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Abstract. The number of factorizations of a finite abelian group as the product of two subgroups is

computed in two different ways and a combinatorial identity involving Gaussian binomial coefficients is

presented.

1. Introduction

A group G is factorized if G = AB for some subgroups A and B of G and such an expression is

called a factorization of G. The factorization of groups has a very long history in the theory of finite

and infinite groups in such a way that how the structure of subgroups in the factorization influences the

structure of the whole group. Also, it is important to know what groups have a nontrivial factorization

by proper subgroups and to determine all factorizations of a given finite or infinite group (see [13] for

details on factorizations of finite simple groups).

Counting the number of factorizations of groups with a finite number of factorizations is of some

interesting combinatorial flavor, for if we are able to compute the factorization number of a group

in two different ways, then we may obtain combinatorial identities, which is of independent interest.

The number of factorizations of a group, the factorization number, also can be applied to compute the

subgroup permutability degree of finite groups recently defined by Tǎrnǎuceanu in [22]. If F2(G) denotes

the factorization number of a group G, then the subgroup permutability degree of G is

spd(G) =
1

|L(G)|2
∑
H≤G

F2(H),
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where L(G) is the lattice of all subgroups of G. Recently, the author and Saeedi [17, 18] computed the

factorization numbers of subgroups of PSL(2, pn) and used them to obtain the subgroup permutability

degree of PSL(2, pn).

The aim of this paper is to obtain the factorization numbers of finite abelian groups in two different

ways, from which we get also an identity involving Gaussian binomial coefficients. Since F2(H ×K) =

F2(H)F2(K) for finite groups H and K of coprime orders, the problem of computing the factorization

number of finite abelian groups reduces to just finite abelian p-groups. Hence, throughout this paper

we choose a fixed prime p and all groups will be finite abelian p-groups.

In what follows, we set the following notations for a given non-increasing sequence of natural numbers

A = (a1, . . . , an):

(i) Ai = (a1, . . . , ai), for each i = 1, . . . , n;

(ii) Gp(A) = Zpa1 × · · · × Zpan is an abelian p-group of type A;

(iii) S(A) = {(b1, . . . , bm) : m ≤ n, bm ≤ · · · ≤ b1 and bi ≤ ai, for i = 1, . . . ,m}, and

(iv) if B = (b1, . . . , bm) ∈ S(A), then Tp(A : B) is the set of all m-tuples (x1, . . . , xm) of elements of

Gp(A) such that 〈x1, . . . , xm〉 ∼= Gp(B) and |xi| = pbi , for each i = 1, . . . ,m.

For a p-group G, the subgroup generated by all elements of order at most pi is denoted by Ωi(G)

and the subgroup generated by all nth power of elements of G is denoted by Gn. In other words,

Ωi(G) = 〈x ∈ G : xp
i

= 1〉 and Gn = 〈xn : x ∈ G〉. Also, if G is a group, then d(G) stand for the

minimum number of generators of G.

2. Main Results

To begin computing the factorization number of a finite abelian p-group, we first need to obtain some

principal lemmas about special subsets of the group.

Lemma 2.1. If A = (a1, . . . , an) is a non-increasing sequence of natural numbers and B = (b1, . . . , bm) ∈
S(A), then

|Tp(A : B)| =
m∏
i=1

(
pµbi (A) − pµbi−1(A)+µbi (Bi−1)

pµbi−1(Bi−1)

)
,

where µi(C) = imax{j : cj ≥ i}+ cmax{j:cj≥i}+1 + · · ·+ ck for every C = (c1, . . . , ck) ∈ S(A).

Proof. Let G = Gp(A) and H = Gp(B). If x1, . . . , xm ∈ G such that |xi| = pbi and 〈x1, . . . , xm〉 ∼= H,

then we may choose x1 to be any element of Ωb1(G) \Ωb1−1(G) and inductively xi to be any element of

Ωbi(G) \ Ωbi−1(G)〈x1, . . . , xi−1〉, for i = 2, . . . ,m. Hence the number of such m-tuples (x1, . . . , xm) is

m∏
i=1

|Ωbi(G) \ Ωbi−1(G)〈x1, . . . , xi−1〉|.

On the other hand,

Ωbi(G) \ Ωbi−1(G)〈x1, . . . , xi−1〉 = Ωbi(G) \ Ωbi−1(G)Ωbi(〈x1, . . . , xi−1〉)
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and

|Ωbi−1(G)Ωbi(〈x1, . . . , xi−1〉)| =
|Ωbi−1(G)||Ωbi(〈x1, . . . , xi−1〉)|
|Ωbi−1(〈x1, . . . , xi−1〉)|

so that the number of m-tuples (x1, . . . , xm) is

m∏
i=1

(
|Ωbi(G)| − |Ωbi−1(G)||Ωbi(〈x1, . . . , xi−1〉)|

|Ωbi−1(〈x1, . . . , xi−1〉)|

)
.

Hence the problem reduces to computing the order of Ωt(K) for a given abelian p-group K of type

C = (c1, . . . , ck) and a positive integer t.

If αk(C) = max{i : ci ≥ k}, then Ωt(K) is of type (pt, . . . , pt, pcαt(C)+1 , . . . , pck) and consequently

|Ωt(K)| = ptαt(C)+cαt(C)+1+···+ck = pµt(C). Now, by assumption |〈x1, . . . , xi−1〉| = pb1+···+bi−1 and the

number of m-tuples (x1, . . . , xm) is

m∏
i=1

(
pµbi (A) − pµbi−1(A)+µbi (Bi−1)

pµbi−1(Bi−1)

)
,

as required. �

The above lemma has an interesting application in the case where A = B.

Corollary 2.2. Let G be a finite abelian p-group of type A. Then

(i) |Aut(G)| = |Tp(A : A)|, and

(ii) if A = (a1, . . . , a1, . . . , am, . . . , am) = (b1, . . . , bn), where the number of ai is ki and ai > ai+1,

then

|Aut(G)| =
m∏
i=1

Ni∏
j=Ni−1+1

(
pbjNi+bNi+1+···+bm − p(bj−1)Ni′+bNi′+1+···+bm+j−1

)
and in particular, the size of the Sylow p-subgroup of Aut(G) is

|Aut(G)|p =
m∏
i=1

Ni∏
j=Ni−1+1

p
(bj−1)Ni′+bNi′+1+···+bm+j−1

,

where i′ = i+ 1− Sign(ai+1 − ai + 1) and Ni = k1 + · · ·+ ki, for each i = 1, . . . ,m.

Proof. (i) Let G = 〈x1, . . . , xn〉 and |xi| = pai , for each i = 1, . . . , n. Then, the result follows from the

fact that the map Aut(G)→ Tp(A : A), which sends an automorphism ϕ ∈ Aut(G) to (ϕ(x1), . . . , ϕ(xn))

is a bijection.

(ii) The result follows by computing the values of µbj (A), µbj−1(A), µbj (Aj−1) and µbj−1(Aj−1), for

each 1 ≤ j ≤ n. To end this, let Ni−1 < j ≤ Ni. Now, an easy observation shows that

µbj (A) = bjNi + bNi+1 + · · ·+ bn,

µbj−1(A) = (bj − 1)Ni′ + bNi′+1 + · · ·+ bn,

µbj (Aj−1) = (j − 1)bj ,

µbj−1(Aj−1) = (j − 1)(bj − 1),

where i′ = i+ 1− Sign(ai+1 − ai + 1), as required. �
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Note that, the order of automorphism group of a finite abelian p-group is also obtained alternatively

by several authors and we may refer the reader to [3, 7, 8, 9, 19, 20] for more details.

There are various papers, which involved with the computation of certain subgroups of a given finite

abelian p-group. Let G be a finite abelian p-group. Miller [14, 15, 16] gives some partial results on

the the number of certain subgroups of G, say cyclic subgroups etc, Stehling [21] gives a recursive

formula for the number of subgroup of a given order, and Delsarte [6], Kinosita [11] and Yeh [23] give

different formulas for the number of subgroups of a given type. Also, Davies [5] computes the number of

subgroups of special type with a given special factor group, where the group G has also a special type.

Utilizing Lemma 2.1, we obtain an alternative formula for the number of subgroups of a given type in

an arbitrary finite abelian p-group. We note that, our proof of the formula is both shorter and simpler

than Delsarte’s, Kinosita’s and Yeh’s methods.

Lemma 2.3. The number of subgroups of type B of a finite abelian p-group of type A is[
A
B

]
p

=
|Tp(A : B)|
|Tp(B : B)|

.

Proof. The result is obvious by the definitions. �

Corollary 2.4. The number of subgroups of a finite abelian p-group G of type A is

|L(G)| =
∑
B∈S(A)

[
A
B

]
p

,

where L(G) is the set of all subgroups of G.

Now, we are able to obtain our first formula for the factorization number of a finite abelian p-group.

Theorem 2.5. If G is a finite abelian p-group of type A, then

F2(G) = |L(G)|2 −
∑

B∈S(A)\{A}

[
A
B

]
p

F2(Gp(B)).

Proof. Since AB ≤ G for all subgroups A and B of G, we have

|L(G)|2 =
∑

A,B≤G
1 =

∑
H=AB

A,B≤H≤G

1 =
∑
H≤G

F2(H).

Now since S(A) is the set of all types of subgroups of G, we get

|L(G)|2 =
∑
B∈S(A)

[
A
B

]
p

F2(Gp(B)) = F2(G) +
∑

B∈S(A)\{A}

[
A
B

]
p

F2(Gp(B)),

from which the result follows. �

It is worth noting that, we may obtain a recursive formula for the number of factorizations of a finite

abelian p-group into k subgroups in the same way as in the proof of Theorem 2.5.

To get the next formula for the factorization number of a given finite abelian p-group G, we use the

fact that if G = CD, then Gp = CpDp. In fact, we take an ordered pair of subgroups (A,B) of Gp such
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that Gp = AB and we shall count the number of ordered pairs of subgroups (C,D) of G with G = CD

and (Cp, Dp) = (A,B). In what follows, we set the following notations.

For any real number q > 0 and integer n, the numbers [n]q and [n]q! denote the q-number and

q-factorial defined by

[n]q =
qn − 1

q − 1
and [n]q! = [n]q[n− 1]q . . . [2]q[1]q,

respectively. Moreover, the Gaussian binomial coefficients are defined in terms of q-factorials by[
n

i

]
q

=
[n]q!

[i]q![n− i]q!
=

(qn − 1) . . . (q − 1)

(qi − 1) . . . (q − 1)(qn−i − 1) . . . (q − 1)

and as usual the Gaussian polynomial coefficients are defined by[
n

i1, . . . , ik

]
q

=
[n]q!

[i1]q! . . . [ik]q![n− i1 − · · · − ik]q!
,

where 0 ≤ i1 + · · ·+ ik ≤ n. Given a prime power q, the Gaussian binomial coefficient
[
n
i

]
q

is the number

of subspaces of dimension i in a vector space of dimension n over the field of order q. We refer the

interested reader to [1, 2, 4, 10, 12] for more details on q-numbers and related topics. As we have seen

before, Lemma 2.3 generalizes the Gaussian binomial coefficients as the number of subgroups of a given

type of a finite abelian p-group.

We begin with two principal lemmas.

Lemma 2.6. Let G be an elementary abelian p-group and X ≤ G. Then, the number of subgroups Y

of G of order pn (n ≤ d(G)− d(X)) such that X ∩ Y = 1 is

pnd(X)

[
d(G)− d(X)

n

]
p

.

Proof. To count the number of n-tuples (y1, . . . , yn) of elements of G such that 〈y1, . . . , yn〉 is a sub-

group of order pn intersecting trivially with X, we may choose y1 ∈ G \ X and inductively yi ∈
G \ 〈X, y1, . . . , yi−1〉, for every i = 2, . . . , n. On the other hand, to count the number of n-tuples

(z1, . . . , zn) generating a given subgroup Y = 〈y1, . . . , yn〉 of order pn, we may choose z1 ∈ Y \ {1} and

inductively zi ∈ Y \ 〈z1, . . . , zi−1〉, for every i = 2, . . . , n. Hence, the number of subgroups Y is

n−1∏
i=0

pd(G) − pd(X)+i

pn − pi
=

n−1∏
i=0

pd(X)+i

pi
· p

d(G)−d(X)−i − 1

pn−i − 1

= pnd(X)

[
d(G)− d(X)

n

]
p

,

as required. �

Lemma 2.7. Let G be an elementary abelian p-group and X ≤ Y ≤ G. Then, the number of subgroups

Z of G of order pd(G)−d(Y )+n (n ≤ d(Y )− d(X)) such that X ∩ Z = 1 and Y Z = G is

pnd(X)+(d(Y )−n)(d(G)−d(Y ))

[
d(Y )− d(X)

n

]
p

.
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Proof. Let N ≤ X be a subgroup of order pn. If Z ≤ G such that Y Z = G, then |Y ∩ Z| = pn and

the number of such Z equals to the product of the number of subgroups Z1 of Y such that |Z1| = pn

and X ∩ Z1 = 1 by the number of subgroups Z2/N of G/N such that X/N · Z2/N = G/N and

X/N ∩ Z2/N = 1G/N . By Lemma 2.6, the first and second numbers are

pnd(X)

[
d(Y )− d(X)

n

]
p

and

p(d(G)−d(Y ))(d(Y )−n)

[
d(G)− d(Y )

d(G)− d(Y )

]
p

= p(d(Y )−n)(d(G)−d(Y )),

respectively. Therefore, the number of subgroups Z is

pnd(X)+(d(Y )−n)(d(G)−d(Y ))

[
d(Y )− d(X)

n

]
p

and the proof is complete. �

Utilizing the above lemmas, we can obtain our second formula for the factorization number of a finite

abelian p-group.

Theorem 2.8. Let G be a finite abelian p-group. Then

F2(G) =
∑

Gp=AB

 |Ω1(Gp)|2n+d(A)+d(B)

|Ω1(A)|d(A)|Ω1(B)|d(B)

∑
0≤i+j≤n

pid(A)+jd(B)

|Ω1(Gp)|i+j
· pij

[
n

i, j

]
p

 ,
where n = d(Ω1(G))− d(Ω1(Gp)).

Proof. First we note that if X ≤ Gp, then X = Y p for some subgroup Y of G. In particular, if

X = 〈x1〉 × · · · × 〈xm〉, then Y = 〈y1〉 × · · · × 〈ym〉 × U , where U is an elementary abelian p-subgroup

such that U ∩ Gp = 1 and ypi = xi, for i = 1, . . . ,m. Now, if zi is any element with zpi = xi, then

(ziy
−1
i )p = 1 that is ziy

−1
i ∈ Ω1(G). Let Z = 〈z1〉 × · · · × 〈zm〉 × V be another subgroup of G with

Zp = X. Then, we may assume that zi = wiyi for some wi ∈ Ω1(G). Suppose that Y = Z. Then

|U | = |V | and Ω1(X)U = Ω1(X)V . Since y1 ∈ Z, there exist integers α1, . . . , αm and element v ∈ V
such that y1 = (w1y1)α1 . . . (wmym)αmv. Thus x1 = xα1

1 . . . xαmm , which implies that α1 ≡ 1 (mod |x1|)
that is α1 = 1+ |x1|t1 for some integer t1. Hence w−1

1 = y
|x1|t1
1 (w2y2)α2 . . . (wmym)αmv and consequently

|xi||αi, for each i = 2, . . . ,m, say αi = |xi|ti. Therefore w1 = y
|x1|t1
1 . . . y

|xm|tm
m v ∈ Ω1(Y ) and similarly

wi ∈ Ω1(Y ), for each i = 2, . . . ,m. Conversely, it can be easily seen that if Ω1(X)U = Ω1(X)V and

wi ∈ Ω1(Y ), then the subgroups Y and Z are equal.

Now let Gp = AB be a factorization of Gp and n = α(G)−β(G), where α(G) = d(Ω1(G)) and β(G) =

d(Ω1(Gp)). Then, by Lemmas 2.6 and 2.7, the number of factorizations G = CD with (Cp, Dp) = (A,B)

such that [Ω1(C) : Ω1(A)] = pi and [Ω1(D) : Ω1(B)] = pj (j = n− i+ k) is

|Ω1(G)|d(A)

|Ω1(C)|d(A)
· |Ω1(G)|d(B)

|Ω1(D)|d(B)
· piβ(G)

[
n

i

]
p

· pkβ(G)+(n−i)(β(G)+i−k)

[
i

k

]
p

,
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which simplifies to

(2.1)
|Ω1(G)|d(A)+d(B)|Ω1(Gp)|i+j

|Ω1(A)|d(A)|Ω1(B)|d(B)
· p

(n−i)(n−j)

pid(A)+jd(B)

[
n

i

]
p

[
i

n− j

]
p

.

Now, by putting i′ = n− i and j′ = n− j in (2.1) and much more simplification, it yields

|Ω1(Gp)|2n+d(A)+d(B)

|Ω1(A)|d(A)|Ω1(B)|d(B)
· p

i′d(A)+j′d(B)

|Ω1(Gp)|i′+j′
· pi′j′

[
n

i′, j′

]
p

factorizations G = CD with the given conditions, from which the result follows. �

Corollary 2.9. If (V, F ) is a vector space of dimention n over a finite field F of order q, then the

number of factorizations of V as the sum of two subspaces is

F2(V ) =
∑

0≤i+j≤n
qij
[
n

i, j

]
q

.

Proof. If q = p is a prime, then V can be identified with the elementary abelian p-group of order pn,

and the result follows by Theorem 2.8. Now if q is any prime power, then by substituting groups by

vector spaces and subgroups by subspaces in Lemmas 2.6 and 2.7, one can reprove Theorem 2.8 for

vector spaces, from which the result follows. �

Once we combine Theorems 2.5 and 2.8 in the special case of elementary abelian p-groups, we will

obtain the following combinatorial identity for Gaussian binomial coefficients, which is of independent

interest. Note that, the Gaussian binomial coefficients occur in the theory of partitions and counting of

symmetric polynomials.

Corollary 2.10. For each natural number n and prime power q, we have(
n∑
i=0

[
n

i

]
q

)2

=
∑

0≤i+j+k≤n
qij
[

n

i, j, k

]
q

.

Proof. Since the both sides of the given identity are polynomials in q, it is enough to show that the

result holds when q is a prime. We know from the proof of Theorem 2.5 that for an elementary abelian

p-group of order pn

(2.2)

(
n∑
i=0

[
n

i

]
p

)2

=

n∑
i=0

[
n

i

]
p

F2(Zn−ip ).

Also, by Corollary 2.9, for an elementary abelian p-group of order pm, we have

F2(Zmp ) =
∑

0≤j+k≤m
pjk
[
m

j, k

]
p

.

Hence
n∑
i=0

[
n

i

]
p

F2(Zn−ip ) =

n∑
i=0

∑
0≤j+k≤n−i

pjk
[
n

i

]
p

[
n− i
j, k

]
p

=
∑

0≤i+j+k≤n
pjk
[

n

i, j, k

]
p

,
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from which the result follows. �
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