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Abstract. We say that a finite group G is conjugacy expansive if for any normal subset S and any

conjugacy class C of G the normal set SC consists of at least as many conjugacy classes of G as S

does. Halasi, Maróti, Sidki, Bezerra have shown that a group is conjugacy expansive if and only if it

is a direct product of conjugacy expansive simple or abelian groups.

By considering a character analogue of the above, we say that a finite group G is character expansive

if for any complex character α and irreducible character χ of G the character αχ has at least as many

irreducible constituents, counting without multiplicity, as α does. In this paper we take some initial

steps in determining character expansive groups.

1. Introduction

The product of two conjugacy classes in a finite group usually consists of many conjugacy classes.

In [8] a finite group G was called (conjugacy) expansive if for any normal subset S and any conjugacy

class C of G the normal set SC consists of at least as many conjugacy classes of G as S does. It has

been proved in the same paper that G is conjugacy expansive if and only if it is the direct product

of conjugacy expansive simple or abelian groups. Hence, to classify such groups it is sufficient to

determine which simple groups are conjugacy expansive. It is conjectured that all simple groups are

such groups. In fact, the groups L2(q) and Suz(q) are all conjugacy expansive when simple and the

138 non-abelian finite simple groups whose character table can be found in the GAP [5] character

table library are also conjugacy expansive [8].
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In this paper the character analogue of conjugacy expansiveness is considered. We say that a finite

group G is character expansive if for any complex character α and irreducible character χ the number

of irreducible constituents of the product αχ (counting without multiplicity) is at least the number

of irreducible constituents of α, again counting without multiplicity. For example, abelian groups are

character expansive.

Our first observations on character expansive groups are the following.

Theorem 1.1. For a character expansive group G we have the following.

(1) If G is solvable then it is abelian.

(2) If G is almost simple then it is simple.

(3) If G is quasisimple then it is simple.

The ideas of [8, Section 3] can directly be translated to this character context to prove the following.

Theorem 1.2. Let G be a direct product of groups. Then G is character expansive if and only if every

direct factor of G is character expansive.

Theorems 1.1, 1.2, and the results on conjugacy classes above suggest us to consider the following.

Problem 1.3. Is it true that a character expansive group is a direct product of simple or abelian

groups?

The converse of Problem 1.3 is false. For let n = k2 for some integer k at least 3. By [1, Theorem

5.6], there are four irreducible characters χ1, χ2 6= χ2, χ3 of An so that χ1χ2 = χ3 = χ1χ2. This

means that An cannot be character expansive for n = k2. Furthermore, for the same reason, none of

the sporadic simple groups Co1, Co2, Co3, Fi ′24, M, M12, M24, and Th can be character expansive.

(Using the Hungarian algorithm [9] it can be shown by computer that among the 138 non-abelian

simple groups in the Gap [5] library all other groups are character expansive.)

Unfortunately we are unable to solve Problem 1.3. We can only show

Theorem 1.4. A minimal counterexample to Problem 1.3 has a unique minimal normal subgroup and

that is abelian and non-central.

Let G be a group which is the direct product of non-abelian finite simple groups and let V be a

finite faithful irreducible FG-module for some prime field F . For a complex linear character λ of V

let IG(λ) be the stabilizer of λ in G and for a finite group H let k(H) be the number of conjugacy

classes of H. An affirmative answer to the following problem would imply Problem 1.3.

Problem 1.5. With the notations and assumptions above, does there exists λ ∈ Irr(V ) with k(IG(λ)) <

k(G)?

Interestingly, Problem 1.5 seems to be close to the k(GV ) problem.

Theorem 1.6. With the notations and assumptions above, Problem 1.5 has an affirmative solution

if G is simple and (|G|, |V |) = 1, or if G = GL(n, 2) and |V | = 2n with n ≥ 3.
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2. Basic results

In this section we will list some basic results which will be needed in later parts of this paper.

The paper [8] considered the following notion “weaker” than conjugacy expansiveness. We say that

G is normal conjugacy expansive if for any normal subgroup N and any conjugacy class C of G the

normal set NC consists of at least as many conjugacy classes of G as N does. Normal conjugacy

expansive groups have been entirely described in [8].

Lemma 2.1. For a finite group G the following are equivalent.

(1) G is normal conjugacy expansive;

(2) G is a direct product of simple or abelian groups;

(3) k(G) = k(N)k(G/N) for all normal subgroups N of G.

Proof. This is part of [8, Theorem 1.1]. �

In this note we try to find character analogues of the results in [8]. For this we define n(α) to be

the number of irreducible constituents, counting without multiplicity, of a character α of G. So G

is character expansive if for any character α and any irreducible character χ we have n(α) ≤ n(αχ).

Furthermore we say that G is normal character expansive if for any normal subgroup N and any

irreducible character χ of G we have n(1GN ) ≤ n(1GN · χ). Here n(1GN ) is clearly k(G/N). Also,

character expansiveness implies normal character expansiveness.

We hope to show that a group is normal character expansive if and only if it is a direct product of

simple or abelian groups. Our first observation is the following.

Lemma 2.2. Every factor group of a normal character expansive group is normal character expansive.

Proof. This essentially follows from the correspondence theorem about normal subgroups in quotient

groups. �

Note that we do not know whether a normal subgroup of a normal character expansive group is

normal character expansive. Establishing this fact (if true) would greatly help understand normal

character expansive groups.

Next we state two technical lemmas.

Lemma 2.3. Let N be a normal subgroup of a finite group G such that k(G/N) ≤ n(1GN · χ) for

any irreducible character χ of G. Then the number of irreducible characters of G lying above any

irreducible character of N is at least k(G/N).

Proof. Let θ be an arbitrary irreducible character of N and let χ be an irreducible character of G lying

above θ. Now, for an arbitrary irreducible character ψ of G, we have 〈1GN · χ, ψ〉 = 〈χN , ψN 〉 which is

non-zero if and only if ψ lies above θ. Thus n(1GN · χ) is equal to the number of irreducible characters

of G lying above θ. The result follows. �
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Lemma 2.4. Let N be a normal subgroup of a finite group G. Put H = G/N . Then the number of

irreducible characters of G lying above a fixed irreducible character θ of N is at most k(IH(θ)). Hence

if G is normal character expansive then k(H) ≤ k(IH(θ)). Furthermore if we also have that H is

abelian then θ is G-invariant.

Proof. The first statement is [4, Corollary, Page 178]. The second follows from Lemma 2.3. For the

third statement notice that |H| = k(H) ≤ k(IH(θ)) ≤ |H|. �

Finally, we will need an old result of Nagao [12, Lemma 1].

Lemma 2.5. Let N be a normal subgroup of a finite group G. Then k(G) ≤ k(N)k(G/N).

3. Proof of Theorem 1.1

The next three lemmas give all of Theorem 1.1.

Lemma 3.1. A solvable normal character expansive group is abelian.

Proof. Let G be a minimal counterexample to the statement of the lemma and let N be a non-trivial

normal subgroup of G. By Lemma 2.2 we know that G/N is normal character expansive and so, by

the minimality of G, we have that H = G/N is abelian. Let θ be an arbitrary irreducible character of

N . Then θ is G-invariant by Lemma 2.4. Hence, by Lemma 2.3, we have k(N)k(G/N) ≤ k(G). On

the other hand, by Lemma 2.5, we see that k(G) ≤ k(N)k(G/N). We conclude that for any normal

subgroup N of G we have k(G) = k(N)k(G/N). Finally, apply Lemma 2.1 to conclude that G is

abelian. �

Lemma 3.2. An almost simple normal character expansive group is simple.

Proof. Let G be an almost simple normal character expansive group with socle N . Then the factor

group G/N is normal character expansive by Lemma 2.2. Moreover G/N is solvable by Schreier’s

conjecture. Thus G/N is abelian by Lemma 3.1. Thus every irreducible character of N is G-invariant,

by Lemma 2.4. By Brauer’s permutation lemma, this means that every conjugacy class of N is G-

invariant. But, if G/N is non-trivial, this contradicts [2, Theorem C] which states that any outer

automorphism of a non-abelian finite simple group N fuses some of the conjugacy classes of N . �

Lemma 3.3. A quasisimple normal character expansive group is simple.

Proof. Let G be a quasisimple normal character expansive group. Let Z be its center. Then every

proper normal subgroup N of G is contained in Z. Hence every irreducible character of N is G-

invariant. By Lemma 2.3, we have k(N)k(G/N) ≤ k(G) which forces k(G) = k(N)k(G/N) using

Lemma 2.5. Now apply Lemma 2.1 to conclude that G is simple. �
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4. Proof of Theorem 1.4

In order to prove Theorem 1.4, our first step is to show that any minimal normal subgroup of a

minimal counterexample to Problem 1.3 is abelian. To achieve this, we need two lemmas.

Lemma 4.1. Let G be a primitive permutation group on a finite set Ω. Then there exists a subset ∆

of Ω with k(G∆) < k(G). In fact, ∆ can be chosen so that |∆| = 1 or G∆ = 1.

Proof. Put n = |Ω|. We may assume that n ≥ 3. Since k(An−1) < k(An) and k(Sn−1) < k(Sn), we

may also assume that G does not contain An.

By [14, Theorem 2], there exists a subset ∆ of Ω with G∆ = 1 unless G is a member of an explicit

list of 43 permutation groups (of degrees at most 32). Using Gap [5] it can be checked that for all

these exceptional groups G we have k(G∆) < k(G) whenever |∆| = 1. �

Lemma 4.2. For any non-abelian finite simple group G there exists a non-trivial irreducible character

of G stabilized by Aut(G).

Proof. If G is a finite simple group of Lie type then such a character can be taken to be the Steinberg

character [7, Theorem A]. Otherwise we may assume that |Out(G)| = 2. Assume the claim is false.

Then
∑

16=χ∈Irr(G) χ(1)2 = |G| − 1 is even which is a contradiction. �

Proposition 4.3. Let G be a minimal counterexample to Problem 1.3. Then every minimal normal

subgroup of G is abelian.

Proof. Let G be as in the statement of the proposition. Then every proper factor group of G is a

direct product of simple or abelian groups. Suppose for a contradiction that N ∼= S` is a minimal

normal subgroup of G for some non-abelian simple group S and some positive integer `.

Suppose ` = 1 and let M = S × CG(S). Then G/CG(S) is almost simple and normal character

expansive. Hence, by Lemma 3.2, it is simple. So G = M which is a contradiction. Thus ` > 1.

The group G/N acts transitively (but not necessarily faithfully) on the set Σ of simple factors of

N . Clearly |Σ| = ` > 1. We may naturally think of N as S1 × · · · × S` with each Si isomorphic to

S. Let Ω be a system of maximal blocks for G/N acting on Σ; the group G/N acts primitively on Ω.

Let the kernel of the action of G/N on Ω be K/N .

Now let ∆ be a subset of Ω with k((G/K)∆) < k(G/K). Such a set exists by Lemma 4.1.

Let χ be a non-trivial complex irreducible character of S stabilized by Aut(S). Such a character

exists by Lemma 4.2. Now consider the irreducible character ψ = ⊗`i=1ψi of N where ψi ∈ Irr(Si) for

every i in {1, . . . , `} with ψi = χ if Si is an element of an element of ∆ and ψi = 1 otherwise. By our

construction IG(ψ) ≥ K and IG(ψ)/K = (G/K)∆.

Then k(G/N) = k(G/K)k(K/N) > k((G/K)∆)k(K/N) ≥ k(IG/N (ψ)) where the last inequality

follows from Lemma 2.5. This is a contradiction to Lemma 2.4. �

Lemma 4.4. Let G be a minimal counterexample to Problem 1.3. Then G has a unique minimal

normal subgroup and that is abelian.
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Proof. By Proposition 4.3 every minimal normal subgroup of G is abelian. So for a contradiction

assume that N1 and N2 are two minimal (abelian) normal subgroups of G. Note that G is non-solvable

by Lemma 3.1. By the minimality of G and by Lemma 2.2, we have G = G/N1 = S1×· · ·×Sm×A for

some non-abelian simple groups S1, . . . , Sm and abelian group A. Now fix an index i with 1 ≤ i ≤ m.

Let Si be the preimage of Si in G. Then Si is normal in G. Now again, G = G/N2 = H1×· · ·×Hm×B
for some Hj ’s with Hj

∼= Sj with 1 ≤ j ≤ m and abelian group B. Since Si ∩N2 = 1, we have Si ∼= Si

for the image Si of Si in G = G/N2. Since Si is normal in G, it must be a direct product of simple

and abelian groups. Hence Si = Ui × N1 for some Ui ∼= Si. This implies that Ui is a non-abelian

minimal normal subgroup in G. This contradicts Proposition 4.3.

�

Lemma 4.5. Let G be a minimal counterexample to Problem 1.3. Then the unique minimal normal

subgroup of G is not central.

Proof. Let N be the unique (abelian) minimal normal subgroup of G (Lemma 4.4). (Again, G is

non-solvable by Lemma 3.1.) Suppose for a contradiction that N ≤ Z(G) (and is of prime order).

Since G is normal character expansive, we have k(N)k(G/N) ≤ k(G) by Lemma 2.4. But then

k(G) = k(N)k(G/N) by Lemma 2.5. By the minimality of G and Lemma 2.2, G/N = T × A for

some group T which is a direct product of non-abelian finite simple groups and some abelian group

A. For a simple direct factor S of T let S be the preimage of S in G. Clearly, S is normal in G. If

no S is quasisimple then we arrive to a contradiction as in Lemma 4.4. So assume that a given S is

quasisimple. By repeated use of Lemma 2.5 and noting that equality in Lemma 2.5 occurs for direct

products, we have

k(S)k(G/S)k(N) = k(G/N)k(N) = k(G) ≤ k(S)k(G/S)

which gives k(S)k(N) ≤ k(S). Hence, again by Lemma 2.5, k(S) = k(S)k(N). But this contradicts

Lemma 2.1. �

This finishes the proof of Theorem 1.4.

5. Problem 1.5 implies Problem 1.3

Let H be a minimal counterexample to Problem 1.3. By Theorem 1.4 the group H has a unique

minimal normal subgroup V and this is abelian and non-central. Thus V is (a non-trivial) irreducible

G-module where G = H/V is a direct product of simple or abelian groups (Lemma 2.2). By Lemma

2.4, we have k(G) ≤ k(IG(λ)) for every λ ∈ Irr(V ).

Let us call a pair (V,G) with the above properties bad, allowing V to be a completely reducible

G-module. We will show that an affirmative answer to Problem 1.5 implies that bad pairs do not

exist.

So suppose that (V,G) is a bad pair with |G|+ |V | minimal.
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Suppose that G = T ×A where T is a group which is a direct product of non-abelian finite simple

groups and A is abelian. (T is non-trivial by part (1) of Theorem 1.1.) We have that

IG(λ)T/T ∼= IG(λ)/(IG(λ) ∩ T ) = IG(λ)/IT (λ)

is an abelian group of order at most |A| for any λ ∈ Irr(V ). Hence

|A| · k(T ) = k(G) ≤ k(IG(λ)) ≤ k(IT (λ)) · |A|

for any λ ∈ Irr(V ) where the last inequality follows from Lemma 2.5. Since V is a completely reducible

T -module, the pair (V, T ) is bad, hence we may assume that G = T .

Let W be a non-trivial irreducible G-submodule of V and let U be a submodule of V complementing

W . Consider the irreducible characters λ = λW⊗1U of V where λW runs through the set of irreducible

characters of W and 1U is the trivial character of U . We clearly have k(G) ≤ k(IG(λ)) = k(IG(λW )).

This means that the pair (W,G) is bad. Hence V = W and we assume from now on that V is an

irreducible G-module.

Let M = CG(V ). Then

k(G/M)k(M) = k(G) ≤ k(IG(λ)) ≤ k(IG(λ)/M)k(M)

implies k(G/M) ≤ k(IG(λ)/M) for every λ ∈ Irr(V ). This means that the pair (V,G/M) is bad.

Hence M = 1 and we may assume that V is a faithful G-module.

But such a pair (V,G) cannot exist by Problem 1.5.

6. Proof of Theorem 1.6

In this section we prove Theorem 1.6.

Let V be a finite faithful irreducible FG-module for a prime field F and a non-abelian finite simple

group G.

Suppose first that (|G|, |V |) = 1. Since the action is coprime, Irr(V ) and V are isomorphic G-sets.

Hence, to prove Theorem 1.6 in this case, it is sufficient to find a vector v in V with k(CG(v)) < k(G).

If G has a regular orbit on V then there is nothing to show (since 1 < k(G)). If G = An (with n ≥ 5)

and V is the deleted permutation module coming from the permutation module with permutation basis

{e1, . . . , en} then CAn(e1− e2) = An−2 and k(An−2) < k(An). Otherwise, if G has no regular orbit on

V and V is not a deleted permutation module then (V,G) belongs to a finite list of examples as in the

table following [6, Theorem 2.2]. There information can be found about H, a subgroup of smallest

possible size with H = CG(v) for some v ∈ V . It can readily be checked that k(H) < k(G) in all cases.

This proves the first part of Theorem 1.6.

Now suppose that G = GL(n, 2) and |V | = 2n with n ≥ 3. Here the action is no longer coprime, but

by Brauer’s permutation lemma we know that G has exactly two orbits on Irr(V ). By [13, Example

13.1 (ii)], we have IG(λ) ∼= AGL(n− 1, 2) for every non-trivial λ ∈ Irr(V ). So if cr denotes k(GL(r, 2))

for r ≥ 1 and c0 = 1 then k(IG(λ)) =
∑n−1

r=0 cr, by induction on n. Hence the inequality
∑n−1

r=0 cr < cn

must be shown for all n ≥ 3. This is true for n ≤ 50 by Gap [5]. So assume that n > 50.
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For non-negative integers s and n let p(s, n) be the number of partitions of n with at most s parts.

For a non-negative integer m put

cn,m =

∞∑
s=0

∞∑
j=0︸ ︷︷ ︸

n=(s+1)(m+s/2)+j

(−1)sp(s, j).

Also, put an = 2n − (2[(n−1)/2] + 2[(n−1)/2]−1 + · · ·+ 2[n/3]) and bn =
∑[n/3]−1

m=0 cn,m2m. Then it can be

derived from [10, Pages 28-29] that

cn = an + bn.

Next we will bound cn,m in various important cases.

If [n/4] ≤ m ≤ [n/3]− 1 then 0 ≤ cn,m ≤ n/8 + 1.

If [n/5] ≤ m ≤ [n/4]− 1 then |cn,m| ≤ n2/50 + n/10 + 2.

Moreover for any integer k ≥ 8 with 1 ≤ [n/k] ≤ m ≤ [n/(k − 1)]− 1 we have

|cn,m| ≤ nk−3/(2 · (k − 2)!).

Furthermore, in general, |cn,m| ≤ n · p(n) where p(n) denotes the number of partitions of n. For p(n)

we have the explicit upper bound p(n) ≤ eπ
√

2n/3 found in [3] and also the exact values of p(n) for

n ≤ 150 from [5]. Using these we can show the following lemma for n ≥ 100.

Lemma 6.1. We have 2n − 1.5 · 2n/2 ≤ cn for all n and cn ≤ 2n − 0.63 · 2n/2 for n > 8.

Proof. By the above this is true for n ≥ 500. For smaller values of n the inequalities can be checked

by Mathematica [11]. �

In order to complete the proof (of the second part) of Theorem 1.6 we need to show that
∑n−1

i=0 ci <

cn holds (for n > 50). It can be checked that

8∑
i=0

ci ≤ 2 +

8∑
i=0

(2i − 0.63 · 2i/2).

Thus we have
∑n−1

i=0 ci ≤ 2 +
∑n−1

i=0 (2i − 0.63 · 2i/2) by Lemma 6.1. This and Lemma 6.1 imply that

n−1∑
i=0

ci ≤ 2n + 1− 0.63 · 2n/2 − 1√
2− 1

< 2n − 1.5 · 2n/2 < cn.
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