

International Journal of Group Theory ISSN (print): 2251-7650, ISSN (on-line): 2251-7669 Vol. 2 No. 2 (2013), pp. 19-24. c 2013 University of Isfahan

ON THE NUMBER OF THE IRREDUCIBLE CHARACTERS OF FACTOR GROUPS

AMIN SAEIDI

Dedicated to Professor Hossein Doostie on the occasion of his retirement

Communicated by Ali Iranmanesh

ABSTRACT. Let G be a finite group and let N be a normal subgroup of \tilde{G} . Suppose that Irr($G|N$) is the set of the irreducible characters of G that contain N in their kernels. In this paper, we classify solvable groups G in which the set $C(G) = {\text{Irr}(G|N)|1 \neq N \leq G}$ has at most three elements. We also compute the set $\mathcal{C}(G)$ for such groups.

1. Introduction

AMIN SAEIDI
 ARRO Dedicated to Professor Hossein Doostie on the occasion of his retirement

Communicated by Ali Iranmanesh

Acr. Let *G* be a finite group and let *N* be a normal subgroup of *G*. Suppose that Iran

of t Let G be a finite group and let N be a normal subgroup of G. Suppose that $\text{Irr}(G|N)$ is the set of the irreducible characters of G that contain N in their kernels. Our aim in this paper is to study the set $C(G) = {\text{Irr}(G|N)}\mathbf{1} \neq N \leq G$. Indeed, we classify finite solvable groups G in which the set $\mathcal{C}(G)$ has at most three elements and compute the set $\mathcal{C}(G)$ for these groups. We are motivated by the article [4], where the author and S. Zandi considered a similar problem for conjugacy classes of G. They defined $\xi(N)$ to be the number of the conjugacy classes of G, contained in the normal subgroup N and classified finite solvable groups G in which the set $\mathcal{K}(G) = \{\xi(N)|N \leq G, N \neq G\}$ contains at most three element. It is easy to see that $|\mathcal{K}(G)| = 1$ if and only if $|\mathcal{C}(G)| = 1$. This is equivalent to the simplicity of the group G. It is also routine to check that for solvable groups $G, |\mathcal{C}(G)| = 2$ if and only if $|\mathcal{K}(G)| = 2$. However, we give examples of solvable groups G with $|\mathcal{K}(G)| \neq |\mathcal{C}(G)|$. In this paper we only consider finite solvable groups. An elementary abelian p -group of order p^n is denoted by \mathbb{C}_p^n . By a Frobenius group G of type $\mathbb{C}_p^n \rtimes \mathbb{C}_{q^m}$, we mean that G has an elementary abelian

MSC(2010): Primary: 20C15; Secondary: 20F16.

Keywords: Irreducible characters, Conjugacy classes, minimal normal subgroups, Frobenius groups.

Received: 4 June 2012, Accepted: 20 September 2012.

kernel of order p^n and a cyclic complement of order q^m , where p^n, q^m are prime powers. The set of the irreducible characters of G is denoted by $\text{Irr}(G)$. Recall that for a normal subgroup N of G, there exists a one to one correspondence between $\text{Irr}(G|N)$ and $\text{Irr}(G/N)$. We write $G = K \rtimes_{\text{Irr}} H$ if K is an elementary abelian p -group and the action of H on K is non-trivial and irreducible. A monolith is a group with a unique minimal normal subgroup. Our notations are standard and mainly obtained from [3]. The main result of this paper is the following:

Theorem A. Let G be a solvable group. If $|C(G)| = 3$, then one of the following holds $(p, q$ and r are prime numbers and $p \neq q$:

- (i) G is an abelian group of order pq and $C(G) = \{1, p, q\}.$
- (*ii*) G is a group of order p^3 and $C(G) = \{1, p, p^2\}.$
- (iii) G is a Frobenius group of type $\mathbb{C}_p^n \rtimes_{\text{Irr}} \mathbb{C}_{q^2}$ and $\mathcal{C}(G) = \{1, q, q^2\}.$
- (iv) $G = K \rtimes_{\text{Irr}} H$, where $K \cong \mathbb{C}_p^n$ and \mathbb{C}_{q^2} , where $p^n 1 = q^2(q-1)$ and the action is non-faithful. Also, $C(G) = \{1, q, q^2\}$.
- (v) G is a Frobenius group of type $\mathbb{C}_p^{2n} \rtimes \mathbb{C}_q$ and contains two minimal normal subgroups of order p^{n} . Also, we have $C(G) = \{1, q, q + (p^{n} - 1)/q\}.$
- *Archive of order pa and* $C(G) = \{1, p, q\}$.
 Archive of order p³ and $C(G) = \{1, p, p^2\}$.
 Frobenius group of type $\mathbb{C}_p^n \times_{\text{Irr}} \mathbb{C}_{q^2}$ and $C(G) = \{1, q, q^2\}$.
 Archive $K \cong \mathbb{C}_p^n$ *and* \mathbb{C}_{q^2} , where (vi) G has exactly two non-trivial proper normal subgroups, namely N and G', where $N < G'$. Also, $C(G) = \{1, q, q + (|G':N|-1)/q\}$, where $q = |G':G'|$.

Remark 1.1. By the results of [4], a group G satisfies the statement (vi) if and only if G is one of the following groups:

- $G = K \rtimes H$, K is a p-group which is either special or abelian, $H \cong \mathbb{C}_q$ and $\Phi(K)$, K are the only non-trivial proper normal subgroups of G.
- $G = L \rtimes_{\text{Irr}} H$, where $L = G''$ and H is a Frobenius group of type $\mathbb{C}_p^n \rtimes_{\text{Irr}} \mathbb{C}_q$.

Compairing Theorem A with the main theorem of [4], we get the following result.

Corollary B. Let G be a solvable group and let $C(G) \leq 3$. Then $|C(G)| = |K(G)|$, unless G is not a monolith and G' is a minimal normal subgroup of G .

We will give examples of solvable groups in which $|\mathcal{C}(G)| \neq |\mathcal{K}(G)|$. According to Corollary B, our examples are of type (iv) .

2. Preliminaries

We start this section with some easy results.

Lemma 2.1. Let G be a group with $|C(G)| = t$. Assume that $N_1, ..., N_t$ are non-trivial normal subgroups of G. If $N_1 \not\leq \dots \not\leq N_t$, then $N_t = G$.

<www.SID.ir>

Lemma 2.2. Let G be an abelian group of order n. Then $C(G) = \mathcal{D}(n) - \{n\}$, where $\mathcal{D}(n)$ is the set of the positive integers dividing n.

Lemma 2.3. Let G be a group and let N be a subgroup of G. If $G' \leq N$, then $|\text{Irr}(G|N)| = |G:N|$. In particular, if N_1, N_2 contain G', then $|\text{Irr}(G|N_1)| = |\text{Irr}(G|N_2)|$ if and only if $|N_1| = |N_2|$.

Lemma 2.4. [3, Theorem 5.6] Let G be a group with an abelian Sylow p-subgroup. Then $G' \cap Z(G)$ is a p' -group.

Lemma 2.5. [3, Lemma 12.11] Let G be a non-abelian group. Then $cd(G) = \{1, p\}$, where p is a prime if and only if one of the followings hold.

- (1) There exists an abelian $A \triangleleft G$ with $|G : A| = p$.
- (2) $|G : Z(G)| = p^3$.

Lemma 2.6. [4, Lemma 2.6] Let G be a solvable group and assume that N is a proper normal subgroup of G. Then $G'N \leq G$. In particular if G' is a maximal subgroup of G, then it contains all normal subgroups of G.

Lemma 2.7. [4, Lemma 2.8] Let G be a group and $G = A \rtimes H$, where A is an abelian normal subgroup of G and $H \cong \mathbb{C}_p$ for a prime p. If $Z(G) = 1$, then G is a Frobenius group with kernel A.

Lemma 2.8. [3, Lemma 12.3] Let G be a solvable group. If G' is the unique minimal normal subgroup of G, then one of the followings holds:

- (1) G is a p-group, $|G'| = p$ and $Z(G)$ is cyclic.
- (2) G is a Frobenius group of type $\mathbb{C}_p^n \rtimes_{\text{Irr}} \mathbb{C}_{q^m}$.

Archive of SID **Theorem 2.9.** [1, 10.4] (Gaschütz's Theorem) Let G be a group and assume that P is a Sylow psubgroup of G. If K is an abelian subgroup of P and $K \trianglelefteq G$, then G splits over K if and only if P splits over K.

Theorem 2.10. [1, 18.1](Schur-Zassenhaus Theorem) Let G be a group and assume that H is a Hall normal subgroup of G. Then G splits over H.

3. Main reults

In this section, we prove Theorem A. First, we prove the case when G is nilpotent.

Proposition 3.1. Let G be a nilpotent group with $|\mathcal{C}(G)| = 3$. Then one of the followings hold:

- (1) G is an abelian group of order pq, where p, q are distinct prime numbers. Also, $\mathcal{C}(G) = \{1, p, q\}$.
- (2) G is a group of order p^3 and $C(G) = \{1, p, p^2\}.$

Proof. If G is not a p-group, then we may chooose maximal subgroups M, L of G such that $|G : M| \neq$ $|G: L|$. Then, $G' \leq L \cap M$ and we deduce by Lemma 2.3 that $|\text{Irr}(G|L)| \neq |\text{Irr}(G|M)|$. Therefore, $G' = 1$ and G is abelian. Consequently, Lemma 2.2 implies that $|G| = pq$ and $\mathcal{C}(G) = \{1, p, q\}$. Next,

assume that G is a p-group. Thus by Lemma 2.1, G must be of order p^3 . If G is abelian, then it is clear that $\mathcal{C}(G) = \{1, p, p^2\}$. Now, suppose that G is not abelian. Then, $|G'| = p$ and all non-trivial normal subgroups of G contain G'. Hence, we deduce by Lemma 2.3 that $\mathcal{C}(G) = \{1, p, p^2\}$. The proof is now completed.

We are now ready to prove the main result of this paper. During the proof, we will frequently use the following well-known equality:

(3.1)
$$
|G| = |G : G'| + \sum_{\chi \in \text{Irr}_1(G)} \chi(1)^2.
$$

Here $\text{Irr}_1(G)$ is the set of nonlinear irreducible characters of G.

Proof of Theorem A. If G is nilpotent, then by Proposition 3.1, G is in case (i) or (ii). So, we may assume that G is not nilpotent. We finish the proof through the following steps:

Step 1. If G is a monolith, then G is either in case (iii) or (vi).

 $|G| = |G : G'| + \sum_{\chi \in \text{Irr}_1(G)} \chi(1)^2$.
 Ax is the set of nonlinear irreducible characters of *G*.
 AFG is not nilpotent. We finish the proof through the following steps:
 A *A H G* is not nilpotent. We finish Let N be the unique minimal normal subgroup of G. If $N < G'$, then G' is a maximal subgroup of G and by Lemma 2.6, it contains all proper normal subgroup of G. Therefore by Lemma 2.1, N and G' are the only non-trivial proper normal subgroups of G. Hence, G is of type (vi) . Note that $|G: G'| = q$ is a prime number. Also, G'/N is an abelian maximal subgroup of G/N . So by Lemma 2.5, $cd(G/N) = \{1, q\}$ and we may write:

(3.2)
$$
G/N = |G:G'| + (|\text{Irr}(G|N)| - |G:G'|)q^2.
$$

This implies that $|\text{Irr}(G|N)| = q + (|G' : N| - 1)/q$. Next, assume that G' is the unique minimal normal subgroup of G. Then, Lemma 2.8 implies that G is a Frobenius group of type $\mathbb{C}_p^n \rtimes_{\text{Irr}} \mathbb{C}_{q^m}$. Note that $|G:G'|=q^m$ and G has normal subgroups of index q^i for $i=0,1,...,m$. Since $|\mathcal{C}(G)|=3$, we conclude by Lemma 2.1 that $m = 2$. That is, G is of type *(iii)*. Now, choose a proper normal subgroup of N of G with $G' < N$. Then, N is of index q. On the other hand, since the action is irreducible and $Z(G) = 1$, we conclude that G' is the unique minimal normal subgroup of G. So, all non-trivial proper normal subgroups of G have index q. Hence, $\mathcal{C}(G) = \{1, q, q^2\}.$

Step 2. If G is not a monolith and G' is a minimal normal subgroup, then G is in case (iv) .

Let N be a minimal normal subgroup of G and $N \neq G'$. Then, N is central. We claim that $N = Z(G)$, otherwise, considering the subgroups G' , N, $Z(G)$ and $G'Z(G)$, we may find at least four elements in $\mathcal{C}(G)$ which is a contradictin. So, $N = Z(G)$ and G has no other minimal normal subgroups. Let $|Z(G)| = q$ and $|G'| = p^n$. If r is a prime divisor of G apart from p, q, then G contains normal subgroups of order rp^n and qp^n , containing G'. Therefore, $|\mathcal{C}(G)| \geq 4$, a contradiction. So, p, q are the

 \Box

only prime divisors of |G|. Now, Lemma 2.5 implies that, $cd(G)$ = {1, q} where $q = |G : G'Z(G)|$. Applying the equality (3.1) to $G/Z(G)$ we have:

(3.3)
\n
$$
qp^n = q + q^2 \left(\left| \text{Irr} \left(G|N \right) \right| - q \right)
$$
\n
$$
\Rightarrow qp^n = q + q^2 \left(q^2 - q \right)
$$
\n
$$
\Rightarrow q^2 \left(q - 1 \right) = p^n - 1
$$

On the other hand, by Theorem 2.10, G splits over G' and we have $G \cong G' \rtimes G/G'$. Therefore, G is in case (iv). Now assume that G is of type (iv). We show that $C(G) = \{1, q, q^2\}$. It is easy to see that $K = Z(G)$ and $G' = H'$ and $G'Z(G)$ are the only non-trivial proper normal subgroups of G. The equality (3.3) garantees that $|\text{Irr}(G|Z(G))| = |\text{Irr}(G|G')|$. Therefore, $\mathcal{C}(G) = \{1, q, q^2\}$. This completes the proof of this step.

Step 3. If G is not a monolith and G' is not a minimal normal subgroup, then G is in case (v) .

Archivature that A is of type (iv) . We show that $C(G) = \{1, q, q^2, Z(G) \text{ and } G' = H' \text{ and } G'Z(G) \text{ are the only non-trivial proper norm.}$
Archiv (3.3) garantees that $|\text{Irr}(G|Z(G))| = |\text{Irr}(G|G')|$. Therefore, $C(G) = \text{proof of this step.}$
Anchor is the summanning and Let N, L be distinct minimal normal subgroups of G. Then $NL = G'$ and G' is a maximal subgroup of index q. Since G'/L and G'/N are abelian, we conclude by Lemma 2.5 that $cd(G/L) = cd(G/N)$ $\{1,q\}$. Also note that $|\text{Irr}(G|N)| = |\text{Irr}(G|L)|$. Thus, applying the equality (3.1) to the groups G/L and G/N , we conclude that $|N| = |L|$. Hence, G' is a p-group and we deduce by Theorem 2.10 that $G \cong \mathbb{C}_p^{2n} \rtimes \mathbb{C}_q$. Now by Lemma 2.4 and Lemma 2.7, we get G is in case (v). Next, we show that $\mathcal{C}(G) = \{1, q, q + (p^n - 1)/q\}$. Let N be an arbitrary minimal normal subgroup G and $N \neq G'$. As $Z(G) = 1$, we must have $N < G'$. So, G' contains all minimal normal subgroups of G. This implies that $|G'| = p^{2n}$ and that G has exactly two minimal normal subgroups. Certainly, $|\text{Irr}(G|G')| = q$. Let N be a minimal normal subgroup. Since G'/N is an abelian maximal subgroup, then the equality (3.2) is valid. Therefore, $|\text{Irr}(G|N)| = q + (|G':N|-1)/q$. As $|G':N| = p^n$, the result follows. \square

Example 3.2. Consider the group $G = SmallGroup(20,1)$, the first group of order 20 in the library of GAP [2]. Then, it is easy to see that G is case (iv) in Theorem A. Therefore, $\mathcal{C}(G) = \{1,2,4\}$. However, we may check that $\mathcal{K}(G) = \{1, 2, 5, 6\}$. Now, assume that $H = SmallGroup(63,1)$. Then, $\mathcal{K}(G) = \{1,3,9\}$, while $\mathcal{C}(G) = \{1,3,5,9\}$. In both examples, as Corollary B implies, the groups contain more than one minimal normal subgroup, one of which is the derived subgroup.

REFERENCES

- [1] M. Aschbacher, Finite Group Theory, Cambridge University Press, Cambridge, 1986.
- [2] GAP groups, Algorithms, and Programming, Version 4.4.10, 2007.
- [3] I. M. Isaacs, *Character Theory of Finite Groups*, Dover, New York, 1994.
- [4] A. Saeidi and S. Zandi, The number of conjugacy classes contained in normal subgroups of solvable groups, to appear in Journal of Algebra and its Applications, 2012.

Amin Saeidi

Mathematics Department, Kharazmi University, P.O.Box 15815-3587, Tehran, Iran Email: saeidi.amin@gmail.com

Archive of SID