upper triangular matrices

UTn(S). We recall that these objects generate minimal varieties in the case S = F or S = E and,

from the PI-point of view, these are very interesting cases. The survey is divided into two parts.

The first one (Sections 1,2,3,4 and 5) deals with ordinary cocharacter sequences and the second one

(Sections 6,7 and 8) deals with graded cocharacter sequence. More precisely, we introduce the basic

terminology and tools of the theory of PI-algebras, such as the cocharacter and codimension sequence.

Then we give a small account about the representation theory of the symmetric group. In the tird

section we list the cocharacter sequence of some concrete PI-algebras. In the fourth section we start

to investigate methods and techniques used for the computation of cocharacter sequences of upper

triangular matrices. In particular, this section is entirely devoted to the work of Boumova and Drensky

(see [4]). Here we draw up definitions and methods that brought the authors to their main result, i.e.,

an algorithm for the computation of cocharacters for UTn(F ). In Section 5 we show some results of the

author, which determine the exact Hilbert series for the algebra of 2×2 upper triangular matrices with

entries from E and for its subalgebra L that is one of the algebras that generate minimal varieties with

exponent strictly larger than 2. As a consequence, we are able to determine the cocharacter sequence

of those algebras.

The second part of the survey is dedicated to the graded sequence of cocharacters. Section 6 is

introductive and may serve as a “background” for the results of Section 7, where we summarize the

works of Di Vincenzo, Koshlukov and Valenti (see [13]) and Koshlukov and Valenti (see [30]) about

the Y-proper graded identities for UTn(F ) and we give a combinatorial tool for the computation of

Y-proper graded cocharacters in the case UTn(F ) is endowed with the grading of Vasilovsky (see [46]).

The last section deals with the computation of Z2-graded cocharacters of UT2(E). Notice that UT2(E)

is isomorphic to UT2(S) ⊗ E, while in [10] Di Vincenzo and Nardozza described the G × Z2-graded

cocharacters of A ⊗ E in terms of the G-graded cocharacters of A. The result of the last section are

to be seen in light of the result of Di Vincenzo and Nardozza.
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2. PI-algebras and related structures

All the fields we refer to are of characteristic 0 and all algebras are associative with unit.

Definition 2.1. Let F be a field and A be an F -algebra, and let X = {x1, x2, . . .} be a countable set of

variables. We denote by f(x1, . . . , xn) the free associative algebra freely generated by X. We shall call

polynomials the elements of F 〈X〉. We say that a polynomial f(x1, . . . , xn) ∈ F 〈X〉 is a polynomial

identity for A (or A satisfies f(x1, . . . , xn)) if f(a1, . . . , an) = 0 for any a1, . . . , an ∈ A. Moreover we

say that A is a polynomial identity algebra (PI-algebra) if A satisfies a non trivial polynomial. We

denote by T (A) the set of all polynomial identities for A.

It is well known that T (A) is a two-sided ideal also called T-ideal of A because it is invariant under

all endomorphisms of F 〈X〉. For any n ∈ N, we consider the vector space

Vn := spanF 〈xσ(1)xσ(2) · · ·xσ(n)|σ ∈ Sn, xi ∈ X〉.

The latter is called the space of multilinear polynomials of degree n. Since the characteristic of the

ground field F is zero, a standard process of multilinearization shows that T (A) is generated, as a

T -ideal, by the subspaces Vn ∩ T (A). Actually, it is more efficient to study the factor space

Vn(A) := Vn/(Vn ∩ T (A))

in fact, although Vn ∩ T (A) is huge as n goes to infinity, a result of Regev (see [43]) establishes that

if A is a PI-algebra, Vn(A) grows at most exponentially. An effective tool to the study of Vn(A) is

provided by the representation theory of the symmetric group. Indeed, one can notice that Vn is an

Sn-module with respect to the natural left action (from now in advance, all Sn-modules are left), and

Vn ∩ T (A) is an Sn-submodule too, hence the factor space Vn(A) is also an Sn-module.

Definition 2.2. Let A be a PI-algebra and n ∈ N, then we call n-th cocharacter of A, the character of

the Sn-module Vn(A) and we denote it by χn(A). We shall call n-th codimension of A, the dimension

of the F -vector space Vn(A) and we denote it by cn(A). Moreover, we say:

(χn(A))n∈N is the cocharacter sequence of A;

(cn(A))n∈N is the codimension sequence of A.

The commutator of a, b ∈ A is the Lie product [a, b] := ab − ba. One defines inductively higher

(left-normed) commutators by setting

[a1, · · · , an] := [[a1, . . . , an−1], an],

for any n ≥ 2. We denote by B(X) the unitary subalgebra of F 〈X〉 generated by commutators, called

the algebra of proper polynomials. Since our algebras are unitary, then B(X) ∩ T (A) generates the

whole T (A) as a T -ideal. We shall denote by TB(A) the set of proper polynomial identities of A and
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by Γn the set of multilinear polynomials of Vn which are proper. It is not difficult to see that Γn is an

Sn-submodule of Vn and the same holds for Γn ∩ T (A). Hence the factor module

Γn(A) = Γn/(Γn ∩ T (A))

is an Sn-submodule of Vn(A).

Definition 2.3. Let A be a PI-algebra and n ∈ N, then we call n-th proper cocharacter of A, the

character of the Sn-module Γn(A) and we denote it by ξn(A). We shall call n-th proper codimension

of A, the dimension of the F -vector space Γn(A) and we denote it by γn(A).

2.1. Minimal varieties. We draw the principal results of the deep theory of Kemer and we point out

the relation between verbally prime algebras and minimal varieties. We start off with the following

definition:

Definition 2.4. The T -ideal S of F 〈X〉 is called T-semiprime or verbally semiprime if any T -ideal

U such that Uk ⊆ S for some k, lies in S, i.e. U ⊆ S. The T-ideal P is T-prime or verbally prime if

the inclusion U1U2 ⊆ P for some T -ideals U1 and U2 implies U1 ⊆ P or U2 ⊆ P .

The Grassmann algebra E of an infinite dimensional vector space with basis {e1, e2, . . .} has a

natural Z2-grading E = E(0) ⊕ E(1), where

E(0) := span{1, ei1 · · · ei2k |1 ≤ i1 < · · · < i2k, k ≥ 0},

E(1) := span{1, ei1 · · · ei2k+1
|1 ≤ i1 < · · · < i2k+1, k ≥ 0}.

Let p, q, where p ≥ q, be positive integers and let Mp×q(E
(1)) be the vector space of all p× q matrices

with entries from E(1). The vector subspace of Mp+q(E), where Mn(E) is the n × n matrix algebra

with entries from the Grassmann algebra,

Mp,q(E) :=

{(
a b

c d

)
|a ∈Mp(E

(0)), b ∈Mp×q(E
(1)), c ∈Mq×p(E

(1)), d ∈Mq(E
(0))

}
is an algebra. The building blocks in the theory of Kemer are the polynomial identities of the matrix

algebras, the Grassmann algebra and the algebras Mp,q(E). In fact, we have the following theorem:

Theorem 2.5. (1) For every T -ideal U of F 〈X〉 there exist a T-semiprime T -ideal S and a pos-

itive integer k such that

Sk ⊆ U ⊆ S.

(2) Every T -semiprime T-ideal S is an intersection of a finite number of T-prime T-ideals Q1, . . . , Qm,

S = Q1 ∩ · · · ∩Qm.

(3) A T-ideal P is T-prime if and only if P coincides with one of the following T -ideals:

T (Mn(F )), T (Mn(E)), T (Mp,q(E)), (0), F 〈X〉.

We introduce now the notion of variety of algebras.
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Definition 2.6. Given a non-empty set S ⊆ F 〈X〉, the class of all algebras A such that A satisfies f

for all f ∈ S is called the variety V = V(S) determined by S.

A variety is called non-trivial if S 6= ∅ and V is proper if it is non-trivial and contains a non-zero

algebra. For example, the class of all commutative algebras forms a proper variety with S = {[x, y]}.
Notice that if V is the variety determined by the set S and 〈S〉T is the T -ideal of F 〈X〉 generated

by S, then V(S) = V(〈S〉T ) and 〈S〉T =
⋂
A∈V T (A). Let us write 〈S〉T = T (V). Thus to each variety

corresponds a T -ideal of F 〈X〉; the converse is also true (see [25], Theorem 1.2.5).

The work of Giambruno and Zaicev [26] has contributed to clarify why the notion of PI-exponent

is crucial for a classification of the T -ideals in terms of growth of the sequence of their codimension

sequence. In [29], [28] Giambruno and Zaicev proved that:

Theorem 2.7. If A is any PI-algebra, then there exists the limit

exp(A) = lim
n→∞

n
√
cn(A),

and it is a non-negative integer.

This limit is called the PI-exponent of A, or equivalently the PI-exponent of the variety generated

by A. We shall use the symbol exp(A) to indicate the PI-exponent of A. Analogously, if V is the

variety associated to a certain T -ideal S, we shall use exp(V) to indicate the PI-exponent of the variety

generated by S.

Definition 2.8. A variety V (or the corresponding T -ideal I = T (V)) is minimal of exponent d if

exp(V) = d and exp(U) < d for all proper subvarieties U of V.

We should remark that the extremal varieties introduced in [16] are the minimal varieties in our

definition. Drensky also conjectured that:

Conjecture 2.9. A variety is minimal if and only if its T -ideal of identities is a product of verbally

prime T -ideals, i.e., of T -ideals of the verbally prime algebras.

Partial results were obtained by Drensky in [15] and [16] and by Stoyanova-Venkova in [45]. In [26],

Giambruno and Zaicev solved into affirmative the conjecture of Drensky showing how important is

the study of minimal varieties. In particular, we have:

Theorem 2.10. Let V be a variety of algebras over a field F of characteristic zero such that exp(V) ≥
2. Then the following properties are equivalent:

(1) V is a minimal variety of exponent d.

(2) T (V) is a product of verbally prime T -ideals

(3) V = V(G(A)), for some minimal superalgebra A s.t. dimF Ass = d,

where Ass is the maximal semisimple subalgebra of A and G(A) is the Grassmann envelope of A.
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3. Representation of the symmetric group and cocharacters

3.1. Cocharacters of concrete algebras. We shall describe some applications of the representation

theory of the symmetric and the general linear group to the study of PI-algebras. We consider the

following definition:

We recall that a partition of the non-negative integer n is a sequence of integers λ = (λ1, . . . , λr)

such that

λ1 ≥ · · · ≥ λr > 0 and λ1 + · · ·+ λr = n.

In this case we shall write

λ ` n.

We assume that two partitions λ = (λ1, . . . , λr) and µ = (µ1, . . . , µs) are equal if r = s and

λ1 = µ1, . . . , λr = µr.

When λ = (λ1, . . . , λk1+···+kp) and

λ1 = · · · = λk1 = µ1, . . . , λk1+···+kp−1+1 = · · · = λk1+···+kp = µp,

we accept the notation

λ = (µk11 , . . . , µ
kp
p ).

Definition 3.1. Given a partition λ = (λ1, . . . , λr), we associate to λ the skew tableau [λ] having r

rows and the i-th row contains λi squares. We call [λ] the Young diagram of λ.

Moreover we shall indicate by the symbol λ′ the conjugate partition of λ, i.e., the partition obtained

by [λ] transposing its rows as in the figure below:

[λ] = , [λ′] = .

By the Theorem of Maschke, if G is a finite group, every finite dimensional representation is com-

pletely reducible, i.e., the group algebra FG is semisimple and isomorphic to the direct sum of matrix

algebras with entries from division algebras. Moreover, every finite dimensional left G-module is a

direct sum of irreducible G-modules that are isomorphic to a minimal left ideal of FG. If G = Sn,

the symmetric group of order n, the left irreducible Sn-modules (and their related characters) may be

described in terms of partitions and Young diagrams. In fact, we have the following result:

Theorem 3.2. Let F be a field of characteristic zero and n ≥ 1. Then there is a one-to-one corre-

spondence between irreducible Sn-characters and partitions of n. Let {χλ|λ ` n} be a complete set of

irreducible characters of Sn and let dλ = χλ(1) be the degree of χλ, λ ` n. Then

FSn =
⊕
λ`n

Iλ,

where Iλ = eλFSn and eλ =
∑

σ∈Sn χλ(σ)σ is up to a scalar, the unit element of Iλ.
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In light of the previous result, if we decompose the n-th cocharacter of any PI-algebra A into

irreducible, we obtain:

χn(A) =
∑
λ`n

mλχλ.

The explicit form of the multiplicities mλ of χn(A) is known for few algebras only, among them

the Grassmann algebra E (Olsson and Regev [38]), the 2 × 2 matrix algebra M2(F ) (Formanek [22],

Drensky [17]), the algebra UT2(F ) of the 2 × 2 upper triangular matrices (Mishchenko, Regev and

Zaicev [37]), the tensor square E ⊗E of the Grassmann algebra (Popov [39], Carini and Di Vincenzo

[5]). We list the explicit form of the cocharacters for the algebras above.

Theorem 3.3. For any n ≥ 1, we have:

χn(F ) = χ(n).

Theorem 3.4. For any n ≥ 0, we have:

χn(UT2(F )) =

3∑
i=1

m
(i)
λ Sλ(i) ,

where

λ(1) = (n), λ(2) = (k1, k2), λ
(3) = (k1, k2, 1)

and

(1) mλ(1) = 1,

(2) mλ(2) = k1 − k2 + 1,

(3) mλ(3) = k1 − k2 + 1.

Theorem 3.5. Let E be the infinite dimensional Grassmann algebra. Then for any n ≥ 1, we have:

χn(E) =

n∑
k=1

χ(k,1n−k).

Theorem 3.6. For any n ≥ 0, we have:

χn(E ⊗ E) =
∑
λ`n

mλχλ,

where

(1) m(n) = 1;

(2) m(λ1,1) = λ1 − 1;

(3) m(λ1,1l) = 2λ1 − 1 if l ≥ 2;

(4) m(λ1,λ2,2k,1l) = 4(λ1 − λ2 + 1) if λ1 ≥ λ2 ≥ 2 and l ≥ 1, k ≥ 0;

(5) m(λ1,λ2,2k) = 3(λ1 − λ2 + 1) if λ1 ≥ λ2 ≥ 2 and k ≥ 1;

(6) m(λ1,λ2) = 2(λ1 − λ2 + 1) if λ1 ≥ λ2 ≥ 2.
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Theorem 3.7. For any n ≥ 0, we have:

χn(M2(F )) =
∑
λ`n

mλχλ,

where λ = (λ1, λ2, λ3, λ4) and

(1) m(n) = 1;

(2) m(λ1,λ2) = (λ1 − λ2 + 1)λ2, if λ2 > 0;

(3) m(λ1,1,1,λ4) = λ1(2− λ4)− 1;

(4) mλ = (λ1 − λ2 + 1)(λ2 − λ3 + 1)(λ3 − λ4 + 1) for all other partitions.

The following result of Drensky relates the ordinary cocharacters of a PI-algebra A with the proper

cocharacters of A (Drensky, [14], Theorem 12.5.4):

Theorem 3.8. Let A be a PI-algebra and χn(A) =
∑

λ`nmλ(A)χλ its n-th cocharacter. Let ξp(A) =∑
ν`p kν(A)χν its p-th proper cocharacter, then

mλ(A) =
∑
ν∈S

kν(A),

where S = {ν = (ν1, . . . , νn) | λ1 ≥ ν1 ≥ λ2 ≥ ν2 ≥ · · · ≥ λn ≥ νn}.

The next proposition relates the ordinary codimension sequence of a PI-algebra A with the proper

codimension sequence of A (Drensky, [14], Theorem 4.3.12) :

Theorem 3.9. Let A be a PI-algebra and cn(A) its n-th codimension. Let γp(A) its p-th proper

codimension, then

cn(A) =
n∑
p=0

(
n

p

)
γp(A).

3.2. Hilbert series of PI-algebras. We point out the fact that Hilbert series of PI-algebras and

the sequence of cocharacters of PI-algebras are strictly related. We also survey some known results

about Hilbert series in general. We recall that a F -algebra A is Nm-graded if

A =
⊕

(n1,...,nm)∈Nm
A(n1,...,nm),

and

A(n1,...,nm) ·A(n1,...,nm) ⊆ A(n1,...,nm).

Definition 3.10. Let A =
∑

n∈NA
(n1,...,nm) be a Nm-graded algebra and suppose that dimF A

(n1,...,nm) <

∞. The formal power series

H(A, t1, . . . , tm) =
∑

dimF A
(n1,...,nm)tn1

1 · · · t
nm
m

is called the Hilbert series of A in the variables t1, . . . , tm.

If A is a PI-algebra we consider the Hilbert series of a particular quotient space:
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Definition 3.11. Let A be a PI-algebra over F . It is well known that T (A) is a multihomogeneous

ideal of F 〈X〉. Then, if t := (t1, . . . , tm), we denote by

H(A, t) := H
(
F 〈x1, x2, . . . , xm〉/(F 〈x1, x2, . . . , xm〉 ∩ T (A)), t

)
the Hilbert series of the relatively free algebra in m variables and we call H(A, t) the Hilbert series of

A.

Hilbert series is related with usual operations between graded vector spaces. In fact:

Proposition 3.12. Let A, B be Nm-graded algebras and U be a Nm-graded ideal of A. Then

• H(A⊕B, t1, . . . , tm) = H(A, t1, . . . , tm) +H(B, t1, . . . , tm)

• H(A⊗B, t1, . . . , tm) = H(A, t1, . . . , tm) ·H(B, t1, . . . , tm)

• H(A, t1, . . . , tm) = H(A/U, t1, . . . , tm) +H(U, t1, . . . , tm).

Formanek in [21] gave a formula for the Hilbert series of the product of two T -ideals as a function

of the Hilbert series of the factors. In fact, we have the following theorem:

Theorem 3.13. Let U and V be multihomogeneous ideals of the free algebra F 〈x1, . . . , xd〉. Then the

Hilbert series of UV, U and V are related by the equation

H(U, t1, . . . , td)H(V, t1, . . . , td) = H(UV, t1, . . . , td)H(F 〈x1, . . . , xd〉, t1, . . . , td).

Corollary 3.14. Let A, B and C be PI-algebras over an infinite field F such that T (A) = T (B)T (C).

Then the Hilbert series of the relatively free algebras of A, B and C satisfy the equation

H(Fd(A), t1, . . . , td) = H(Fd(B), t1, . . . , td) +H(Fd(C), t1, . . . , td)

+(t1 + · · ·+ td − 1)H(Fd(B), t1, . . . , td)H(Fd(C), t1, . . . , td).

Notice that PI-algebras A having the property T (A) = T (B)T (C) for some PI-algebras B,C are

called algebras with factorable T-ideals. For instance, UTn(F ) and UTn(E) are algebras with fac-

torable T-ideals (see the Introduction and Theorem 4.1). In [3] Berele and Regev translated the result

of the previous corollary in terms of cocharacters. In particular, If χn(A1) and χn(A2) are, respec-

tively, the n-th cocharacter of the F -algebras A1 and A2, then the n-th cocharacter related to the

T-ideal T (A) = T (A1)T (A2) is:

χn(A1) + χn(A2) + χ(1)⊗̂
n−1∑
k=0

χk(A1)⊗̂χn−1−k(A2)

−
n∑
k=0

χk(A1)⊗̂χn−k(A2),

where ⊗̂ denotes the outer tensor product. We may also define the so called proper Hilbert series of

a PI-algebra.
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Definition 3.15. Let A be a PI-algebra over F , then, if t := (t1, . . . , tm), we denote by

HB(A, t) := H
(
B(x1, . . . , xm)/(B(x1, . . . , xm) ∩ T (A)), t

)
the proper Hilbert series of A in m variables.

Indeed, Hilbert and proper Hilbert series of PI-algebras are related. In fact, we have the following:

Proposition 3.16. Let A be a PI-algebra, then

H(A, t) =
m∏
i=1

1

1− ti
·HB(A, t).

A joint use of Proposition 3.16 and Corollary 3.14 gives us the possibility to state the following

formula that is the analog of the formula by Berele and Regev for proper cocharacters of a PI-algebra

A such as TB(A) = TB(A1)T
B(A2). In particular we have:

ξn(A1) + ξn(A2) + ξ(1)⊗̂
n−1∑
k=0

ξk(A1)⊗̂ξn−1−k(A2)

−
n∑
k=0

ξk(A1)⊗̂ξn−k(A2).

We consider now the following definition:

Definition 3.17. Let T be a tableau of shape λ (Young diagram of [λ]) filled in with natural numbers

{1, . . . , k} and let di be the multiplicity of i in T . A tableau is said to be semistandard if the entries

weakly increase along each row and strictly increase down each column. Let

Sλ :=
∑

Tλ semistandard

tTλ ,

where tTλ = td11 t
d2
2 · · · t

dk
k . We say Sλ is the Schur function of λ in the variables t1, . . . , tk.

Hilbert series is strictly connected to the sequence of cocharacters of PI-algebras. Before recalling

the rule (see the work of Berele [3] and the work of Drensky [17] or [18]), we say that for any k, l, n ∈ N
we define by the symbol H(k, l;n) the set of all partitions λ = (λ1, . . . , λm) of n such that λk+1 ≤ l.

Theorem 3.18. Let A be a PI-algebra and let χn(A) =
∑

λ`nmλ(A)χλ its n-th cocharacter. If

H(A, t1, . . . , tk) is the Hilbert series of A, then

H(A, t1, . . . , tk) =
∑
n≥0

∑
λ∈H(k,0,n)

mλ(A)Sλ(t1, . . . , tk).

Moreover, the converse is also true. In fact, the multiplicities mλ(A) can be uniquely determined by

the Hilbert series H(A, t1, . . . , tk) for all λ which are partitions in ≤ k parts.

Hence, if we know the Hilbert series H(A, t1, . . . , tk), we can find the multiplicities mλ(A) in χn(A)

for those λ which are partitions in not more than k parts.

We complete this section citing the following famous result of Amitsur and Regev (see [1]):
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Theorem 3.19. Let A be a PI-algebra, then the Young diagrams corresponding to the irreducible

characters participating in the cocharacter sequence of A are in a hook, i.e. there exist integers k, l

such that

χn(A) =
∑

λ∈H(k,l)

mλχλ, n = 0, 1, 2, . . . ,

where H(k, l) =
⋃
n≥0H(k, l;n).

4. Cocharacters of UTn(F )

In this section we want to draw up the main points of the work of Boumova and Drensky (see [4]).

In this paper they give an easy algorithm which calculates the generating function of the cocharacters

of UTn(F ), i.e., the algebra of upper triangular matrices with entries from the field F = C.

The generators of the T-ideal of polynomial identities of the algebra of upper triangular matrices

with entries from F , have been found by Maltsev in [36]. More precisely,

Theorem 4.1. Let n ∈ N with n ≥ 2. Then T (UTn(F )) is generated as a T-ideal by the identity

[x1, x2][x3, x4] · · · [x2n−1, x2n].

The previous result also says that T (UTn(F )) = (T (F ))n, then, in the light of the result of Gi-

ambruno and Zaicev about Conjecture 2.9 and the fact that T (F ) is a T-prime ideal, UTn(F ) generates

a minimal variety of PI-exponent n. As we said above, in the literature we still do not have an explicit

knowledge of the sequence of cocharacters of UTn(F ) for n ≥ 3.

From now on, we fix the ground field to be the complex field. Let k ∈ N be a non-zero integer and

consider the algebra F [[Tk]] := F [[t1, . . . , tk]] of formal power series in k commuting indeterminates.

Let F [[Tk]]
Sk be the subalgebra of symmetric functions, then every symmetric function f(Tk) in the

variables t1, . . . , tk can be presented as a linear combination of Schur functions, i.e.,

f =
∑
λ

mλSλ(Tk).

For details on the theory of Schur functions see the book by Macdonald ([35]). If f ∈ F [[Tk]]
Sk , we

may associate to f a special series. For this purpose, let us consider the following:

Definition 4.2. Let f ∈ F [[Tk]]
Sk and consider the series

M(f ;Tk) =
∑
λ

mλT
λ
k =

∑
λ

mλt
λ1
1 · · · t

λk
k ∈ F [[Tk]].

We shall call M(f ;Tk) the multiplicities series of f in the set of indeterminates Tk.

It is also convenient to consider the subalgebra F [[Vk]] of F [[Tk]] of the formal power series in the

new set of variables Vk = {v1, . . . , vk}, where v1 = t1, v2 = t1t2, . . . , vk = t1 · · · tk. Then we may also

rewrite the multiplicity series M(f ;Tk) in the following way:

M ′(f ;Vk) =
∑
λ

mλv
λ1−λ2
1 · · · vλkk .
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We also call M ′(f ;Vk) the multiplicity series of f . Notice that mapping

M ′ : F [[Tk]]
Sk → F [[Vk]]

such that M ′ : f(Tk) 7→M ′(f ;Vk) one has a bijection.

Definition 4.3. If A is a PI-algebra, we define the multiplicity series of A as

M(A;Tk) = M(A; t1, . . . , tk) =
∑
λ

mλ(A)T λk =
∑
λ

mλ(A)tλ11 · · · t
λk
k .

Similarly we define the series M ′(A;Vk). Before going further, we want to spend a few words about

the product of Schur functions. It is well known (see [44], Chapter 4) that the product of the Schur

functions

Sλ(t1, . . . , tk)Sµ(t1, . . . , tk)

corresponds in a natural way to the tensor product of the irreducible modules corresponding to the

partitions λ, µ and with abuse of notations we will always write

(λ⊗ µ)↑Sn ,

where λ ` l, µ ` m and l + m = n. Then in the computation of products of Schur functions we are

allowed to use the combinatorial tool of the Littlewwod-Richardson rule. In most of the cases we shall

use a very partial case of this rule, when one of the partitions is (m) or (1m), i.e., the Young rule. We

recall that if [µ] is a subdiagram of [λ], the skew-diagram [λ/µ] is obtained by λ delating the squares

of µ. Translated in the language of Schur functions, the Young rule is stated as:

Proposition 4.4. Let m, k ∈ N be non-zero integer and consider the set Tk of commuting indetermi-

nates, then

S(m)(Tk)Sµ(Tk) =
∑
λ

Sλ(Tk),

where the summation runs over all partitions λ such that the skew Young diagram [λ/µ] is a horizontal

strip of size m.

In [41] Regev introduced the notion of Young-derived sequences of Sn-characters. More precisely:

Definition 4.5. Let {ζn}n∈N be a sequence of Sn-characters, then we say that the sequence is Young-

derived if it is obtained from another sequence {χn}n∈N of Sn-characters by applying the Young rule.

The previous definition may be paraphrased in terms of symmetric functions. In particular, if

f(Tk) =
∑

λ Sλ(Tk) ∈ F [[Tk]]
Sk , we say that it is Young-derived from g(Tk) =

∑
µ Sµ(Tk) ∈ F [[Tk]]

Sk

if and only if the multiplicities mλ and pµ are related with the condition:

m(λ1,...,λk) =
∑

p(µ1,...,µk).

We suggest to compare this result with the Theorem 3.8 of Drensky.
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We note that
∑

m≥0 S(m)(Tk) =
∏k
i=1

1
1−ti . Then it turns out that f is the Young-derived of g if

f(Tk) = g(Tk)
k∏
i=1

1

1− ti
.

With this in mind, we consider the following definition:

Definition 4.6. Let us consider the operator Y : F [[Vk]]→ F [[Vk]] such that

Y (M(g);Tk) = M(f ;Tk) = M

(
g(Tk)

k∏
i=1

1

1− ti
;Tk

)
.

We call Y the Young operator.

The following result of Drensky and Genov [19] translates Young-derived sequences in terms of

multiplicities series.

Proposition 4.7. Let f(Tk) be the Young-derived of the symmetric function g(Tk). Then

Y (M(g);Tk) = M(f ;Tk) = M

(
g(Tk)

k∏
i=1

1

1− ti
;Tk

)

=
k∏
i=1

1

1− ti

∑
(−t2)ε2 · · · (−tk)εkM(g; t1t

ε2
2 , t

1−ε2
2 tε33 , . . . , t

1−εk−1

k−1 tεkk t
1−εk
k ),

where the summation runs on all ε2, . . . , εk ∈ {0, 1}.

Now we have the main result by Boumova and Drensky ([4]):

Theorem 4.8. The Hilbert series H(UTn(F ), Tk) of the algebra of upper triangular matrices with

entries in F is:

H(UTn(F ), Tk) =
1

t1 + · · ·+ tk − 1

((
1 + (t1 + . . .+ tk − 1)

k∏
i=1

1

1− ti

)n
− 1

)

=
k∑
j=1

(
k

j

)( k∏
i=1

1

1− ti

)j
(t1 + · · ·+ tk − 1)j−1.

In the light of Proposition 4.7, Theorem 4.8 may be restated in order to give an easy algorithm to

compute the multiplicities series of UTn(F ). Here we recall the result:

Corollary 4.9. Let Y be the linear operator which sends the multiplicity series of the symmetric

function g(Tk) to the multiplicity series of its Young-derived:

Y (M(g);Tk) = M

(
g(Tk)

k∏
i=1

1

1− ti
;Tk

)
.

Then the multiplicity series of UTn(F ) is

M(UTn(F );Tk) =
k∑
j=1

j−1∑
q=0

∑
λ`q

(−1)j−q−1
(
k

j

)(
j − 1

q

)
dλY

j(T λk ),

www.SID.ir

www.SID.ir


Arc
hive

 of
 S

ID

Int. J. Group Theory 2 no. 1 (2013) 49-77 L. Centrone 63

where dλ is the degree of the irreducible Sq-character χλ and T λk = tλ11 · · · t
λk
k for λ = (λ1, . . . , λk).

Always in [4] the authors described the partitions λ with mλ(UTn(F )) 6= 0 and the explicit form of

the multiplicities for the partitions of “maximal” possible shape.

5. Two algebras generating minimal varieties of exponent 3 and 4

In this section we list the results concerning the Hilbert series, the proper Hilbert series and cochar-

acters of two algebras generating minimal varieties of PI-exponent 3 and 4. We start with a classical

result of Lewin (see [34]) that is the key tool in what follows.

Let I and J be two T -ideals. Consider the quotient algebras F 〈X〉/I, F 〈X〉/J and let U be a

F 〈X〉/I-F 〈X〉/J-bimodule. We define:

R =

(
F 〈X〉/I U

0 F 〈X〉/J

)
.

Fix ui a countable set of elements of U . Then ϕ : xi → ai defines an algebra homomorphism, where:

ai =

(
xi + I ui

0 xi + J

)
.

If f(x1, . . . , xn) ∈ F 〈X〉 one has that f(x1, . . . , xn)→ f(a1, . . . , an), where:

f(a1, . . . , an) =

(
f(x1, . . . , xn) + I δ(f)

0 f(x1, . . . , xn) + J

)
and δ(f) is an element of U . Then IJ ⊆ ker(ϕ) = I ∩ J ∩ ker(δ(f)) and

δ : f(x1, . . . , xn)→ U

is an F -derivation.

Theorem 5.1. If {ui} is a free generating set of the bimodule U then for the homomorphism ϕ defined

by {ui}, we have ker(ϕ) = IJ.

Corollary 5.2. If the bimodule U contains a countable free generating set {ui}, then T (R) = IJ.

Let A,B be F -algebras, suppose they are both PI-algebras and let U be an A−B-bimodule, then

we can consider

R =

(
A U

0 B

)
that is still an F -algebra and a PI-algebra such that T (R) ⊇ T (A)T (B). Suppose now that T (R) =

T (A)T (B), then we may use Corollary 3.14 in order to compute its Hilbert series. We consider the

following algebras:

L =

(
E(0) E

0 E

)
, UT2(E) =

(
E E

0 E

)
.

In [27] Giambruno and Zaicev listed five algebras such that a variety has PI-exponent strictly

greater than 2 if and only if some of the five algebras from the list belong to the variety. One of
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these five algebras is L. The variety generated by the algebra L was studied by Stoyanova-Venkova in

[45] where she described its proper cocharacter sequence which, in principle, determines the ordinary

cocharacter sequence. In [11], Di Vincenzo, Drensky and Nardozza described asymptotically its proper

subvarieties. We also remark that L is a proper subalgebra of UT2(E). In what follows we present

the results of the author ([6]) concerning the Hilbert series of L and UT2(E). Notice also that in light

of Theorem 5.1 and Corollary 5.2, we have

T (L) = T (E(0))T (E) = T (F )T (E)

and

T (UT2(E)) = T (E)T (E).

Hence we are able to use Corollary 3.14 in order to compute the Hilbert series and we may compare

such results with the formula of Berele and Regev we showed in the second section of this paper. We

start off with the algebra L.

Theorem 5.3.

H(L, t) =
∑

mλSλ,

where λ = (k1, k2, 1
l) or λ = (k1, k2, 2, 1

l). If λ = (k1, k2, 1
l) then:

(1) mλ = 4(k1 − k2 + 1) if k2 ≥ 2 and l ≥ 1

(2) mλ = 2k − 1 if λ = (k, 1l) and l ≥ 2,

(3) mλ = 2(k1 − k2 + 1) if λ = (k1, k2),

(4) mλ = k if λ = (k, 1),

(5) mλ = 1 if λ = (k).

If λ = (k1, k2, 2, 1
l), then:

mλ = 2(k1 − k2 + 1).

By Theorem 3.18 we are able to determine the explicitly the cocharacter sequence of L. Here we

have an example:

Example 5.4.

χ1(L) = (1),

χ2(L) = (2) + (12),

χ3(L) = (3) + 2(2, 1) + (13),

χ4(L) = (4) + 3(3, 1) + 2(22) + 3(2, 12) + (14),

χ5(L) = (5) + 4(4, 1) + 4(3, 2) + 5(3, 12) + 4(22, 1) + 3(2, 13) + (15),

χ6(L) = (6)+5(5, 1)+6(4, 2)+7(4, 12)+8(3, 2, 1)+2(32)+5(3, 13)+2(23)+4(22, 12)+3(2, 14)+(16).
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We consider now UT2(E), then as we said above, T (UT2(E)) = T (E)T (E) and we are allowed

to use the formula by Berele and Regev. By the way, the main combinatorial problem with that

formula is that we still do not have a good algorithm for the computation of the outer tensor product

χk(E)⊗̂χn−k(E). We avoid this problem computing the proper Hilbert series of UT2(E). In fact, it is

well known (see for example Chapters 4 and 12 of [14],) that for any n ≥ 1:

ξn(E) =

{
χ∅ if n is odd;

χ(1n) if n is even.

By the formula for proper cocharacters of a factorable PI-algebra, this means that we have just to

apply several times the Young rule in order to compute the proper cocharacter sequence of UT2(E).

After that, Theorem 3.8 will give us the complete sequence of ordinary cocharacters applying once

more the Young rule. In what follows we list the results:

Theorem 5.5.

HB(UT2(E), t) =
∑

mλSλ,

where

λ = (k, 2m, 1l) or λ = (k, 3, 2m, 1l). If λ = (k, 2m, 1l), then:

(1) mλ = 2(l + 1) if k ≥ 3,m ≥ 1,

(2) mλ = l + 1 if m ≥ 2,

(3) mλ = l if k ≥ 3,m = 0,

(4) mλ =

{
1 if l is even

0 if l is odd
if m = k = 0,

(5) mλ =

{
l
2 if l is even
l+1
2 if l is odd

if k = 2,m = 0.

If λ = (k, 3, 2m, 1l), then:

mλ = l + 1.

Theorem 5.6.

H(UT2(E), t) =
∑

mλSλ,

where λ = (k1, k2, 2
m, 1l) or λ = (k1, k2, 3, 2

m, 1l).

If λ = (k1, k2, 2
m, 1l), then:

(1) mλ = 12(k1 − k2 + 1)(l + 1) if k1 ≥ k2 ≥ 3, m ≥ 1,

(2) mλ = 4(k1 − k2 + 1)(2l + 1) if k1 ≥ k2 ≥ 3, m = 0,

(3) mλ = 8(k1 − 2)(l + 1) + 4(l + 1) if k1 ≥ k2 = 2, m ≥ 1,

(4) mλ = 3(k1 − 2)(2l + 1) + 3l + 2 if k1 ≥ k2 = 2, m = 0,

(5) mλ = (k1 − 2)(2l − 1) + l + 1 if k1 ≥ 2, k2 = 0, m = 0, l ≥ 1,

(6) mλ = 1 if λ = (1l) or λ = (k).

If λ = (k1, k2, 2
m, 1l), then:

mλ = 4(k1 − k2 + 1)(l + 1) if k2 ≥ 3, m ≥ 1.
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By Theorem 3.18 we are able to determine explicitly the cocharacter sequence of UT2(E). Here we

have an example:

Example 5.7.

χ1(R) = (1),

χ2(R) = (2) + (12),

χ3(R) = (3) + 2(2, 1) + (13),

χ4(R) = (4) + 3(3, 1) + 2(22) + 3(2, 12) + (14),

χ5(R) = (5) + 4(4, 1) + 5(3, 2) + 6(3, 12) + 5(22, 1) + 4(2, 13) + (15),

χ6(R) = (6)+5(5, 1)+8(4, 2)+9(4, 12)+14(3, 2, 1)+4(32)+9(3, 13)+(23)+8(22, 12)+5(2, 14)+(16).

6. Graded identities and related graded structures

As long as we said above, the generators of the T-ideal of PI-algebras is well known only for some

classes of associative PI-algebras. Keeping this in mind, we are allowed to study something ”more

simple”, i.e., we try to find polynomial identities such that their indeterminates are in somewhat sense

specialized. This is the case of graded identities of graded algebras. In what follows we shall give a

small account about the graded structures that we shall use later on.

Definition 6.1. Let G be a group and A an algebra over a field F. We say that the algebra A is

G-graded if A can be written as the direct sum of subspaces A =
⊕

g∈GA
(g) such that for all g, h ∈ G,

one has that A(g)A(h) ⊆ A(gh).

Example 6.2. Let A be any algebra and G be a group, then A inherits a G-grading by setting A = A(1G)

and A(g) = 0 for any g 6= 1G. We shall call this grading the trivial grading.

Example 6.3. Let A = F 〈X〉, then A has a natural Z-grading by setting

A =
⊕
n∈Z

A(n),

where A(n) = 0 if n < 0, and A(n) is the linear span of all monomials of total degree n, in case n ≥ 0.

Example 6.4. Let us consider Mn(F ) and let B = {e1,1, e1,2, . . . , en,n} be a basis of Mn(F ) where the

matrices ei,j are the unit matrices. Consider the following map

‖ ‖ : B → Zn

such that ‖ei,j‖ = [j − i]n. The map ϕ induces a Zn-grading on Mn(F ) introduced by Vasilovsky in

[46]. More precisely, Mn(F )(0) consists of matrices of the form
a1,1 0 · · · 0

0 a2,2
...

...
. . .

0 · · · 0 an,n

 ,
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where a1,1, a2,2, . . . , an,n ∈ F, and for 0 ≤ t ≤ n− 1, Mn(F )(t) consists of the matrices of the form

0 · · · 0 a1,t+1 · · · · · · 0
...

...
... a2,t+2

...
...

...
...

. . .
...

0 · · · 0 0 · · · · · · an−t,n

an−t+1,1 · · · 0 0 · · · · · · 0
...

. . .
...

...
...

0 · · · an,t 0 · · · · · · 0


,

where a1,t+1, a2,t+2, . . . , an−t,n, an−t+1,1, an−t+2,2, . . . , an,t ∈ F . Indeed the grading of Vasilovsky may

be extended in a natural way to UTn(F ).

Let {Xg | g ∈ G} be a family of disjoint countable sets and consider

X =
⋃
g∈G

Xg.

We shall denote by F 〈X〉 the free associative algebra freely generated by the set X. An indeterminate

x ∈ X is said to be of homogeneous G-degree g, written ‖x‖ = g, if x ∈ Xg. We always write xg if

x ∈ Xg. The homogeneous G-degree of a monomial m = xi1xi2 · · ·xik is defined to be

‖m‖ = ‖xi1‖ · ‖xi2‖ · · · · · ‖xik‖.

For every g ∈ G, we denote by F 〈X〉(g) the subspace of F 〈X〉 spanned by all the monomials having

homogeneous G-degree g. Notice that F 〈X〉(g)F 〈X〉(g′) ⊆ F 〈X〉(gg′) for all g, g′ ∈ G. Thus

F 〈X〉 =
⊕
g∈G

F 〈X〉(g)

proves F 〈X〉 to be a G-graded algebra. The elements of the G-graded algebra F 〈X〉 are referred to

as G-graded polynomials or, simply, graded polynomials.

Definition 6.5. If A is a G-graded algebra, a G-graded polynomial f(x1, . . . , xn) is said to be a graded

polynomial identity for A if

f(a1, a2, · · · , an) = 0

for all a1, a2, · · · , an ∈
⋃
g∈GA

g such that ak ∈ A‖xk‖, k = 1, · · · , n. Moreover, we denote by TG(A)

the ideal of G-graded polynomial identities for A.

As long as for the ordinary case, the theory of G-graded PI-algebras passes through the representa-

tion theory of the symmetric group. More precisely for any n ∈ N, we study the following Sn-modules:

V G
n = span〈xg1σ(1)x

g2
σ(2) · · ·x

gn
σ(n)|gi ∈ G, σ ∈ Sn〉.

The elements in V G
n will be called the multilinear polynomials of degree n of F 〈X〉 and it turns out

that V G
n is a left Sn-module under the natural action of the symmetric group Sn. In analogy to the
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ordinary case, we consider the following:

V G
n (A) := V G

n /(V
G
n ∩ TG(A)).

It turns out that V G
n (A) is a Sn-module, too.

Definition 6.6. We call n-th graded cocharacter of A, the character of the Sn-module V G
n (A) and we

denote it by χGn (A). We call n-th graded codimension of A, the dimension of V G
n (A) and we denote it

by cGn (A). We say that(
χGn (A)

)
n∈N is the G-graded cocharacter sequence of A,(

cGn (A)
)
n∈N is the G-graded codimension sequence of A.

Assume that |G| = r and that G = {g1, . . . , gr}. Now, for lg1 , . . . , lgr ∈ N let us consider the blended

components of the multilinear polynomials in the indeterminates labelled as follows: xg11 , . . . , x
g1
lg1
,

then xg2lg1+1, . . . , x
g2
lg1+lg2

and so on. We denote this linear space by V G
lg1 ,...,lgr

. Of course, this is a left

Slg1 × · · · × Slgr -module. We shall denote by χGlg1 ,...,lgr
(A) the character of the module

V G
lg1 ,...,lgr

(A) := V G
lg1 ,...,lgr

/(V G
lg1 ,...,lgr

∩ TG(A))

and by cGlg1 ,...,lgr
(A) its dimension.

Since the ground field F is infinite, a standard Vandermonde-argument yields that a polynomial

f is a G-graded polynomial identity for A if and only if its homogeneous components (with respect

to the ordinary N-grading), are identities as well. Moreover, since char(F ) = 0, the well known

multilinearization process shows that the TG-ideal of a G-graded algebra A is determined by its

multilinear polynomials, i.e., by the various V G
lg1 ,...,lgr

(A) for ni ∈ N. We remark that, given the

cocharacter χGlg1 ,...,lgr
(A), the graded cocharacter χGn (A) is known as well. More precisely, the following

is due to Di Vincenzo (see [9], Theorem 2):

Theorem 6.7. Let A be a G-graded algebra with graded cocharacter sequences χGlg1 ,...,lgr
(A). Then

χGn (A) =
∑

(lg1 , . . . , lgr)

lg1 + . . .+ lgr = n

χGlg1 ,...,lgr
(A)↑Sn .

Moreover

cGn (A) =
∑

(lg1 , . . . , lgr)

lg1 + . . .+ lgr = n

(
n

lg1 , . . . , lgr

)
cGlg1 ,...,lgr

(A).

Suppose we are dealing with a G-graded set of indeterminates and consider the free algebra F 〈Y ∪
Z〉 (where Y is the set of all indeterminates of G-degree 1G and Z is the set of all the remaining

indeterminates). We consider the following definition (see [20], Section 2; [12], Section 2):

Definition 6.8. Let us consider the unitary F -subalgebra BY of F 〈Y ∪Z〉 generated by the elements

of Z and by all non-trivial commutators. We call Y -proper polynomials the elements of BY .
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Roughly speaking, a polynomial f ∈ F 〈Y ∪ Z〉 is Y -proper if all the y ∈ Y occurring in f appear

in commutators only. Notice that if f ∈ F 〈Z〉, then f is Y -proper. It is well known (see, for instance,

Lemma 1 Section 2 in [12]) that all graded polynomial identities of a superalgebra A follow from

the Y -proper ones. This means that the set TZ2(A) ∩ B generates the whole TZ2(A) as a TZ2-ideal.

Similarly, for any group G, all the G-graded polynomial identities of a G-graded algebra A follow from

the Y -proper ones. This means that the set TG(A) ∩B generates the whole TG(A) as a TG-ideal.

Let us denote BY (A) := BY /(TG(A)∩BY ). We shall denote by ΓGn the set of multilinear polynomials

of V G
n that are Y -proper. It is not difficult to see that ΓGn is a left Sn-submodule of V G

n and the same

holds for ΓGn ∩ TG(A). Hence the factor module

ΓGn (A) := ΓGn /(Γ
G
n ∩ TG(A))

is a Sn-submodule of V G
n (A).

Definition 6.9. We call n-th Y-proper graded cocharacter of A, the character of the Sn-module ΓGn (A)

and we denote it by ξGn (A). We call n-th Y-proper graded codimension of A, the dimension of the

dimension of ΓGn (A) and we denote it by γGn (A). We say that(
ξGn (A)

)
n∈N is the G-graded proper cocharacter sequence of A(

γGn (A)
)
n∈N is the G-graded proper codimension sequence of A

We shall denote by ΓGm1,...,mr the set of multilinear polynomials of V G
m1,...,mr such that m =

∑r−1
i=1 mi

that are Y -proper. It is not difficult to see that ΓGm1,...,mr is a left Sm1 × · · · × Smr -submodule of

V G
m1,...,mr and the same holds for ΓGm1,...,mr ∩ TG(A). Hence the factor module

ΓGm1,...,mr(A) := ΓGm1,...,mr/(Γ
G
m1,...,mr ∩ TG(A))

is an Sm1 × · · · × Smr -submodule of Vm1,...,mr(A)G. We denote the Sm1 × · · · × Smr -character of the

factor module ΓGm1,...,mr/(Γ
G
m1,...,mr ∩ TG(A)) by ξGm1,...,mr(A), and by γm1,...,mr(A) its dimension over

F . Indeed when we refer to A without any ambiguity, we shall use γm1,...,mr instead of γm1,...,mr(A).

Following word by word the proof of Di Vincenzo in [9], we have the analog of Theorem 6.7 for the

graded proper cocharacters and codimensions:

Theorem 6.10. Let A be a G-graded algebra with graded proper cocharacter sequences ξGlg1 ,...,lgr
(A).

Then

ξGn (A) =
∑

(lg1 , . . . , lgr)

lg1 + . . .+ lgr = n

ξGlg1 ,...,lgr
(A)↑Sn .

Moreover

γGn (A) =
∑

(lg1 , . . . , lgr)

lg1 + . . .+ lgr = n

(
n

lg1 , . . . , lgr

)
γGlg1 ,...,lgr

(A)

www.SID.ir

www.SID.ir


Arc
hive

 of
 S

ID

70 Int. J. Group Theory 2 no. 1 (2013) 49-77 L. Centrone

7. Y-proper graded cocharacters of UTm(F )

In this section we show a combinatorial method (see [8]) in order to compute the exact value of

the Y -proper graded cocharacter sequence of UTm(F ) endowed with the grading induced by that of

Vasilovsky and of small size. In particular, we are able to describe explicitely the Y -proper graded

cocharacter and codimension sequence of the algebras UT2(F ), UT3(F ). In [8], the author and Cirrito

computed the values of multiplicities for specific and significant partitions in the Y -proper graded

cocharacter sequence of UT4(F ).

Definition 7.1. We shall call normal any Y -commutator c of Z-degree at most 1 such that c = z or

c = [z, yi1 , . . . , yit ] for some t ≥ 1.

Moreover we say that:

• a normal commutator [yi1 , . . . , yit ] of Z-degree 0 is semistandard if the indices i1, . . . , ip satisfy

the inequalities i1 > i2 ≤ · · · ≤ ip.
• a normal commutator [z, yi1 , . . . , yit ] of Z-degree 1 is semistandard if the indices i1, . . . , ip

satisfy the inequalities i1 ≤ i2 ≤ · · · ≤ ip.

Let us consider UTm(F ) endowed with an elementary G-grading. Consider the following definition

(see [13]):

Definition 7.2. Let µ̃ = (µ1, . . . , µk) be an element of Gk. We say that µ̃ is a good sequence with

respect to the G-grading if there exists a sequence of k matrix units (r1, . . . , rk) in the Jacobson radical

of UTm(F ) such that the product r1 · · · rk is non-zero and also the homogeneous degree of ri is µi for

all i = 1, . . . , k. In this case we say that µ̃ is good, otherwise µ̃ is called bad sequence.

In [13] Di Vincenzo, Koshlukov and Valenti obtained the following description of the Y -proper

polynomials in the relatively free graded algebra F 〈X〉/(F 〈X〉 ∩ TG(UTm(F ))):

Proposition 7.3. A linear basis for the Y -proper polynomials in the relatively free graded algebra

F 〈X〉/(F 〈X〉 ∩ TG(UTm(F ))) consists of 1 and of the polynomials c1 · · · ck where each polynomial ci

is a semistandard commutator and the sequence µ̃c = (‖c1‖, . . . , ‖ck‖) is good.

Notice that Koshlukov and Valenti in [30], found a multilinear basis of the relatively free algebra

F 〈X〉/(F 〈X〉 ∩ TZm(UTm(F ))). In particular, we have the following description of the TZm-ideal of

UTm(F ), where UTm(F ) is endowed with the grading of Vasilovsky:

Theorem 7.4. The TZm-ideal of UTm(F ) is generated by the following set

{[x01, x02], xi1x
j
2|i+ j > m}

Now we start the study of the Y -proper graded cocharacters of UTm(F ). We have the following

lemma that we shall use later on:
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Lemma 7.5. Let m ≥ 2 and consider UTm(F ) with its Vasilovsky Zm-grading. Then we have that

for any n ∈ N and for any σ ∈ Sn,

[z, yσ(1), . . . , yσ(n)] ≡TZm (UTm(F )) [z, y1, . . . , yn].

Proof. It suffices to show that

[z, y1, . . . , ya, ya+1, . . . , yn] ≡TZm (UTm(F )) [z, y1, . . . , ya+1, ya, . . . , yn].

We have that

[z, y1, . . . , ya, ya+1, . . . , ym]

≡ [z, y1, . . . , ya+1, ya, . . . , ym] + [z, y1, . . . , [ya, ya+1], . . . , ym]

but [ya, ya+1] is a Zm-graded identities for UTm(F ), hence

[z, y1, . . . , [ya, ya+1], . . . , ym] ≡ 0

and we are done. �

Given a sequence α = (α1, . . . , αk) of elements of Zm, we can associate to α the n-th uple of

multiplicities

µ(α) = (µ1, . . . , µm)

such that for any i = 1, . . . ,m,

µi = number of αj such that αj = [i− 1]m.

We observe that distinct sequences are allowed to have the same m-th uple of multiplicities. We have

that

α is a good sequence if and only if µ1 = 0 and

m∑
j=2

µj(j − 1) ≤ m− 1.

Fix now l̃ = (l1, . . . , lm) such that
∑m

j=2 lj(j − 1) ≤ m− 1 and let

Sl̃ = {α = (α1, . . . , αk)|µ(α) = (0, l2, . . . , lm)}.

In what follows we use the following notation: if G is a group and F a field, we denote by FG, the

F -group algebra of G. Moreover if M is a FG-module and m ∈M , we denote by FGm the action of

FG on m. We also suggest that in what follows we implicitely use the fact that two representations

afford the same G-character if they represent isomorphic FG-modules. With this in mind, we have

the following:

Theorem 7.6. Let m ∈ N and consider UTm(F ) with its Zm-Vasilovsky grading. Then for any

l1, . . . , lm ∈ N, such that
∑m

j=2 lj(j − 1) ≤ m− 1

ξZnl1,...,lm(UTm(F )) =

=
∑

(α1,...,αk)∈Sl̃

∑
s1+...+sk=l1

 · · ·︸ ︷︷ ︸
s1

⊗ · · · ⊗ · · ·︸ ︷︷ ︸
sk


↑Sl1
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⊗( ⊗ · · · ⊗ )↑Sl2 ⊗ · · · ⊗ ( ⊗ · · · ⊗ )↑Slm .

Proof. Let (α1, . . . , αk) ∈ Sl̃ such that µ(α) = (0, l2, . . . , lm). Let l1 ∈ N such that
∑m

i=1 li = n. Put

A = UTm(F ) and let f ∈ Γl1,...,lm ⊆ ΓZm
n (A). If H = Sl1 × · · · × Slm , then FHf↑Sn has dimension

|Sn : H| dimF FHf . On the other hand, FSnf is generated by

[zαi , yi1 , . . . , yis1 ] · · · [zαj , yj1 , . . . , yjsk ],

where the indices of the y’s are ordered in the light of Lemma 7.5 and s1 + · · · + sk = l1. The

latter polynomials are linearly independent, hence dimF FSnf = |Sn : H| dimF F [H]f . Now the proof

follows since the Sn-action in both of the situations is the same and the action on the y’s is the trivial

one. �

The next two propositions are consequences of the previous theorem and may be showed as examples.

Proposition 7.7. Let n ≥ 2, then

ξZ2
n (UT2(F )) = (n) + (n− 1, 1)

and

γZ2
n (UT2(F )) = n.

Proposition 7.8. Let n ≥ 2, then

γZ3
n (UT3(F )) = 2n+ 2n−2n(n− 1).

Moreover,

ξZ3
n (UT3(F )) =

∑
λ`n

mλλ,

where

mλ =



n+ 1 ifλ = (n)

3(n− 1) ifλ = (n− 1, 1)

4(a− b+ 1) if λ = (a, b) and b ≥ 2

3a− 1 ifλ = (a, 12)

4(a− b+ 1) if λ = (a, b, 1) and b ≥ 2

a− b+ 1 ifλ = (a, b, 2)

a− b+ 1 ifλ = (a, b, 12)

8. Z2-graded cocharacters of UT2(E)

We conclude this survey with the completion of the results obtained in section 3 about the algebra

UT2(E). In particular, we want to show the Z2-graded cocharacter sequence of the latter algebra as a

consequence of a result of Di Vincenzo and Nardozza ([10]). The results of this Section may be found

in [6].
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First of all we note that the algebra R = UT2(E) has a natural structure of Z2-graded algebra, i.e.,

R = R(0) ⊕R(1), where

R(0) =

(
E(0) E(0)

0 E(0)

)
and

R(1) =

(
E(1) E(1)

0 E(1)

)
,

and E(0), E(1) are, respectively, the 0 and the 1 part of the natural Z2-grading of E. As a Z2-graded

algebra, R is naturally isomorphic to UT2(F )⊗E. In general, let A be a G-graded algebra and consider

the following subgroups of Sn:

H = Sp1+q1 × · · · × Spr+qr ,

H = Sp1 × Sq1 × · · · × Spr × Sqr .

Notice that H is a subgroup of H, therefore the following two spaces are H-modules, too:

V G×Z2
p1,q1,...,pr,qr ∩ T

G×Z2(A⊗ E),

V G
p1+q1,...,pr+qr ∩ T

G(A).

We denote by 〈λ, µ〉 the partition (λ1, µ1, . . . , λr, µr), where λi ` pi and µi ` qi. Then the relation

between the graded cocharacter sequences of A and A ⊗ E is given by the following result by Di

Vincenzo and Nardozza (see [10]):

Theorem 8.1. Let

(χGp1+q1,...,pr+qr(A))↓H =
∑

m〈λ,µ〉〈λ, µ〉

be the cocharacter sequence of the H-module

(V G
p1+q1,...,pr+qr ∩ T

G(A))↓H .

Then the cocharacter sequence of the H-module

(V G×Z2
p1,q1,...,pr,qr ∩ T

G×Z2(A⊗ E))

is

(χG×Z2
p1,q1,...,pr,qr(A⊗ E))↓H =

∑
m〈λ,µ〉〈λ, µ′〉,

where

〈λ, µ′〉 = λ1 ⊗ µ′1 ⊗ · · · ⊗ λr ⊗ µ′r

and µ′i is the conjugate partition of µi.

As a consequence of the previous result, we have the following:
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Corollary 8.2. Let k, l ∈ N such that k + l = n and consider H = Sk × Sl. If (χn(UT2(F )))↓H =∑
mλ,µλ⊗ µ, then

χZ2
n (R) =

∑
k+l=n

∑
λ ` k
µ ` l

mλ,µλ⊗ µ′.

In the light of Corollary 8.2, it suffices to know (χn(UT2(F )))↓H =
∑
mλ,µλ ⊗ µ, then we have

immediately the n-th Z2-graded cocharacter of UT2(E).

Theorem 8.3. Let k, l ∈ N such that k + l = n and consider H = Sk × Sl. For any n ≥ 0,

(χn(S))↓H =
∑
mλ,µλ⊗ µ, where

λ = (λ1, λ2, λ3), λ3 ≤ 1

µ = (µ1, µ2, µ3), µ3 ≤ 1.

More precisely,

(n)↓H = (k)⊗ (l)

(k1, k2)↓H =


(k)⊗ (l)

(λ1, λ2)⊗ (l)

(λ1, λ2)⊗ (µ1, µ2)

(k1, k2, 1)↓H =



(λ1, λ2)⊗ (l)

2((λ1, λ2)⊗ (µ1, µ2)) if µ1 − 1 ≥ µ2
(λ1, λ2)⊗ (µ1, µ2) if µ1 − 1 < µ2

(λ1, λ2, 1)⊗ (l)

(λ1, λ2, 1)⊗ (µ1, µ2).

Proof. By Branching rule (see [44], Chapter 2) we have that when we restrict the representation ν =∑
(k1, k2, k3) of Sn, with k3 ≤ 1, to its subgroup H = Sk × Sl, then its H-irreducible components are

λ⊗µ, where λ = (k′1, k
′
2, k
′
3) and µ = (l1, l2, l3) are such that ν appears in the tensor product (λ⊗µ)↑Sn .

By Frobenius multiplicity law (see [44]), the multiplicity of λ⊗µ in the previous decomposition equals

the multiplicity of ν in the induced representation (λ ⊗ µ)↑Sn . We will argue for the irreducible

cocharacters of χn(F ), i.e., (n), (k1, k2) where k2 ≥ 1 and (k1, k2, 1). In the first case, it is easy to see

that (n)↓H = mλ,µ((l) ⊗ (k)), where λ = (k) and µ = (l). By the Littlewood-Richardson Rule, the

multiplicity of (n) in the induced representation (λ⊗ µ)↑Sn is 1. Let ν = (k1, k2). Then

(k1, k2)↓H =


mλ,µ((k)⊗ (l)) a)

mλ,µ((λ1, λ2)⊗ (l)) b)

mλ,µ((λ1, λ2)⊗ (µ1, µ2)) c).

The case a) has been already treated. Consider the case b). Here, the only way to obtain ν is adding

k2 − λ2 1 to λ2 so the multiplicity of ν in (λ1, λ2) ⊗ (l) is 1. Even in the case c), the only possible
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way to obtain ν is adding all the boxes 2 to λ2 so the multiplicity of ν in (λ1, λ2)⊗ (l) is 1. Finally,

let ν = (k1, k2, 1). Then

(k1, k2, 1)↓H =


mλ,µ((λ1, λ2)⊗ (l)) a)

mλ,µ((λ1, λ2)⊗ (µ1, µ2)) b)

mλ,µ((λ1, λ2, 1)⊗ (l)) c)

mλ,µ((λ1, λ2, 1)⊗ (µ1, µ2)) d).

Firstly, we note that the cases a), c), d) are similar to those computed for (k1, k2)↓H . Thus we have

to argue only for the case b). Suppose µ1 − 1 ≥ µ2, then we have to add a final box 1 or 2 to λ

if µ1 − 1 ≥ µ2, finally we have to add all the remaining 2 in the only possible way. If µ1 − 1 < µ2,

we have to add only the final box 2 to λ, finally we have to add all the remaining 2 in the only

possible way and we are done. �
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