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Abstract. A normal subgroup N of a group G is said to be an omissible subgroup of G if it has the

following property: whenever X ≤ G is such that G = XN , then G = X. In this note we construct

various groups G, each of which has an omissible subgroup N 6= 1 such that G/N ∼= SL2(k) where k

is a field of positive characteristic.

1. Introduction

In [4] we investigated groups in which every proper subgroup is soluble-by-finite rank and we proved

the following theorem.

Theorem 1.1. Let G be a locally (soluble-by-finite) group with all proper subgroups soluble-by-finite

rank. Then either

(i) G is locally soluble, or

(ii) G is soluble-by-finite rank and almost locally soluble, or

(iii) G is soluble-by-PSL2(k), or

(iv) G is soluble-by-Sz(k),

where k is an infinite locally finite field with no infinite proper subfields.

In part (iv) above, Sz(k) denotes the Suzuki group defined over k and so k must have characteristic

2. In contrast there are no restrictions on the characteristic of the field k in part (iii). (The notation

and terminology employed in this introduction are discussed in detail below.)

In this note we construct non-obvious groups G of type (iii).
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Theorem 1.2. Let k be an infinite locally finite field of characteristic p with no infinite proper subfields

and let l ≥ 1 be an integer. Then there exists a countable locally finite group G with all proper subgroups

soluble-by-finite rank such that:

(i) G has a normal subgroup H of finite exponent that is soluble of derived length l, and

(ii) G/H ∼= PSL2(k).

We will deduce Theorem 1.2 from the following theorem which is our main technical result and is

of independent interest.

Theorem 1.3. Let p be a prime and let (R, pR, k) be a discrete valuation ring of characteristic 0

such that |k| ≥ 5. Suppose that k is perfect if p = 2. Let X ≤ SL2(R) be such that SL2(R) =

〈X,SL2(R, pR)〉. Then SL2(R) = 〈X,SL2(R, pnR)〉 for each integer n ≥ 1.

On our way to deducing Theorem 1.2 from Theorem 1.3 we prove the following.

Theorem 1.4. Let k be a field of characteristic p > 0 such that |k| ≥ 5 and suppose that k is perfect

if p = 2. Let l ≥ 1 be an integer. There exists a group G with a nilpotent normal p-subgroup N of

finite exponent and derived length l such that

(i) G/N ∼= SL2(k), and

(ii) N is an omissible subgroup of G.

Moreover, if k is infinite then |G| = |k|.

Here and throughout we say that a normal subgroup N of a group G is an omissible subgroup of

G, (or that N is omissible if G is clear from the context), if it has the following property: whenever

X ≤ G is such that G = XN , then G = X. If N is an omissible subgroup of G we say that G is an

omissible extension of N .

The literature concerning SL2 over a commutative ring R is vast and difficult to navigate; to the

best of our knowledge there is no comprehensive survey of this material and we cannot give one here.

However, we wish to draw the reader’s attention to two works. J.-P. Serre [8, IV-23] considered the

groups SL2(Ẑp), where Ẑp denotes the ring of p-adic integers and p ≥ 5. He proved what is essentially

our Theorem 1.3 for R = Ẑp, although his result is couched in the terminology of topological groups.

Indeed, for p ≥ 5 our proof of Theorem 1.3 can be substantially simplified by imitating his work. S.

D. Kozlov [5] considered omissible extensions of SLn(K) for finite fields K and all integers n ≥ 2.

2. Omissible subgroups

In this section we record some elementary facts about omissible subgroups.

It is well known that if G is a finitely generated group and Φ(G) denotes the Frattini subgroup of G

then Φ(G) is an omissible subgroup of G. However, even if G is countable, it need not be the case that

Φ(G) is an omissible subgroup of G, (consider a countable group G that has no maximal subgroups).

Nevertheless, omissible subgroups of a group G share many properties with the Frattini subgroups of

finitely generated groups:
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Lemma 2.1. (i) Let N be a normal subgroup of a group G and suppose that N ≤ X where X is

an omissible subgroup of G. Then N is an omissible subgroup of G and X/N is an omissible

subgroup of G/N .

(ii) Let N1 and N2 be normal subgroups of a group G such that N1 ≤ N2. Suppose that N1 is an

omissible subgroup of G and N2/N1 is an omissible subgroup of G/N1. Then N2 is an omissible

subgroup of G.

(iii) Let G be a group and let G′ and Z(G) denote the derived subgroup of G and the centre of G

respectively. Then G′ ∩ Z(G) is an omissible subgroup of G.

( iv) Let G be a nilpotent group. Then G′ is an omissible subgroup of G.

Proof. Part (i) is obvious. For part (ii), let X ≤ G be such that G = 〈X,N2〉. Then G/N1 =

〈X,N2〉/N1 = 〈XN1/N1, N2/N1〉 and, since N2/N1 is omissible in G/N1, we deduce that XN1 = G

which implies that X = G since N1 is omissible in G. This proves (ii).

To prove (iii), suppose that X ≤ G is such that 〈X,G′∩Z(G)〉 = G and that g1, g2 ∈ G. Now there

exist z1, z2 ∈ G′ ∩ Z(G) such that g1z1, g2z2 ∈ X. Therefore [g1, g2] = [g1z1, g2z2] ∈ X and it follows

that G′ ≤ X. The result follows at once.

Finally, we suppose that G is nilpotent of class c ≥ 1 and show that G′ is an omissible subgroup of

G. If c = 1 there is nothing to prove. If c = 2, then G′ = G′ ∩ Z(G), and the result follows from (iii).

We now argue by induction on c supposing G has class r + 1 ≥ 3 and the desired result holds when

c ≤ r. Now γr+1(G) is the last non-trivial term of the lower central series of G so γr+1(G) ≤ Z(G) and

it follows from (ii) that γr+1(G) is an omissible subgroup of G. Moreover, since G/γr+1(G) has class

r ≥ 2, our inductive hypothesis implies that (G/γr+1(G))′ = G′/γr+1(G) is an omissible subgroup of

G/γr+1(G). The result now follows from (ii). �

3. Fields of prime characteristic and Discrete valuation rings (DVRs)

We write Fpn or GF (pn) for the field that contains exactly pn elements. By a locally finite field

we mean a field k such that every finite set of elements of k generates a finite subfield of k. Clearly

locally finite fields have prime characteristic. Moreover, each locally finite field k of characteristic p is

countable since it is a subfield of the algebraic closure of Fp, which is itself countable. Infinite locally

finite fields k of characteristic p that have no proper infinite subfields exist for all primes p. Each can

be viewed as a union of finite fields in the following way:

k =

∞⋃
n=1

GF (pq
n
)

where q is a prime, (see, for instance, [1, Cor. 2.6]).

Let k be a field of characteristic p > 0. If p is odd then for each x ∈ k we have that

x = 1 + (x/2)2 − (1− x/2)2 = 1 + (x/2)2 +

p−1∑
i=1

(1− x/2)2
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and so x is a sum of squares in k. On the other hand, if p = 2 then an element x ∈ k is a sum of

squares in k if and only if x is itself a square in k. Consequently, in case p = 2, each element of k is a

sum of squares in k if and only if k is perfect. (Recall that a field k of characteristic p > 0 is said to

be perfect if the Frobenius endomorphism k → k given by x→ xp for all x ∈ k is onto.) It is easy to

see that locally finite fields are perfect.

A commutative ring A is said to be a local ring if it has a unique maximal ideal m. If this is the

case, we call the field A/m = k the residue field of A and record all of this information by saying that

(A,m, k) is a local ring. A discrete valuation ring (DVR) is a principal ideal domain that has a unique

non-zero prime ideal. Clearly DVRs are local rings. (We refer the reader to [6] and [9, Chapter 1] for

information about DVRs.)

Let R be a DVR. Then, up to multiplication by invertible elements, R has only one irreducible

element, π say, and it follows easily that the non-zero ideals of R are of the form πnR. Hence R is

Noetherian, and using this fact it is not difficult to show that ∩∞i=1π
iR = 0, (see, for instance, [9, p.

7]). Note that the element π is not nilpotent since R is a domain.

The following beautiful result is well known.

Theorem 3.1. [6, Theorem 29.1] Let (A, πA,K) be a DVR and let k be an extension field of K. Then

there exists a DVR (B, πB, k) containing A.

Let p be a prime and let ZpZ = {ab ∈ Q| p 6 | b }, the ring obtained by localizing Z at its prime ideal

pZ. It is easy to see that ZpZ is a DVR of characteristic 0 that has pZpZ as its unique maximal ideal.

(Thus, in the terminology of [6], ZpZ is a p-ring.) Note that ZpZ/pZpZ ∼= Fp.
Let k be a field of characteristic p. On viewing k as an extension field of Fp and setting K = Fp,

π = p and A = ZpZ in Theorem 3.1 we deduce the following corollary.

Corollary 3.2. Let k be a field of characteristic p > 0. Then there exists a DVR (R, pR, k) of

characteristic 0.

4. SL2 over DVRs

Let J be a proper ideal of a commutative ring R and let η : R→ R/J be the natural map. Evidently

η induces a group homomorphism η∗ : SL2(R) → SL2(R/J). We write SL2(R, J) for the kernel of

this map and note that SL2(R, J) consists of all 2× 2 matrices of determinant 1 that are of the form

I2 +B where the entries of the 2× 2 matrix B lie in J .

Lemma 4.1. Let (R,m,K) be a local ring and let J be a proper ideal of R. Then

(i) the natural map η∗ : SL2(R)→ SL2(R/J) is onto and so SL2(R)/SL2(R, J) ∼= SL2(R/J),

(ii) SL2(R) =

〈(
1 b

0 1

)
,

(
1 0

b 1

)
| b ∈ R

〉
, and

(iii) SL2(R) is a perfect group if |K| ≥ 4 .

Proof. Let A = ( a1 a2a3 a4 ) be an arbitrary element of SL2(R/J) and let bi be a preimage of ai under the

natural map η : R → R/J . Let B =
(
b1 b2
b3 b4

)
and note that det(B) = δ is congruent to 1 modulo J .
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Since J ⊆ m it follows that δ is a unit of R and it is easy to see that
(
b1δ−1 b2δ−1

b3 b4

)
is an element of

SL2(R) that maps to A under η∗. Part (i) now follows easily.

Part (ii) can be proved by the usual ‘row reduction’ argument that establishes the result in the

special case that R is a field, (see, for instance, [7, 3.2.10]).

Suppose now that |K| ≥ 4 so that there exists 0 6= ā ∈ K such that ā2 − 1 6= 0. Let a ∈ R be

a preimage of ā under the natural map R → R/m = K and note that a and 1 − a2 are invertible

elements of R. Part (iii) now follows from (ii) on observing that for each b ∈ R we have that[(
a−1 0

0 a

)
,
(

1 b(1−a2)−1

0 1

)]
=
(

1 b
0 1

)
and

[(
a 0
0 a−1

)
,
(

1 0
b(1−a2)−1 1

)]
=
(

1 0
b 1

)
.

�

Let (R, πR,K) be a DVR of characteristic 0 and let B =
(

1+πa πb
πc 1+πd

)
be an element of SL2(R, πR).

Since det(B) = 1 we have that 1 + πa + πd ≡ 1 modulo π2R and it follows easily that a + d ≡ 0

modulo πR. This observation will be used throughout the sequel.

Let p be a prime. In the proof of the following lemma we will need to know a little about the

divisors of the binomial coefficients
(
pm

i

)
where 1 ≤ i ≤ pm. To be more precise we first recall that

the p-adic valuation νp : Q \ {0} → Z is defined in the following way: for each x ∈ Q \ {0}, let

νp(x) be the unique integer such that x = pνp(x)(a/b) where a, b ∈ Z \ {0} and a, b are not divisible

by p. The (well-known) fact that we require is that νp(
(
pm

i

)
) = m − νp(i) for 1 ≤ i ≤ pm. This

is quite easy to prove by induction on i after noticing that
(
pm

i+1

)
=
(
pm

i

)
((pm − i)/(i + 1)) so that

νp(
(
pm

i+1

)
) = νp(

(
pm

i

)
) + νp(((p− i)/(i+ 1))) for 1 ≤ i ≤ pm − 1. As a consequence of this fact we have

that pm+1 divides
(
pm

i

)
pi for 1 ≤ i ≤ pm.

Lemma 4.2. Let p be a prime and let (R, pR,K) be a DVR of characteristic 0. Then

(i) SL2(R, pR)/SL2(R, p2R) is an elementary abelian p-group,

(ii) for each n ≥ 2, SL2(R, pR)/SL2(R, pnR) is a nilpotent p-group of finite exponent,

(iii) ∩∞n=1SL2(R, pnR) = 1 , and

(iv) SL2(R, pR) is insoluble.

Proof. Let B =
(

1+pa pb
pc 1+pd

)
∈ SL2(R, pR) and let m be a positive integer. Since pm+1 divides

(
pm

i

)
pi

for i = 1, . . . , pm the binomial theorem implies that Bpm =
{
I2 + p

(
a b
c d

)}pm ∈ SL2(R, pm+1R) and

so SL2(R, pR)/SL2(R, pnR) has exponent dividing pn−1 for each n ≥ 2. In particular, it follows that

SL2(R, pR)/SL2(R, p2R) has exponent p.

Suppose that A =
(

1+pma′ pmb′

pmc′ 1+pmd′

)
∈ SL2(R, pmR). A routine calculation shows that [A,B] is

congruent modulo SL2(R, pm+1R) to the scalar matrix

(1 + pa+ pma′ + pd+ p2ad+ pmd′ − p2bc)I2.

If m = 1 the argument in the paragraph immediately preceding this lemma shows that a+d ≡ a′+
d′ ≡ 0 modulo pR and we deduce that [A,B] ≡ I2 modulo SL2(R, p2R) and so SL2(R, pR)/SL2(R, p2R)

is abelian and therefore elementary abelian, by the above, and (i) is proved.
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If m > 1 we still have that

[SL2(R, pmR), SL2(R, pR), SL2(R, pR)] ≤ SL2(R, pm+1R),

and it follows that the normal series

SL2(R, pR) ≥ SL2(R, p2R) ≥ SL2(R, p3R) ≥ . . .

can be refined to a descending central series of SL2(R, pR) by inserting at most one new term between

each pair of successive terms. It follows that SL2(R, pR)/SL2(R, pnR) is a nilpotent p-group of finite

exponent for each n ≥ 2.

Recall from Section 3 that ∩∞i=1p
iR = 0 and so ∩∞i=1SL2(R, piR) = 1.

Since R has characteristic 0, we may identify Z with the subring of R generated by 1. Consequently,

we may view SL2(Z) as a subgroup of SL2(R) and SL2(Z, pZ) as a subgroup of SL2(R, pR). It is well

known that the subgroup of SL2(Z, pZ) generated by
(

1 p
0 1

)
and

(
1 0
p 0

)
is a free group of rank 2, (see,

for instance, [2, p. 26]), and it follows that SL2(R, pR) is insoluble.

�

Lemma 4.3. Let p be a prime and let (R, pR,K) be a DVR where |K| ≥ 5. Suppose that X ≤ SL2(R)

is such that SL2(R) = 〈X,SL2(R, pR)〉.

(i) If p is odd then X contains an element that is congruent modulo SL2(R, p2R) to an element

of the form
(

1 pα
0 1

)
where α /∈ pR.

(ii) If p = 2 then X contains an element that is congruent modulo SL2(R, 4R) to an element of

the form

(
λ 2β

0 λ

)
, where β /∈ 2R.

Proof. Let α ∈ R \ pR. It follows from Lemma 4.1(i) that X contains an element of the form

M =
(

1+pa α+pb
pc 1+pd

)
where a, b, c, d ∈ R.

We view M as a sum of matrices in the following way,

M = I2 +

{(
0 α

0 0

)
+ p

(
a b

c d

)}
,

and use the binomial theorem along with the fact that ( 0 α
0 0 )

2
= ( 0 0

0 0 ) to verify that

Mp ≡



1 pα

0 1

 , modulo SL2(R, p2R), if p > 3;

1 3α(1 + cα)

0 1

 , modulo SL2(R, 9R), if p = 3;

1 + 2αc 2α(1 + d+ a)

0 1 + 2αc

 , modulo SL2(R, 4R), if p = 2.
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The result follows if p > 3.

Suppose that p = 3 and note that, in this case, the result follows from the above calculation unless

1 + cα ∈ 3R, i.e. unless c ≡ −α−1 modulo 3R. Consequently we may assume that every matrix in

X of the form
(

1+3a α+3b
3c 1+3d

)
where α /∈ 3R is congruent to

(
1+3a α+3b
−3α−1 1+3d

)
modulo SL2(R, 9R). Since

|K| ≥ 5 there exists β ∈ R such that β 6≡ −1, 0, 1 modulo 3R. Now X contains matrices A and

B that are congruent to
(

1+3a 1+3b
−3 1+3d

)
and

(
1+3a′ β+3b′

−3β−1 1+3d′

)
modulo SL2(R, 9R), respectively. However,

AB is congruent modulo SL2(R, 9R) to a matrix of the form
(

1+3a′′ 1+β+3b′′

−3(1+β−1) 1+3d′′

)
. It follows that

1 + β−1 ≡ (1 + β)−1 modulo 3R, which implies, (after multiplying by 1 + β), that 1 + β + β2 ≡ 0

modulo 3R. Hence (β − 1)2 ≡ 0 modulo 3R and we deduce that β ≡ 1 modulo 3R, a contradiction.

Finally, suppose that p = 2. Again the desired result follows from the above calculation of M2

unless 1 + a + d ∈ 2R, i.e. unless a + d ≡ 1 modulo 2R. Moreover, since M ∈ X ≤ SL2(R) the

determinant of M is 1 and so 1 + 2a+ 2d− 2cα ≡ 1 modulo 4R and it follows that a+ d+ cα ∈ 2R

and so c ≡ (a+ d)α−1 modulo 2R . Consequently, the result follows from the above calculation unless

c ≡ α−1 modulo 2R. Thus we may assume that every matrix in X of the form
(

1+2a α+2b
2c 1+2d

)
where

α /∈ 2R is congruent to
(

1+2a α+2b
2α−1 1+2d

)
modulo SL2(R, 4R). It is now easy to derive a contradiction

using an argument similar to that used for the case p = 3 after noticing that there exists β ∈ R such

that β 6≡ 0, 1 modulo 2R and β2 + β + 1 6≡ 0 modulo 2R. �

5. Some simple modules

Let (R, pR,K) be a DVR of characteristic 0. Recall from Lemma 4.2 thatN = SL2(R, pR)/SL2(R, p2R)

is an elementary abelian p-group. Since N is clearly a normal subgroup of SL2(R)/SL2(R, p2R) it

follows that N can be viewed as an Fp(SL2(K))-module in a natural way: The action of SL2(K)

on N is given by (A.SL2(R, p2R))M = AM
∗
SL2(R, p2R) for all (cosets) A.SL2(R, p2R) ∈ N and all

M ∈ SL2(K) where M∗ denotes a preimage of M under the natural map SL2(R) → SL(K). (This

latter map is onto by Lemma 4.1.) In this section we investigate the module-theoretic structure of N .

The unpleasant notation we have just used can, to an extent, be avoided by introducing the Lie algebra

sl2(K), (although we will only need to consider its additive structure). Accordingly, we proceed to

introduce sl2(K).

Let sl2(K) denote the collection of 2 × 2 matrices with entries in K that have trace zero. Thus

sl2(K) = {
(
α β
γ −α

)
|α, β, γ ∈ K}. We view sl2(K) as an abelian group under matrix addition and

note that sl2(K) is closed under conjugation by elements of SL2(K) since tr(A−1BA) = tr(B) for

all A ∈ SL2(K) and B ∈ sl2(K). Thus the elementary abelian p-group sl2(K) can be viewed as an

Fp(SL2(K))-module.

As we have seen, if
(

1+pa pb
pc 1+pd

)
∈ SL2(R, pR) then a + d ≡ 0 modulo pR. With this information

in hand the proof of the next lemma is straightforward. (For each x ∈ R we let x̄ denote the image of

x in K under the natural map R→ K.)
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Lemma 5.1. Let (R, pR,K) be a DVR of characteristic 0. Then the function θ : SL2(R, pR)/SL2(R, p2R)→
sl2(K) given by

θ :

(
1 + pa pb

pc 1 + pd

)
.SL2(R, p2R)→

(
ā b̄

c̄ d̄

)
is an isomorphism of Fp(SL2(K))-modules.

Note that if p = 2, then Z(K) = {( α 0
0 α ) |α ∈ K} is a subset of sl2(K). Clearly Z(K) is an

F2(SL2(K))-submodule of sl2(K) on which SL2(K) acts trivially.

Lemma 5.2. Let k be a field of characteristic p > 0 such that |k| ≥ 4 and suppose that k is perfect if

p = 2.

(i) If p 6= 2 the Fp(SL2(k))-module sl2(k) is simple.

(ii) If p = 2 the F2(SL2(k))-module sl2(k) is generated by any element of sl2(k) that is not con-

tained in Z(k) = {( α 0
0 α ) |α ∈ k}.

Proof. Recall from Section 3 that each element of k is a sum of squares in k. Throughout this proof

we let D(y) =
(
y−1 0

0 y

)
whenever 0 6= y ∈ k. Evidently each such D(y) is an element of SL2(k).

Let B =
(
α β
γ −α

)
be a non-zero element of sl2(k) and suppose that B /∈ Z(k) if p = 2. Let M denote

the Fp(SL2(k))-submodule of sl2(k) generated by B. Our goal is to show that M = sl2(k).

Our first step is to prove that M contains an element of the form ( 0 x
0 0 ) where x 6= 0. If α = γ = 0

there is nothing to prove, so suppose that α and γ are not both zero. Let U = ( 1 1
0 1 ) , an element of

SL2(k). Now M contains C := BU −B =
(
−γ 2α−γ
0 γ

)
and CU −C =

(
0 −2γ
0 0

)
and we are done if p 6= 2.

On the other hand, if p = 2 then C =
( γ γ

0 γ

)
and it follows that M contains a matrix V =

(
α β
0 α

)
in

which β 6= 0. Since |k| ≥ 4 there exists 0 6= ζ ∈ k such that ζ2 6= 1. Now V D(ζ−1) − V =
(

0 (ζ−2−1)β
0 0

)
and the claim is proved.

We next show that M contains ( 0 1
0 0 ). As we have seen, M contains a matrix of the form ( 0 x

0 0 )

where x 6= 0. Let us write x−1 as the sum of squares x−1 =
∑l

i=1 y
2
i where each yi is a non-zero

element of k. It is easy to verify that

l∑
i=1

(
0 x

0 0

)D(yi)

=
l∑

i=1

(
0 xy2

i

0 0

)
=

(
0 1

0 0

)
,

as required.

To complete the proof of the lemma it now suffices to show that sl2(k) is generated by ( 0 1
0 0 ) as an

Fp(SL2(k))-module. To this end, let L denote the submodule of sl2(k) generated by ( 0 1
0 0 ). Our claim

is that L = sl2(k). Since an arbitrary element of sl2(k) is of the form
(
α β
γ −α

)
=
(
α 0
0 −α

)
+
(

0 β
0 0

)
+
(

0 0
γ 0

)
it is enough to show that L contains

(
α 0
0 −α

)
, ( 0 α

0 0 ), and ( 0 0
α 0 ) for all α ∈ k. Clearly we may assume

that α 6= 0.

Let W =
(

0 −1
1 0

)
and Y = ( 1 0

1 1 ) . Now ( 0 α
0 0 )

W
= − ( 0 0

α 0 ) and ( 0 α
0 0 )

Y
= ( α α

−α −α ) =
(
α 0
0 −α

)
+

( 0 α
0 0 ) − ( 0 0

α 0 ) and so the lemma will be proved once we show that ( 0 α
0 0 ) ∈ L for all 0 6= α ∈ k.

Accordingly, let 0 6= α ∈ k and write α =
∑l

i=1 y
2
i where each yi is a non-zero element of k. Now∑l

i=1 ( 0 1
0 0 )

D(yi) = ( 0 α
0 0 ) , and the proof is complete. �
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Lemma 5.3. Let p be a prime and let (R, pR, k) be a DVR of characteristic 0 where |k| ≥ 5 and

suppose that k is perfect if p = 2. Let X ≤ SL2(R) be such that SL2(R) = 〈X,SL2(R, pR)〉. Then

SL2(R) = 〈X,SL2(R, p2R)〉.

Proof. Let X be as stated and recall from Lemma 4.3 that X contains a matrix, C say, that is contained

in SL2(R, pR) but is not congruent to a diagonal matrix modulo SL2(R, p2R). Also recall, from Lemma

5.1, that θ : SL2(R, pR)/SL2(R, p2R)→ sl2(K) is an isomorphism of Fp(SL2(K))-modules. Evidently

θ(C.SL2(R, p2R)) is a non-diagonal element of sl2(K). It follows from Lemma 5.2 that θ(C) generates

sl2(K) as an Fp(SL2(K))-module and so C.SL2(R, p2R) generates SL2(R, pR)/SL2(R, p2R) as an

Fp(SL2(K))-module. In other words, the normal closure of C in SL2(R) generates SL2(R, pR) modulo

SL2(R, p2R). Moreover, since SL2(R, pR) centralizes C modulo SL2(R, p2R) and 〈X,SL2(R, pR)〉 ≡
SL2(R) modulo SL2(R, p2R) it follows that the normal closure CX is congruent to SL2(R, pR) modulo

SL2(R, p2R). The result follows at once. �

6. The proofs of Theorems 1.2, 1.3 and 1.4

The proof of Theorem 1.3. The proof is by induction on n. If n = 1 there is nothing to prove whereas

if n = 2 the result is given by Lemma 5.3. Accordingly, suppose that n ≥ 3 and that SL2(R) =

〈X,SL2(R, pn−1R)〉. To complete the proof it suffices to show that for any S ∈ SL2(R, pn−1R) there

exists Y ∈ X such that Y is congruent to S modulo SL2(R, pnR). To this end write S = I2+pn−1
(
a b
c d

)
where a, b, c, d ∈ R. Since det(S) = 1 it is easy to see that a+ d ≡ 0 modulo pR.

Let B1 = ( a a
−a −a ) , B2 =

(
0 0
a+c 0

)
and B3 =

(
0 b−a
0 0

)
and for i = 1, 2, 3 let Si = I2 + pn−1Bi. Observe

that B2
i = 0 and Si ∈ SL2(R, pn−1R) for i = 1, 2, 3. Furthermore, since a + d ≡ 0 modulo pR, it

follows that S1S2S3 is congruent to S modulo SL2(R, pnR) and so it now suffices to show that there

exists Yi ∈ X, for i = 1, 2, 3, such that Yi is congruent to Si modulo SL2(R, pnR).

Let i = 1, 2 or 3 and note that Ui = I2 + pn−2Bi ∈ SL2(R). By the induction hypothesis it

follows that there exists Vi ∈ X such that Vi is congruent to Ui modulo SL2(R, pn−1R). We write

Vi = I2 + pn−2Bi + pn−1Ci where, of course, Ci is a 2× 2 matrix with entries in R.

Let Yi = V p
i . Clearly Yi ∈ X. Now,

Yi = I2 +

p−1∑
j=1

(
p

j

)
(pn−2Bi + pn−1Ci)

j + (pn−2Bi + pn−1Ci)
p =

I2 + pn−1Bi + pnCi +

p−1∑
j=2

(
p

j

)
pj(n−2)(Bi + pCi)

j + pp(n−2)(Bi + pCi)
p

and since n ≥ 3 we have that pn divides
(
p
j

)
pj(n−2) for j = 2, . . . , p− 1. It follows that Yi ≡ Si modulo

SL2(R, pn) if p ≥ 3 or p = 2 and n ≥ 4. On the other hand, if p = 2 and n = 3 we have that

Yi = I2 + 4Bi + 4(Bi + 2Ci)
2 ≡ I2 + 4Bi modulo SL2(R, 8R) since B2

i = 0. Therefore, in all cases, Yi

is congruent to Si modulo SL2(R, pnR) and the proof is complete.

�
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The proof of Theorem 1.4. Let (R, pR, k) be a DVR of characteristic 0; the existence of such a DVR

is guaranteed by Corollary 3.2.

Now Lemma 4.2 shows that for each m ≥ 1 the normal subgroup SL2(R, pR)/SL2(R, pmR) of

SL2(R)/SL2(R, pmR) is a nilpotent p-subgroup that has finite exponent. Moreover, Lemma 4.2 also

shows that ∩∞m=1SL2(R, pmR) = 1 and SL2(R, pR) is insoluble. It follows that for each l ≥ 1

there exists n ≥ 1 such that SL2(R, pR)/SL2(R, pnR) has derived length l. We claim that G =

SL2(R)/SL2(R, pnR) and N = SL2(R, pR)/SL2(R, pnR) have the desired properties. Lemma 4.1 (i)

implies that G/N ∼= SL2(k) and so, in light of the remarks above, it only remains to show that N is

an omissible subgroup of G and that |G| = |k| if k is infinite.

To this end let Y ≤ G be such that 〈Y,N〉 = G and recall that Lemma 4.1 shows that the natural

map η∗;SL2(R) → SL2(R, pnR) is onto. Let X ≤ SL2(R) be a preimage of Y under η∗. Then

〈X,SL2(R, pR)〉 = SL2(R) and so 〈X,SL2(R, pnR)〉 = SL2(R) by Theorem 1.3. It follows at once

that 〈Y 〉 = G and so N is an omissible subgroup of G.

Finally, suppose that k is infinite. It is easy to see that |SL2(k)| = |k| and so G/N can be generated

by |k| elements. Since N is an omissible subgroup of G this implies that G can be generated by |k|
elements and therefore |G| = |k|. The proof is now complete. �

The proof of Theorem 1.2 . Since k is perfect, Theorem 1.4 shows that there exists a countable group

G with an omissible normal subgroup N such that N is a nilpotent p-group of finite exponent and

derived length l and G/N ∼= SL2(k). Let H be the normal subgroup of G such that N ≤ H and H/N

is the centre of G/N . (Thus H = N if p = 2, whereas |H/N | = 2 if p is odd.) Evidently H has finite

exponent and is soluble of derived length at least l. Since G/N is a perfect group, (by Lemma 4.1 (iii)

for instance), Lemma 2.1 (iii) shows that H/N is an omissible subgroup of G/N and it now follows

from Lemma 2.1 (ii) that H is an omissible subgroup of G. On replacing G with G/H(l) and H with

H/H(l) if necessary we now have that G has an omissible normal subgroup H such that H has finite

exponent and derived length l. Moreover, G/H ∼= PSL2(k).

Let L be a proper subgroup of G. To complete the proof it suffices to show that L is soluble-by-finite

rank. Note that HL 6= G since H is omissible and so we may assume that H ≤ L. Now H is soluble

and consequently it is enough to prove that L/H is soluble-by-finite rank. We recall from [3] that

each proper subgroup of PSL2(k) is finite or soluble of derived length at most 2. The result follows

immediately since L/H is isomorphic to a proper subgroup of PSL2(k). �
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