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ON SOME INVARIANTS OF FINITE GROUPS
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Communicated by Patrizia Longobardi

Abstract. In this note we are going to survey several invariants of finite groups related either to their

orders or to generating sets or to lattices of subgroups. Some relations among these invariants will be

exhibited. Special attention will be paid to monotonicity of them.

1. Around orders

All groups considered here are finite. Our notation will be standard, and similar to that in [5].

By an invariant of a group G we mean a nonnegative integer, say α(G), chosen in such a way that

G ' H implies α(G) = α(H). We say, that our invariant α is monotone (on G) if α is defined for all

subgroups of G and α(H) ≤ α(K), whenever H ≤ K ≤ G.
For any group G we have an obvious invariant |G|, the order of G. This invariant is monotone and

is well connected with standard operations on groups, because for any subgroup H of G we have a

Lagrange Formula:

(1.1) |G| = |H| · |G : H|.

The order is helpful, for example in inductive proofs and in computational group theory (see for

example [5, 8] and [3]), but the usual ordering of natural numbers is not well connected with properties

of groups having increasing orders. That’s why some arithmetic functions (see [13]) of the order are

often applied.

If G is a group then let ω|G| be the number of distinct prime divisors of |G| and Ω|G| be the number

of prime divisors of |G| counted with multiplicities. From the Formula 1.1 we know that both these

MSC(2010): Primary: 20D10; Secondary: 20F05.

Keywords: Generating set, independent set, (p, q)-group, lattice of subgroups.

Received: 18 December 2012, Accepted: 20 February 2013.

∗Corresponding author.

109
www.SID.ir

http://www.theoryofgroups.ir
http://www.ui.ac.ir
www.SID.ir


Arc
hive

 of
 S

ID

110 Int. J. Group Theory 2 no. 1 (2013) 109-115 J. Krempa and A. Stocka

invariants are monotone and their small values give some interesting classes of groups. For example,

Ω|G| = 1 if and only if G is simple abelian. Groups with Ω|G| ≤ 3 are solvable and well described

(see [8] I, 8.11, 8.13).

Groups G with ω|G| = 1 are known as p-groups and are extensively studied, with some specific

methods (see [2] and subsequent volumes of this monograph). They have many interesting properties.

For example, they are nilpotent groups and every nilpotent group is a direct product of p-groups with

coprime orders.

Groups G with ω|G| = 2 are known as (p, q)-groups. They have no specific theory, but they appear

in many considerations. In particular, due to W. Burnside we know that such groups are solvable, but

need not be nilpotent. Note that for the alternating group A5 we have ω|A5| = 3 and Ω|A5| = 4, but

A5 is not solvable.

Next well known invariant of a group G is Exp(G), the exponent of G. This invariant is also

monotone and is connected with the order by

(1.2) Exp(G) | |G| and |G| | (Exp(G))r

for some r depending on G. Hence, the function ω applied to Exp gives no new invariant of groups.

The following simple observations, consequences of Formula 1.2 about connections of order and

exponent of a group G should be noticed here:

• Every Sylow p-subgroup of G is cyclic if and only if Exp(G) = |G|.
• If m = pα1

1 · · · pαr
r and n = pβ11 · · · p

βr
r , where pi are distinct primes and 1 ≤ αi ≤ βi for

i = 1, . . . , r then there exists an abelian group G such that Exp(G) = m and |G| = n.

Groups with Exp(G) = |G| were considered with details and are completely described (see [14, Theo-

rem 10.1.10]). As a special case one can consider groups with ω|G| = Ω|G|, that of course are precisely

groups with square free orders.

2. Generators

For every group G let Φ(G) denotes the Frattini subgroup of G, the set of nongenerators of G. A

subset X of G is said here to be:

• g-independent if 〈Y,Φ(G)〉 6= 〈X,Φ(G)〉 for all Y ⊂ X;

• a generating set of G if 〈X〉 = G;

• a g-base of G, if X is a g-independent generating set of G.

The following result is an immediate consequence of the definition of the Frattini subgroup.

Proposition 2.1. Let G be any group, X ⊂ G a subset and X the natural image of X in G/Φ(G).

If |X| = |X|, then:

• X is g-independent in G if and only if X is g-independent in G/Φ(G);

• X is a generating set of G if and only if X is a generating set of G/Φ(G);

• X is a g-base of G if and only if X is a g-base of G/Φ(G).
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In connection with generating sets we can consider, for any group G, the following natural invariants:

(2.1) sg(G) = sup
X
|X| and ig(G) = inf

X
|X|,

where X runs over all g-bases of G.

Example 2.2. Let G be a p-group, X ⊂ G a subset and let |G/Φ(G)| = pr. Then, by Burnside Basis

Theorem, X is a generating set of G if and only if |X| = |X| and X is a base of G/Φ(G) considered

as a vector space over the prime field Fp. Hence, in this case, ig(G) = sg(G) = r.

Example 2.3. Let G be abelian. Then sg(G) is the usual abelian rank, r(G). If, in particular,

n = pk11 · . . . · pkrr where pi are distinct primes and ki > 0, then sg(Cn) = r = ω|Cn|, while ig(Cn) = 1.

In the literature on nonabelian groups special attention is paid to the invariant ig(G), sometimes

denoted by d(G) or m(G) (see for example [10]). However, some interesting results for sg can also be

found.

Theorem 2.4 ([17]). For any n > 2 we have: sg(Sn) = n− 1, while ig(Sn) = 2.

For constructing further examples of groups with ig 6= sg the following observation is helpful.

Proposition 2.5. Let G and H be groups with coprime orders. Then

(i) ig(G×H) = max(ig(G), ig(H));

(ii) sg(G×H) = sg(G) + sg(H).

Proof. Let ig(G) = k and ig(H) = l. Assume that x1, . . . , xk is a g-base of G and y1, . . . , yl is a g-base

of H. We can assume that k ≥ l. Put zi = (xi, yi) for i = 1, . . . , k, where yi = yl for i ≥ l. It is easy to

calculate that the set {z1, . . . , zk} is a g-base of G×H. This means that

max(ig(G), ig(H)) = k ≥ ig(G×H).

The converse inequality follows by projections of G×H on G and on H.

Now let x1, . . . xk be a g-base of G of maximal cardinality and y1, . . . , yl a g-base of H also of

maximal cardinality. Clearly the set {(x1, 1), . . . , (xk, 1), (1, y1), . . . , (1, yl)} is a g-base of G×H.
On the other hand, if z1, . . . , zm is a g-base of G×H of maximal cardinality, then let zi = (ui, vi)

for i = 1, . . . ,m. If in our base we replace zi by a pair {(ui, 1), (1, vi)} then from this pair exactly one

element should remain for obtaining a new base. After finite number of such replacements we obtain

a base with m elements, but with all of the form either (x, 1) or (1, y). From this we have k + l ≥ m,
and the result follows. �

Now, as a consequence of earlier results one can easily obtain:

Corollary 2.6. Let 1 ≤ m ≤ n <∞. Then there exists even an abelian group G such that ig(G) = m

and sg(G) = n.
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In [12, 9, 15] groups with property B, that is groups G with ig(G) = sg(G), were investigated. In

this case we will call this invariant a g-dimension of G. In the same papers also groups with the basis

property, that is groups such that all its subgroups have property B, hence have g-dimension, were

studied. For considering monotonicity we are going to concentrate on groups with the basis property.

Among other things the following result is proved in [12]:

Theorem 2.7. Let G be a group. If G has the basis property, then either G is a p-group, or G is a

semidirect product P o Q, where P is a p-group, Q is a cyclic q-group, for some prime q 6= p, and

every non-identity element of Q acts fixed-point-freely on P . Hence ω|G| ≤ 2.

From Example 2.2 we know that p-groups have the basis property. For further consideration let us

take a modified version of an example from [12, §3].

Example 2.8. Let p 6= q be primes and let H be a cyclic group of order qm for some m ≥ 1. It is

known from the field theory that there exists the smallest n such that qm | pn−1. Then H is contained

in the multiplicative group of the field K = Fpn of the cardinality pn. If V is a vector space over K,

then there is a natural action φ : H −→ AutV via multiplication, hφ : v → vh. Every element of K

is a sum of elements of H with coefficients in the prime field Fp. Then H-invariant subgroups of V

are exactly K-subspaces of V. We are interested in the semidirect product G = V oH with the above

mentioned action of H on V. In what follows we shall refer to such a semidirect product as being

constructed via the field multiplication on V. We shall exploit the structure of V as a vector space over

K. If x1, x2, . . . , xr is a base of V over K then V = ⊕ri=1Kxi and every summand Kxi has no proper

H-invariant subgroups.

Now one can simply obtain the proof of the following result.

Lemma 2.9 ([12], Lemma 3.1). (i) Every element in G has order either p or a power of q.

(ii) If v and w are non-zero vectors in V , then Kv 'K Kw and Kv is irreducible as a H-module.

Theorem 2.10 ([12], Theorem 3.2). Let G = V o H be the semidirect product of an elementary

abelian p-group by a cyclic q-group constructed via the field multiplication on V. Then, under notation

from Example 2.8, we have

(i) G has property B;

(ii) ig(G) = r + 1, where V is an r dimensional space over K;

(iii) Φ(G) = 1.

Proposition 2.11 ([12], Proposition 4.4). Let G be a group with the basis property. Then G/Φ(G) is

a semidirect product constructed via the multiplication on some vector space over a finite field.

Proposition 2.12. Let G be a group with the basis property. If the g-dimension is monotone on G,

then G/Φ(G) is a semidirect product of an elementary abelian p-group V and a cyclic q-group H and

(a) H acts by power automorphisms on V or

(b) H acts irreducibly on V and |V | = p2.
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Proof. Let G be a group with the basis property. Then, by Proposition 2.11, G/Φ(G) is a semidirect

product of an elementary abelian p-groups V and a cyclic q-group H with the help of field multipli-

cation. Moreover V = V1 ⊕ V2 ⊕ . . .⊕ Vk is a direct sum of irreducible H-submodules and Vi ' Vj for

i, j = 1, . . . , k.

First we assume that k ≥ 2. If v1 ∈ V1, . . . , vk ∈ Vk are non-zero elements, then these elements

generate V as an H-module. So G is generated by the set

{(v1, 1), (v2, 1), . . . , (vk, 1), (1, x)},

where x is a generator of H. On the other hand, if V1 is a p-group of order pl, then V is of order pkl

and the g-dimension of V is equal to kl. Since the g-dimension of G is monotone, the g-dimension of

V, equal to kl, is less or equal to k + 1. It follows that l = 1 and every Vi is a cyclic group of order p.

This means that H induces a power automorphism on V.

Now let k = 1. Then the g-dimension of G is equal to 2 and the set {(v1, 1), (1, x)} is a g-base of V.

Hence the order of V is not greater than p2. �

Proposition 2.13. Let G = V oH be the semidirect product of an elementary abelian p-group by a

group of order q, constructed via the field multiplication on a vector space over a finite field. Then G

has the basis property.

Proof. In view of Theorem 2.10, G has property B. Let M be a proper subgroup of G. If M is either

a p-group or a q-group then, by Example 2.2, M has property B. So we assume that M is neither

a p-group nor a q-group. In this case M is a semidirect product VM o HM , where VM ⊆ V is a

H-invariant subgroup, and HM is a Sylow q-subgroup of M of order q. Now one can check that M is

constructed via the field multiplication. Hence, again by Theorem 2.10, we have that M has property

B. It follows that G has the basis property. �

In [4, 11] all p-groups with monotone g-dimension were described. In particular, for every prime p

there exists a p-group with nonmonotone g-dimension. Among other groups with the basis property

such examples also could be produced. We provide such examples using the field multiplication.

Lemma 2.14. Let G = V oH be a semidirect product of elementary abelian p-group of order pn with

n > 2, by a cyclic group of order q, constructed via the field multiplication, where p, q are distinct

primes, q | pn − 1 but q - pm − 1 for 1 ≤ m < n. Then, G has the basis property. Moreover in this

case V has no H-invariant proper subgroups. In such a group G we have sg(G) = ig(G) = 2, but

sg(V ) = ig(V ) = n > 2. So neither ig nor sg can be monotone.

Example 2.15. Assume that |V | = 23 and |H| = 7. Then, by Proposition 2.13, G has the basis

property. In this group, according to the above lemma, sg(G) = ig(G) = 2, but sg(V ) = ig(V ) = 3.

Example 2.16. Assume that |V | = 25 and |H| = 31. Then, by Proposition 2.13, G has the basis

property. In this group, according to the above lemma, sg(G) = ig(G) = 2, but sg(V ) = ig(V ) = 5.
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Example 2.17. Assume that |V | = 26 and |H| = 7. Then, by Proposition 2.13, G has the basis

property. Now C7 is a subgroup of units of the field K = F8, hence V ia a 2-dimensional space

over K. In this group, according to the above lemma and earlier results, sg(G) = ig(G) = 3, but

sg(V ) = ig(V ) = 6. However, if |H| = 3 then V is a 4-dimensional vector space over the field F4.

Hence, ig(G) = 5 and ig(V ) = 6.

Question. Let 2 ≤ m < n < ∞. Does there exist a group G with the basis property, such that:

ig(G) = m, ig(N) = n for a subgroup N ≤ G and ig(L) ≤ n for every subgroup L ≤ G?

3. Lattices of subgroups

In this section we express properties discussed in previous section in terms of finite lattices, usually

L. For details on such lattices one can see [6, 16]. If a ∈ L then the ideal â generated by a ∈ L is

equal to

â = {x ∈ L : x ≤ a} = [0, a].

Considered lattices are finite. Hence we have the following simple observation.

Proposition 3.1. The embedding a → â is an isomorphism of our lattice L onto the lattice of all

ideals of L.

This observation helps to interpret some notions natural for ideals in terms of elements of the lattice

and we will do this here. As in [7] denote by rad(L) the radical of L, the meet of all maximal elements

of L. If rad(L) = r then the ideal r̂ is the set of all nongenerators of L as an ideal.

An element a ∈ L will be named a d-element if the ideal â is a distributive lattice. Let a1, a2, . . . , an

be a set of d-elements. We call this set d-independent if for every 1 ≤ k ≤ n we have:

(3.1) a1 ∨ . . . ∨ ak−1 ∨ ak+1 ∨ ak+2 ∨ . . . ∨ an ∨ rad(L) 6=
n∨
j=1

aj ∨ rad(L).

Every subset X of d-elements of L will be called a d-covering of L if ∨X = 1; If X is a d-covering

which is also d-independent, then X will be called a d-base of L. There are, even very small lattices

having no d-covering and hence no d-base.

Our favorite lattice will be L(G), the set of all subgroups of a group G, ordered by inclusion. It is

visible, that rad(L(G)) = Φ(G). Since L(G) is finite then, by Proposition 3.1, every ideal in L(G) is

of the form Ĥ = L(H), where H ≤ G is a subgroup. L(C) is distributive for every cyclic group C.

Hence we have:

Proposition 3.2. If G is a group then the lattice L(G) has a d-covering.

Our crucial argument will be the following result of O. Ore:

Theorem 3.3 ([16]). The subgroup lattice of a group G is distributive if and only if G is cyclic.

As a consequence we obtain:
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Theorem 3.4. Let G be a group. If X = {x1, . . . , xn} is a g-base of G, then X̂ = {x̂1, . . . , x̂n}
is a d-covering of L(G). Conversely, if {L(H1), . . . , L(Hn)} is a d-covering of L(G), then for every

i ∈ {1, . . . , n} there exists ai ∈ Hi such that {a1, . . . , an} is a g-base of G.

Using the above theorem one can adapt the results of the previous section concerning g-independence

and g-bases of groups to the d-independence and d-coverings of lattices of subgroups, and conversely.
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