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Abstract. Given a finite non-cyclic group G, call σ(G) the smallest number of proper subgroups of

G needed to cover G. Lucchini and Detomi conjectured that if a nonabelian group G is such that

σ(G) < σ(G/N) for every non-trivial normal subgroup N of G then G is monolithic, meaning that it

admits a unique minimal normal subgroup. In this paper we show how this conjecture can be attacked

by the direct study of monolithic groups.

1. Introduction

Given a non-cyclic group G, call σ(G) - the covering number of G - the smallest number of proper

subgroups of G whose union equals G. It is an easy exercise to show that σ(G) > 2 (i.e. no group

is the union of two proper subgroups). The covering number has been introduced the first time by

Cohn in 1994 [5]. We usually call cover of G a family of proper subgroups of G which covers G, and

minimal cover of G a cover of G consisting of exactly σ(G) elements. Note that there always exist

minimal covers consisting of maximal subgroups. If G is cyclic then σ(G) is not well defined because

no proper subgroup contains any generator of G; in this case we define σ(G) =∞, with the convention

that n <∞ for every integer n.

Remark 1.1. If N is a normal subgroup of a group G then σ(G) ≤ σ(G/N): indeed, every cover of

G/N can be lifted to a cover of G.

Given a family H of subsets of a group G which covers G, we say that H is “irredundant” if⋃
H3K 6=H K 6= G for every H ∈ H. Clearly every minimal cover is irredundant, but the converse
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is false. Actually the notion of irredundant cover is much weaker than that of minimal cover: for

example, if n ≥ 2 is an integer then the cover of C2
n consisting of its non-trivial cyclic subgroups is

irredundant of size 2n − 1 while C2
n has an epimorphic image isomorphic to C2 × C2 so σ(C2

n) = 3.

We are interested in groups with finite covering number. The following result implies that in order

to study the behaviour of the function which assigns to each group with finite covering number its

covering number it is enough to consider finite groups.

Theorem 1.2 (Neumann 1954). Let G be an infinite group covered by a finite family H of cosets of

subgroups of G, and suppose that H is irredundant. Then every H ∈ H has finite index in G.

Proof. For a proof see Lemma 4.17 in [13]. �

Indeed, if H is a minimal cover of G then by Theorem 1.2
⋂
H∈HH has finite index in G, hence its

normal core N has also finite index and

σ(G/N) ≤ |H| = σ(G) ≤ σ(G/N),

thus σ(G) = σ(G/N). In other words we are reduced to consider the covering number of the finite

group G/N .

From now on every considered group is assumed to be finite.

Solvable groups were studied by Tomkinson. He proved the following result. Recall that a “chief

factor” of a group G is a minimal normal subgroup H/K of a quotient G/K of G.

Theorem 1.3 (Tomkinson). If G is a finite non-cyclic solvable group then σ(G) = q + 1 where q is

the order of the smallest chief factor H/K of G with more than one complement in G/K.

Note that the number q in the statement of Theorem 1.3 is a prime power. Not every σ(G) is of

the form q + 1 with q a prime power, for example σ(Sym(6)) = 13 (cfr. [2]).

Assume we want to compute the covering number of a group G. If there exists N E G with

σ(G) = σ(G/N) then we may consider as well the quotient G/N instead of G. This leads instantly to

the following definition.

Definition 1.4 (σ-elementary groups). We say that a group G is “σ-elementary” if σ(G) < σ(G/N)

for every non-trivial normal subgroup N of G.

Clearly, every group has a σ-elementary quotient with the same covering number. It follows that

the structure of the σ-elementary groups is of big interest. It was studied by Lucchini and Detomi in

[14]. They conjectured that:

Conjecture 1.5. Every non-abelian σ-elementary group is monolithic.

Here a group is said to be “monolithic” if it admits exactly one minimal normal subgroup.

The content of sections 5, 6, 7 is included in my Ph.D. thesis [16].
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2. Useful remarks

Let p be a prime. Observe that the group Cp × Cp admits exactly p+ 1 proper subgroups, and all

these subgroups are cyclic of order p and index p. Therefore there is a unique cover of Cp × Cp, it is

the one consisting of all of its non-trivial proper subgroups. We obtain that σ(Cp × Cp) = p+ 1.

Observe that if G is any finite group and Φ(G) is the Frattini subgroup of G (i.e. the intersection of

the maximal subgroups of G) then σ(G) = σ(G/Φ(G)). Indeed, in any minimal cover of G consisting

of maximal subgroups its members all contain the Frattini subgroup. Observe that this implies the

following fact.

Remark 2.1. If G is a σ-elementary group then Φ(G) = {1}.

Now suppose G is a non-cyclic p-group. It is well known that G/Φ(G) ∼= Cp
d where d is the smallest

size of a subset of G generating G. Therefore σ(G) = σ(Cp
d). The covering number of Cp

d can be

easily computed using the following basic lemma.

Lemma 2.2 (Minimal Index Lower Bound). Let H be a minimal cover of a finite group T . Then

min{|T : H| : H ∈ H} < σ(T ).

Proof. Write H = {H1, . . . ,Hk}, k = σ(T ), βi := |T : Hi| with β1 ≤ · · · ≤ βk. Since the union

H1 ∪ · · · ∪Hk is not disjoint (because 1 ∈ Hi for i = 1, . . . , k), we have

|T | = |
k⋃
i=1

Hi| <
k∑
i=1

|Hi| =
k∑
i=1

|T |/βi ≤ k|T |/β1.

It follows that β1 < k = σ(T ). �

Lemma 2.2 implies that σ(Cp
d) > p. On the other hand, since d > 1 (because G is non-cyclic),

Cp
d projects onto Cp

2 = Cp × Cp, therefore p < σ(Cp
d) ≤ σ(Cp × Cp) = p + 1. We deduce that

σ(G) = σ(Cp
d) = p+ 1. Since any finite nilpotent group is the direct product of its Sylow subgroups,

Proposition 2.4 follows from the following lemma.

Lemma 2.3. Let A,B be two finite groups of coprime order. Then

σ(A×B) = min{σ(A), σ(B)}.

Proof. Let πA : A×B → A, πB : A×B → B be the canonical projections. Let H be a minimal cover

of A×B consisting of maximal subgroups, and let

ΩA := {H ∈ H : πB(H) = B}, ΩB := {H ∈ H : πA(H) = A}.

Since |A|, |B| are coprime, any subgroup of A × B is of the form C ×D with C ≤ A and D ≤ B. It

follows that H = ΩA ∪ ΩB. Let

OA := A−
⋃

C×B∈ΩA

C, OB := B −
⋃

A×D∈ΩB

D.
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Since H covers A× B, it covers OA ×OB, so OA ×OB = ∅. Hence, either OA = ∅, implying ΩB = ∅
by minimality of H and σ(A × B) = σ(A), or OB = ∅, implying ΩA = ∅ by minimality of H and

σ(A×B) = σ(B). �

As an application we compute the covering number of nilpotent groups. This was done in [5].

Proposition 2.4. Let G be a nilpotent group. Then σ(G) = p + 1 where p is the smallest prime

divisor of |G| such that the Sylow p-subgroup of G is not cyclic.

Proof. G is a direct product of groups of prime power order, so it suffices to apply the results proved

above. �

3. Direct products of groups

The very first case to consider when dealing with Conjecture 1.5 is the direct product case. Indeed,

a direct product of two non-trivial groups is certainly not monolithic.

We will now give two proofs of the fact that if S is a non-abelian simple group then σ(S×S) = σ(S).

The problem of finding the covering number of a direct product of simple groups was considered in

[3].

Let S be a non-abelian simple group. We want to prove that σ(S × S) = σ(S). Note that since S

is isomorphic to a quotient of S × S, σ(S × S) ≤ σ(S).

(1) We know that the maximal subgroups of S × S are of the following three types:

(1) K × S, (2) S ×K, (3) ∆ϕ := {(x, ϕ(x)) | x ∈ S},

where K is a maximal subgroup of S and ϕ ∈ Aut(S).

(2) Let M = M1 ∪M2 ∪M3 be a minimal cover of S × S, where Mi consists of subgroups of

type (i).

(3) Let Ω := S × S −
⋃
M∈M1∪M2

M = Ω1 × Ω2, where Ω1 = S −
⋃
K×S∈M1

K and Ω2 =

S −
⋃
S×K∈M2

K.

(4) We claim that it is enough to prove that Ω = ∅. Indeed if this is the case then either Ω1 = ∅,
in which case

⋃
K×S∈M1

K = S and M =M1 by minimality of M, or Ω2 = ∅, in which case⋃
S×K∈M2

K = S, andM =M2 by minimality ofM. In both cases we obtain σ(S×S) ≥ σ(S)

and hence σ(S × S) = σ(S).

Suppose by contradiction Ω 6= ∅, i.e. Ω1 6= ∅ 6= Ω2, and let ω ∈ Ω1.

(5) The family

{K < S | S ×K ∈M2} ∪ {〈ϕ(ω)〉 | ∆ϕ ∈M3}

is a cover of S of size |M2|+|M3| (it consists of proper subgroups being S non-abelian). Indeed,

if b ∈ S is such that b 6∈ K for any K < S such that S×K ∈M2 then (ω, b) ∈ S×S−Ω1×Ω2
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hence, being M a cover for S × S, (ω, b) ∈ ∆ϕ for some ϕ ∈ Aut(S) such that ∆ϕ ∈M3, and

we conclude that b = ϕ(ω) ∈ 〈ϕ(ω)〉.
(6) It follows that

|M1|+ |M2|+ |M3| = |M| = σ(S × S) ≤ σ(S) ≤ |M2|+ |M3|.

This implies that M1 = ∅. Analogously M2 = ∅. So M =M3.

(7) Observe that since S is covered by its non-trivial cyclic subgroups, σ(S) < |S|. Since each

member of M3 =M has index |S|, by the Minimal Index Lower Bound (Lemma 2.2)

|S| < σ(S × S) ≤ σ(S) < |S|,

a contradiction.

The equality σ(Sn) = σ(S) for S a non-abelian simple group follows also from the following fact,

which relies on the classification of finite simple groups.

Proposition 3.1 ([14], Corollary 8). Let N be a non-solvable normal subgroup of a finite group G,

and assume that N is complemented by a maximal subgroup M of G. Then σ(G) = σ(G/N).

Let S be a non-abelian simple group and let G = S × · · · × S = Sn, with n ≥ 2. Let N =

S×{1}× · · ·×{1} ∼= S be the first factor of G, and let ∆ = {(s, s) : s ∈ S} < S×S. Then ∆×Sn−2

is a maximal subgroup of G which complements N , thus σ(G) = σ(G/N) = σ(Sn−1). By induction,

it follows that σ(G) = σ(S).

The following result is the content of a joint work with A. Lucchini. It implies that the direct

product of two non-trivial groups H1 × H2 cannot be σ-elementary unless H1
∼= H2

∼= Cp for some

prime p.

Theorem 3.2 (Lucchini A., Garonzi M. 2010 [8]). Let M be a minimal cover of a direct product

G = H1 ×H2 of two groups. Then one of the following holds:

(1) M = {X ×H2 | X ∈ X} where X is a minimal cover of H1. In this case σ(G) = σ(H1).

(2) M = {H1 ×X | X ∈ X} where X is a minimal cover of H2. In this case σ(G) = σ(H2).

(3) There exist N1 E H1, N2 E H2 with H1/N1
∼= H2/N2

∼= Cp and M consists of the maximal

subgroups of H1 ×H2 containing N1 ×N2. In this case σ(G) = p+ 1.

4. Sigma star

Recall that a group G is called “primitive” if it admits a core-free maximal subgroup, that is, a

maximal subgroup M such that MG =
⋂
g∈G gMg−1 is equal to {1}. A primitive group has always at

most two minimal normal subgroup, and if there are two, they are non-abelian.

Recall that a G-group is a group A endowed with a homomorphism f : G→ Aut(A). If a ∈ A and

g ∈ G, the element f(g)(a) is usually denoted ag if no ambiguity is possible.

Definition 4.1. Let G be a group, and let A,B be two G-groups.

www.SID.ir

www.SID.ir


Arc
hive

 of
 S

ID

136 Int. J. Group Theory 2 no. 1 (2013) 131-144 M. Garonzi

• A,B are said to be G-isomorphic (written A ∼=G B) if there exists an isomorphism ϕ : A→ B

such that aϕg = agϕ for every g ∈ G.

• A,B are said to be G-equivalent (written A ∼G B) if there exist isomorphisms

ϕ : A // B , Φ : GnA // GnB

such that the following diagram commutes:

{1} // A //

ϕ

��

GnA //

Φ

��

G // {1}

{1} // B // GnB // G // {1}

Let N be a minimal normal subgroup of a group G. The conjugation action of G on N gives N the

structure of a G-group. Define IG(N) to be the set of elements of G which induce by conjugation an

inner automorphism of N and define RG(N) to be the intersection of the normal subgroups K of G

contained in IG(N) with the property that IG(N)/K is non-Frattini (i.e. not contained in the Frattini

subgroup of G/K) and G-equivalent to N .

Recall that the “socle” of a group G, denoted soc(G), is the subgroup of G generated by the minimal

normal subgroups of G. soc(G) is always a direct product of some minimal normal subgroups of G. G

is said to be “monolithic” if it admits a unique minimal normal subgroup, i.e. if soc(G) is a minimal

normal subgroup of G.

Theorem 4.2 (Lucchini, Detomi [14] Corollary 14). Let H be a non-abelian σ-elementary group and let

N1, . . . , N` be minimal normal subgroups of H such that soc(H) = N1×· · ·×N`. Let Xi := G/RH(Ni)

for i = 1, . . . , `. Then:

• Xi is a primitive monolithic group with socle isomorphic to Ni for i = 1, . . . , `. Xi will be

called “the primitive monolithic group associated to Ni”.

• H is a subdirect product of X1, . . . , X`. More precisely, the canonical homomorphism

H → X1 × . . .×X`

is injective.

Definition 4.3 (Sigma star). Let X be a primitive monolithic group, and let N be its unique minimal

normal subgroup. If Ω is an arbitrary union of cosets of N in X define σΩ(X) to be the smallest

number of supplements of N in X needed to cover Ω. If Ω = {Nx} we will write σNx(X) instead of

σ{Nx}(X). Define

σ∗(X) := min{σΩ(X) | Ω =
⋃
i

Nωi, 〈Ω〉 = X}.

Proposition 4.4 (Lucchini, Detomi [14] Proposition 16). Let H be a non-abelian σ-elementary group

with socle N1 × · · · ×N`,

H ≤subd X1 × . . .×X`
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as in Theorem 4.2. For i = 1, . . . , ` let `Xi(Ni) be the smallest primitivity degree of Xi, i.e. the

smallest index of a proper supplement of Ni in Xi. Then `Xi(Ni) ≤ σ∗(Xi) for i = 1, . . . , ` and

∑̀
i=1

`Xi(Ni) ≤
∑̀
i=1

σ∗(Xi) ≤ σ(H).

Proposition 4.5 ([14], Proposition 10). Let G be a finite group. If V is a complemented normal

abelian subgroup of G and V ∩ Z(G) = {1} then σ(G) ≤ 2|V | − 1.

Proof. Let H be a complement of V in G. The idea is to show that G is covered by the family

{Hv | v ∈ V } ∪ {CH(v)V | 1 6= v ∈ V }. We omit the details. �

5. Small covering numbers

Lemma 5.1 ([14], Lemma 18). Let N be a normal subgroup of a group X. If a set of subgroups of X

covers a coset yN of N in X, then it also covers every coset yαN with α prime to |y|.

Proof. Let s be an integer such that sα ≡ 1 mod |y|. As s is prime to |y|, by Dirichlet’s theorem

there exist infinitely many primes in the arithmetic progression {s + |y|n | n ∈ N}; we choose a

prime p > |X| in {s + |y|n | n ∈ N}. Clearly, yp = ys. As p is prime to |X|, there exists an

integer r such that pr ≡ 1 mod |X|. Hence, if yN ⊆ ∪i∈IMi, for every g ∈ yαN we have that

gp ∈ (yα)pN = (yα)sN = yN ⊆ ∪i∈IMi and therefore also g = (gp)r belongs to ∪i∈IMi. �

Proposition 5.2. Let H be a non-abelian σ-elementary group such that σ(H) ≤ 55. Then H is

primitive and monolithic.

Proof. Since Φ(H) = {1} (Remark 2.1), it is enough to show that H is monolithic: if this is the case,

any maximal subgroup of H not containing the socle of H is core-free. Suppose H has at least two

minimal normal subgroups N1 = N,N2, and let us use the notations of Theorem 4.2. By [14, Corollary

14] H has at most one abelian minimal normal subgroup. Therefore we may assume that N = N1 is

non-abelian. Let G = X1 be the primitive monolithic group associated to N . If G has a primitivity

degree at most 27 then we see by inspection (using GAP [6]) that there are two possibilities:

(1) `G(N) ≥ 10 and G/N ∈ {C2 × C2,Sym(3), D8}. This contradicts the sequence of inequalities

`G(N) ≤ σ(H) ≤ σ(G) ≤ σ(G/N),

indeed σ(C2 × C2) = σ(D8) = 3 and σ(S3) = 4;

(2) G/N is cyclic of prime-power order.

Assume the latter case holds. Then G/N admits only one maximal subgroup, hence a subset of

G generates G modulo N if and only if it contains an element g ∈ G such that G/N = 〈gN〉. Thus

Lemma 5.1 implies that σ(G) ≤ σ∗(G) + 1. Recall that X2 denotes the primitive monolithic group

associated to N2. We have

σ∗(X1) + σ∗(X2) ≤ σ(H) ≤ σ(X1) ≤ σ∗(X1) + 1.
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In particular `X2(N2) ≤ σ∗(X2) ≤ 1, and this is a contradiction (`X2(N2) is the index of a proper

subgroup of X2).

Therefore we may assume that `G(N) ≥ 28 whenever N is a non-abelian minimal normal subgroup

of G. Suppose H has at least two minimal normal subgroups N1 = N,N2. If N2 is non-abelian

then by assumption `X2(N2) ≥ 28 and Proposition 4.4 implies 56 ≤ `X1(N1) + `X2(N2) ≤ σ(H), a

contradiction. Hence N2 is abelian. We have `X2(N2) = |N2| and by Proposition 4.4 and Proposition

4.5

28 + |N2| ≤ `X1(N1) + `X2(N2) ≤ σ(H) ≤ σ(X2) < 2|N2|,

therefore σ(H)− 28 ≥ |N2| > 1
2σ(H), and this implies σ(H) > 56, a contradiction. �

Proposition 5.2 allows us to list the σ-elementary groups with small covering number. Indeed,

if H is a σ-elementary group such that σ(H) ≤ 55 then H is a primitive monolithic group with a

primitivity degree at most 55 (cf. Proposition 4.4). Since there are only finitely many groups of a

given primitivity degree, we are reduced to look at a finite list of groups. In [7] all the σ-elementary

groups G with σ(G) ≤ 25 are listed. In general, the following fact (proved in [4]) holds.

Proposition 5.3. For every fixed positive integer n, the set of σ-elementary groups H with σ(H) = n

is finite, bounded by a function of n.

Proof. We will use the notations of Theorem 4.2. Let H be a σ-elementary group, and write soc(H) =

N1× . . .×N`. Let X1, . . . , X` be the primitive monolithic groups associated to N1, . . . , N` respectively.

H embeds in X1× . . .×X`, so in order to conclude it suffices to bound the number of possibilities for

` and each Xi in terms of σ(H). By Proposition 4.4

` ≤
∑̀
i=1

`Xi(Ni) ≤
∑̀
i=1

σ∗(Xi) ≤ σ(H).

Since there are finitely many primitive groups with a given primitivity degree, the result follows. �

6. Considering some monolithic groups

Proposition 5.2 holds also for 56, but for this number a quite different argument is needed. This is

interesting because of the following result, which is [9, Theorem 2]. Here A5 o C2 denotes the wreath

product of A5 with C2, i.e. the semidirect product (A5 × A5) o C2 with the action of C2 = 〈ε〉 on

A5 ×A5 given by (x, y)ε = (y, x).

Theorem 6.1 ([9] Theorem 2). σ(A5 o C2) = 1 + 4 · 5 + 6 · 6 = 57.

A minimal cover of G = A5 oC2 is given by its socle, soc(G) = A5×A5, together with the subgroups

of the form NG(M ×Ma) where a ∈ A5 and M is either the stabilizer of j ∈ {1, 2, 3, 4, 5} − {i} (for

some i ∈ {1, 2, 3, 4, 5}) in A5 or the normalizer of a Sylow 5-subgroup of A5.

The lower bound for the covering number will be obtained by using the following tool, introduced

by Maróti in [11].
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Definition 6.2 (Definite unbeatability). Let X be a group. Let H be a set of proper subgroups of X,

and let Π ⊆ X. Suppose that the following four conditions hold for H and Π.

(1) Π ∩H 6= ∅ for every H ∈ H;

(2) Π ⊆
⋃
H∈HH;

(3) Π ∩H1 ∩H2 = ∅ for every distinct pair of subgroups H1 and H2 of H;

(4) |Π ∩K| ≤ |Π ∩H| for every H ∈ H and K < X with K 6∈ H.

Then H is said to be definitely unbeatable on Π.

For Π ⊆ X let σX(Π) be the least cardinality of a family of proper subgroups of X whose union

contains Π. The following lemma is straightforward.

Lemma 6.3. If H is definitely unbeatable on Π then σX(Π) = |H|.

It follows that if H is definitely unbeatable on Π then |H| = σX(Π) ≤ σ(X).

Let us give [11, Theorem 3.1] as an example. Let n ≥ 11 be an odd integer, and let X := Sym(n)

be the symmetric group on n letters. Let H be the family of subgroups of Sym(n) consisting of the

alternating group Alt(n) and the intransitive maximal subgroups of Sym(n). Let Π be the subset of

Sym(n) consisting of the permutations which are products of at most two disjoint cycles. Then H is

a cover of Sym(n) which is definitely unbeatable on Π, therefore σ(Sym(n)) = |H| = 2n−1.

This example was revisited and generalized by Maróti and me (cf. [12], [9]) and the results sum-

marized in Theorems 6.5 and 6.6 below were obtained.

Let us fix some notations we will often use.

Notations 6.4. Let G be a monolithic group with socle N = soc(G) = S1×· · ·×Sm, where S1, . . . , Sm

are pairwise isomorphic non-abelian simple groups. X := NG(S1)/CG(S1) is an almost-simple group

with socle S := S1CG(S1)/CG(S1) ∼= S1. The minimal normal subgroups of Sm = S1 × . . . × Sm are

precisely its factors, S1, . . . , Sm. Since automorphisms send minimal normal subgroups to minimal

normal subgroups, it follows that G acts on the m factors of N . Let ρ : G → Sym(m) be the homo-

morphism induced by the conjugation action of G on the set {S1, . . . , Sm}. K := ρ(G) is a transitive

permutation group of degree m. By [1, Remark 1.1.40.13] G embeds in the wreath product X oK. Let

L be the subgroup of X generated by the following set:

S ∪ {x1 · · ·xm | ∃k ∈ K : (x1, . . . , xm)k ∈ G}.

Let T be a normal subgroup of X containing S and contained in L with the property that L/T has

prime order if L 6= S, and T = L if L = S. Note that such T does not necessarily exist.

The role of T will be the following: given x ∈ L such that 〈x, T 〉 = L, a family of proper subgroups

of X covering the coset xS will be lifted to coverings of significant subsets of G (cf. Theorem 7.2).

Let G be a primitive monolithic group with non-abelian socle N , and write N = Sm with S a

non-abelian simple group. The covers of G we often look at consist of some subgroups of G containing

N and subgroups of the form NG(M ×Ma2 × · · · ×Mam) with M < S, which will be called “product

type subgroups”.
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In the following if n is a positive integer we denote by ω(n) the number of prime divisors of n.

Suppose thatG/N is cyclic. The covers ofG we consider consist of all the ω(|G/N |) maximal subgroups

of G containing N and some product type subgroups NG((S ∩M) × (S ∩M)a2 × · · · × (S ∩M)am)

where a1 = 1, a2, . . . , am ∈ S and M varies in a family of maximal subgroups of X supplementing S

which covers a coset xS of S in X which generates the cyclic group X/S. This is how we obtain upper

bounds for σ(G).

Theorem 6.5 (Maróti A., Garonzi M. 2010 [12]). Let G be a monolithic group with non-abelian socle,

and let us use Notations 6.4. Suppose that G/N is cyclic and that X = S = Alt(n). Then the following

holds.

(1) If 12 < n ≡ 2 mod (4) then

σ(G) = ω(m) +

(n/2)−2∑
i=1, i odd

(
n

i

)m
+

1

2m

(
n

n/2

)m
.

(2) If 12 < n 6≡ 2 mod (4) then

ω(m) +
1

2

n∑
i=1, i odd

(
n

i

)m
≤ σ(G).

(3) Suppose n has a prime divisor at most 3
√
n. Then

σ(G) ∼ ω(m) + min
M

∑
M∈M

|S : M |m−1 as n→∞.

Theorem 6.6 (Garonzi M. 2011 [9]). Let G be a monolithic group with non-abelian socle, and let us

use Notations 6.4. Suppose that G/N is cyclic and that X = Sym(n). Then the following holds.

(1) Suppose that n ≥ 7 is odd and (n,m) 6= (9, 1). Then

σ(G) = ω(2m) +

(n−1)/2∑
i=1

(
n

i

)m
.

(2) Suppose that n ≥ 8 is even. Then(
1

2

(
n

n/2

))m
≤ σ(G) ≤ ω(2m) +

(
1

2

(
n

n/2

))m
+

[n/3]∑
i=1

(
n

i

)m
.

In particular σ(G) ∼
(

1
2

(
n
n/2

))m
as n→∞.

7. Attacking the conjecture

The following result provides a first partial reduction to monolithic groups.

Proposition 7.1. Let H be a non-abelian σ-elementary group, let N1, . . . , N` be minimal normal

subgroups of H such that soc(H) = N1 × · · · × N` and let X1, . . . , X` be the primitive monolithic

groups associated to N1, . . . , N` respectively. Then at most one of N1, . . . , N` is abelian. Suppose
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that N1 is non-abelian and that σ∗(X1) ≤ σ∗(Xj) whenever j ∈ {1, . . . , `} and Nj is non-abelian. If

σ(X1) < 2σ∗(X1) then H ∼= X1, i.e. H is monolithic.

Proof. In [14, Corollary 14] it is proved that any non-abelian σ-elementary group has at most one

abelian minimal normal subgroup. Suppose now σ(X1) < 2σ∗(X1). We want to prove that ` = 1. By

Proposition 4.4

σ∗(X1) +
∑̀
j=2

σ∗(Xj) ≤ σ(H) ≤ σ(X1) < 2σ∗(X1).

It follows that
∑`

j=2 σ
∗(Xj) < σ∗(X1) hence, by the minimality hypothesis on X1, N2, . . . , N` are

abelian. Since at most one of N1, . . . , N` is abelian, we may assume (by contradiction) that ` = 2.

Since N2 is abelian `X2(N2) = |N2|, and by Proposition 4.4

min{2σ∗(X1), 2|N2|} ≤ σ∗(X1) + |N2| = σ∗(X1) + `X2(N2)

≤ σ(H) ≤ min{σ(X1), σ(X2)}.

Now by hypothesis σ(X1) < 2σ∗(X1), and σ(X2) < 2|N2| by Proposition 4.5. This leads to a contra-

diction. �

In order to prove an inequality like σ(G) < 2σ∗(G) for G a primitive monolithic group we first need

some way to get as much general as possible upper bounds for σ(G).

Let G be a monolithic group with non-abelian socle, and let us use Notations 6.4. Recall that T

denotes a normal subgroup of X containing S and contained in L with the property that L/T has

prime order if L 6= S, and T = L if L = S. Note that such T does not necessarily exist.

Theorem 7.2. Assume that X/S is abelian. LetM be a set of maximal subgroups of X supplementing

S and such that
⋃
M∈MM contains a coset xS ⊆ L with the property that 〈x, T 〉 = L.

Then σ(G) ≤ 2m−1 +
∑

M∈M |S : S ∩M |m−1.

Unfortunately the hypothesis “X/S abelian” does not seem easy to bypass.

Proof. If L 6= T define

R := {(x1, . . . , xm)k ∈ G | x1 · · ·xm ∈ T}.

Since L 6= T , R 6= G. Let us show that R is a subgroup of G. Since S ⊆ T , (x1, . . . , xm)k ∈ G belongs

to R if and only if x1 · · ·xmS ∈ T/S. If (x1, . . . , xm)k, (y1, . . . , ym)h ∈ R then

((x1, . . . , xm)k)−1 = k−1(x−1
1 , . . . , x−1

m ) = (x−1
k(1), . . . , x

−1
k(m))k

−1 ∈ T

being x−1
k(1) · · ·x

−1
k(m)S = (x1 · · ·xm)−1S ∈ T/S (X/S is abelian), and

(x1, . . . , xm)k · (y1, . . . , ym)h = (x1yk−1(1), . . . , xmyk−1(m))kh ∈ T

being x1yk−1(1) · · ·xmyk−1(m)S = (x1 · · ·xm)(y1 · · · ym)S ∈ T/S (X/S is abelian).
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Let δ ∈ K be an m-cycle, 1 = a1, a2, . . . , am ∈ X and M ∈ M. An element (x1, . . . , xm)δ ∈ X oK
normalizes (M ∩ S)× (M ∩ S)a2 × · · · × (M ∩ S)am if and only if

(M ∩ S)
aδ−1(1)xδ−1(1) × (M ∩ S)

aδ−1(2)xδ−1(2) × · · · × (M ∩ S)
aδ−1(m)xδ−1(m) =

= (M ∩ S)× (M ∩ S)a2 × · · · × (M ∩ S)am ,

if and only if

(7.1) aδ−1(1)xδ−1(1)a
−1
1 , aδ−1(2)xδ−1(2)a

−1
2 , . . . , aδ−1(m)xδ−1(m)a

−1
m ∈ NX(M ∩ S) = M.

If x1xδ(1) · · ·xδm−1(1) ∈M then there exist a2, . . . , am ∈ X such that (7.1) is true. SinceM supplements

S in X, a2, . . . , am can be chosen in S. Therefore every element (x1, . . . , xm)δ ∈ G such that δ is an

m-cycle and x1xδ(1) · · ·xδm−1(1) ∈ xS belongs to a subgroup of G of the form NG((M ∩ S) × (M ∩
S)a2 × · · · × (M ∩ S)am) where M ∈ M and a2, . . . , am ∈ S. It follows that G is covered by these

subgroups together with R (if L 6= T ) and the pre-images through ρ of 2m−1− 1 maximal intransitive

subgroups of K (corresponding to the subsets of {1, . . . ,m} of sizes from 1 to [m/2]). �

Recall the structure of maximal subgroups of primitive monolithic groups.

Definition 7.3 ([1], Definition 1.1.37). Let G =
∏n
i=1 Si be a direct product of groups. A subgroup H

of G is said to be “full diagonal” if each projection πi : H → Si is an isomorphism.

What follows is part of the O’Nan-Scott theorem (reference: [1, Remark 1.1.40]). Let G be a

primitive monolithic group with non-abelian socle N = Sm. Let H be a maximal subgroup of G such

that N 6⊆ H, i.e. HN = G, i.e. H supplements N . Suppose N ∩H 6= {1}, i.e. H does not complement

N . Since N is the unique minimal normal subgroup of G and H is a maximal subgroup of G not

containing N , H = NG(N ∩ H). In the following let X := NG(S1)/CG(S1) (it is an almost simple

group with socle S1CG(S1)/CG(S1) ∼= S). There are two possibilities for the intersection N ∩H:

(1) Product type. Suppose the projections H → Si are not surjective. Then there exists a

subgroup M of S such that NX(M) supplements S in X and elements a2, . . . , am ∈ S such

that

H ∩N = M ×Ma2 × . . .×Mam .

In this case |H ∩N | = |M |m.

(2) Diagonal type. Suppose the projections H → Si are surjective. Then there exists an H-

invariant partition ∆ of {1, . . . ,m} into blocks for the action of H on {1, . . . ,m} such that

H ∩N =
∏
D∈∆

(H ∩N)πD

and for each D ∈ ∆ the projection (H ∩N)πD is a full diagonal subgroup of
∏
i∈D Si. In this

case |H ∩N | ≤ |S|m/r where r is the smallest prime divisor of m.

We now prove a crucial lemma which we will need in the proof of the main theorem. Let G be a

monolithic group with non-abelian socle, and let us use Notations 6.4.
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Let Z be the set of pairs (z, w) in X × X such that 〈za, wb〉 ⊇ S for every a, b ∈ S. By [10],

Z ∩ (S × S) 6= ∅. Let k be a non-m-cycle in K, let O1 = (i1, . . . , ir), O2 = (j1, . . . , js) be two

cycles in the cycle decomposition of k, and for ρ−1(k) 3 h = (x1, . . . , xm)k, with x1, . . . , xm ∈ X, let

hO1 := xi1 · · ·xir and hO2 := xj1 · · ·xjs .

Lemma 7.4. Let Ek := {(hO1 , hO2) | h ∈ ρ−1(k)} ∩ Z. Let r be the smallest prime divisor of m. If

g ∈ ρ−1(k) then σNg(G) ≥ |Ek| · |S|m−m/r−2.

Proof. Let

X := {h ∈ Ng | (hO1 , hO2) ∈ Ek}.

Note that if h ∈ Ng, θ, ϕ ∈ X are such that hO1 ≡ θ mod S and hO2 ≡ ϕ mod S then there exists

t ∈ N such that (th)O1 = θ, (th)O2 = ϕ. This implies that |X| ≥ |Ek| · |S|m−2. It is easy to show that if

a2, . . . , am ∈ S and h ∈ ρ−1(k)∩NG(M ×Ma2 ×· · ·×Mam) then hO1 ∈ NX(M)ai1 , hO2 ∈ NX(M)aj1 .

By the definition of Ek, we deduce that X∩H = ∅ whenever H is a supplement of N of product type.

Since the maximal subgroups of G complementing N intersect Ng in at most one element, this implies

that in order to cover X with supplements of N we need at least |Ek| · |S|m−2/|S|m/r of them. �

We are ready to state the main theorem.

Theorem 7.5. Let H be a σ-elementary non-abelian group. We will use the notations of Theorem

4.2. Let N = N1 be a non-abelian minimal normal subgroup of H and let G := H/RH(N) = X1 be

the primitive monolithic group associated to N . Assume that min{σ∗(Xi) : i = 1, . . . , h} = σ∗(G).

Let us use Notations 6.4, and let r be the smallest prime divisor of m. Suppose that X/S is abelian.

Let Enc := min{|Ek| | k ∈ K non-m-cycle} (Ek is as in Lemma 7.4). Suppose that whenever x ∈ X is

such that 〈x, S〉 = T there exist families M,J of maximal subgroups of X supplementing S such that:

(1) xS ⊆
⋃
M∈M∪J M ;

(2)
∑

M∈M∪J |S : S ∩M |m−1 < Enc · |S|m−m/r−2;

(3) σNy(Y ) ≥
∑

M∈M |S : S ∩M |m−1 (notation is as in Definition 4.3) whenever Y is a primitive

monolithic group with socle N and y ∈ Y is such that 〈N, y〉 = Y .

(4)
∑

M∈J |S : S ∩M |m−1 + 2m−1 <
∑

M∈M |S : S ∩M |m−1;

Then H ∼= G, in other words H is monolithic.

Proof. By Lemma 7.1, it is enough to show that σ(G) < 2σ∗(G). Let us do that. Since (1) holds,

we may apply Theorem 7.2 and obtain that σ(G) ≤ 2m−1 +
∑

M∈M∪J |S : S ∩M |m−1. Fix a set Ω

of cosets of N in G such that σ∗(G) = σΩ(G). If gN ∈ Ω and Y is a supplement of N in G then

Y ∩ 〈N, g〉 is a supplement of N in 〈N, g〉, therefore σ∗(G) ≥ σNg(G) ≥ σNg(〈N, g〉). By (2) and

Lemma 7.4, ρ(g) is an m-cycle, therefore 〈N, g〉 is a primitive monolithic group hence by (3)

σ∗(G) ≥ σNg(G) ≥ σNg(〈N, g〉) ≥
∑
M∈M

|S : S ∩M |m−1.

Therefore by Theorem 7.2 and (4),

σ(G) ≤ 2m−1 +
∑

M∈M∪J
|S : S ∩M |m−1 < 2

∑
M∈M

|S : S ∩M |m−1 ≤ 2σ∗(G).
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Therefore σ(G) < 2σ∗(G). �

Fulfilling condition (3) requires the type of results listed in Theorems 6.5 and 6.6 (indeed, note

that in Condition (3) the quotient Y/N is cyclic). In my Ph.D. thesis [16] I give several examples of

applications of this result, and in particular I prove the following.

Theorem 7.6. Let H be a non-abelian σ-elementary group. If all the minimal subnormal subgroups

of H are alternating groups of even degree larger than 30 then H is monolithic.
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