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Abstract. Let G be a finite group and let N be a normal subgroup of G. Suppose that Irr(G|N) is

the set of the irreducible characters of G that contain N in their kernels. In this paper, we classify

solvable groups G in which the set C(G) = {Irr(G|N)|1 6= N E G} has at most three elements. We

also compute the set C(G) for such groups.

1. Introduction

Let G be a finite group and let N be a normal subgroup of G. Suppose that Irr(G|N) is the set

of the irreducible characters of G that contain N in their kernels. Our aim in this paper is to study

the set C(G) = {Irr(G|N)|1 6= N E G}. Indeed, we classify finite solvable groups G in which the set

C(G) has at most three elements and compute the set C(G) for these groups. We are motivated by

the article [4], where the author and S. Zandi considered a similar problem for conjugacy classes of G.

They defined ξ(N) to be the number of the conjugacy classes of G, contained in the normal subgroup

N and classified finite solvable groups G in which the set K(G) = {ξ(N)|N E G,N 6= G} contains

at most three element. It is easy to see that |K(G)| = 1 if and only if |C(G)| = 1. This is equivalent

to the simplicity of the group G. It is also routine to check that for solvable groups G, |C(G)| = 2

if and only if |K(G)| = 2. However, we give examples of solvable groups G with |K(G)| 6= |C(G)|.
In this paper we only consider finite solvable groups. An elementary abelian p-group of order pn is

denoted by Cnp . By a Frobenius group G of type Cnp oCqm , we mean that G has an elementary abelian
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kernel of order pn and a cyclic complement of order qm, where pn, qm are prime powers. The set of

the irreducible characters of G is denoted by Irr(G). Recall that for a normal subgroup N of G, there

exists a one to one correspondence between Irr(G|N) and Irr(G/N). We write G = K oIrr H if K is

an elementary abelian p-group and the action of H on K is non-trivial and irreducible. A monolith

is a group with a unique minimal normal subgroup. Our notations are standard and mainly obtained

from [3]. The main result of this paper is the following:

Theorem A. Let G be a solvable group. If |C(G)| = 3, then one of the following holds (p, q and r

are prime numbers and p 6= q):

(i) G is an abelian group of order pq and C(G) = {1, p, q}.
(ii) G is a group of order p3 and C(G) = {1, p, p2}.

(iii) G is a Frobenius group of type Cnp oIrr Cq2 and C(G) = {1, q, q2}.
(iv) G = KoIrrH, where K ∼= Cnp and Cq2, where pn−1 = q2(q−1) and the action is non-faithful.

Also, C(G) = {1, q, q2} .

(v) G is a Frobenius group of type C2n
p oCq and contains two minimal normal subgroups of order

pn. Also, we have C(G) = {1, q, q + (pn − 1)/q}.
(vi) G has exactly two non-trivial proper normal subgroups, namely N and G′, where N < G′.

Also, C(G) = {1, q, q + (|G′ : N | − 1)/q} , where q = |G : G′|.

Remark 1.1. By the results of [4], a group G satisfies the statement (vi) if and only if G is one of

the following groups:

• G = K oH, K is a p-group which is either special or abelian, H ∼= Cq and Φ(K),K are the

only non-trivial proper normal subgroups of G.

• G = LoIrr H, where L = G′′ and H is a Frobenius group of type Cnp oIrr Cq .

Compairing Theorem A with the main theorem of [4], we get the following result.

Corollary B. Let G be a solvable group and let C(G) ≤ 3. Then |C(G)| = |K(G)|, unless G is not a

monolith and G′ is a minimal normal subgroup of G.

We will give examples of solvable groups in which |C(G)| 6= |K(G)|. According to Corollary B, our

examples are of type (iv).

2. Preliminaries

We start this section with some easy results.

Lemma 2.1. Let G be a group with |C(G)| = t. Assume that N1, ..., Nt are non-trivial normal

subgroups of G. If N1 � ... � Nt, then Nt = G.
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Lemma 2.2. Let G be an abelian group of order n. Then C(G) = D(n)− {n}, where D(n) is the set

of the positive integers dividing n.

Lemma 2.3. Let G be a group and let N be a subgroup of G. If G′ ≤ N , then |Irr(G|N)| = |G : N |.
In particular, if N1, N2 contain G′, then |Irr(G|N1)| = |Irr(G|N2)| if and only if |N1| = |N2|.

Lemma 2.4. [3, Theorem 5.6] Let G be a group with an abelian Sylow p-subgroup. Then G′ ∩ Z(G)

is a p′-group.

Lemma 2.5. [3, Lemma 12.11] Let G be a non-abelian group. Then cd(G) = {1, p}, where p is a

prime if and only if one of the followings hold.

(1) There exists an abelian AEG with |G : A| = p.

(2) |G : Z(G)| = p3.

Lemma 2.6. [4, Lemma 2.6] Let G be a solvable group and assume that N is a proper normal

subgroup of G. Then G′N � G. In particular if G′ is a maximal subgroup of G, then it contains all

normal subgroups of G.

Lemma 2.7. [4, Lemma 2.8]Let G be a group and G = AoH, where A is an abelian normal subgroup

of G and H ∼= Cp for a prime p. If Z(G) = 1, then G is a Frobenius group with kernel A.

Lemma 2.8. [3, Lemma 12.3] Let G be a solvable group. If G′ is the unique minimal normal subgroup

of G, then one of the followings holds:

(1) G is a p-group, |G′| = p and Z(G) is cyclic.

(2) G is a Frobenius group of type Cnp oIrr Cqm.

Theorem 2.9. [1, 10.4](Gaschütz’s Theorem) Let G be a group and assume that P is a Sylow p-

subgroup of G. If K is an abelian subgroup of P and K E G, then G splits over K if and only if P

splits over K.

Theorem 2.10. [1, 18.1](Schur-Zassenhaus Theorem) Let G be a group and assume that H is a Hall

normal subgroup of G. Then G splits over H.

3. Main reults

In this section, we prove Theorem A. First, we prove the case when G is nilpotent.

Proposition 3.1. Let G be a nilpotent group with |C(G)| = 3. Then one of the followings hold:

(1) G is an abelian group of order pq, where p, q are distinct prime numbers. Also, C(G) = {1, p, q}.
(2) G is a group of order p3 and C(G) = {1, p, p2}.

Proof. If G is not a p-group, then we may chooose maximal subgroups M,L of G such that |G : M | 6=
|G : L|. Then, G′ ≤ L ∩M and we deduce by Lemma 2.3 that |Irr(G|L)| 6= |Irr(G|M)|. Therefore,

G′ = 1 and G is abelian. Consequently, Lemma 2.2 implies that |G| = pq and C(G) = {1, p, q}. Next,
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assume that G is a p-group. Thus by Lemma 2.1, G must be of order p3. If G is abelian, then it is

clear that C(G) = {1, p, p2}. Now, suppose that G is not abelian. Then, |G′| = p and all non-trivial

normal subgroups of G contain G′. Hence, we deduce by Lemma 2.3 that C(G) = {1, p, p2}. The proof

is now completed.

�

We are now ready to prove the main result of this paper. During the proof, we will frequently use

the following well-known equality:

(3.1) |G| =
∣∣G : G′

∣∣+
∑

χ∈Irr1(G)

χ (1)2.

Here Irr1(G) is the set of nonlinear irreducible characters of G.

Proof of Theorem A. If G is nilpotent, then by Proposition 3.1, G is in case (i) or (ii). So, we may

assume that G is not nilpotent. We finish the proof through the following steps:

Step 1. If G is a monolith, then G is either in case (iii) or (vi).

Let N be the unique minimal normal subgroup of G. If N < G′, then G′ is a maximal subgroup

of G and by Lemma 2.6, it contains all proper normal subgroup of G. Therefore by Lemma 2.1,

N and G′ are the only non-trivial proper normal subgroups of G. Hence, G is of type (vi). Note

that |G : G′| = q is a prime number. Also, G′/N is an abelian maximal subgroup of G/N . So by

Lemma 2.5, cd(G/N) = {1, q} and we may write:

(3.2) G/N = |G : G′|+ (|Irr(G|N)| − |G : G′|)q2.

This implies that |Irr(G|N)| = q + (|G′ : N | − 1)/q. Next, assume that G′ is the unique minimal

normal subgroup of G. Then, Lemma 2.8 implies that G is a Frobenius group of type Cnp oIrr Cqm .

Note that |G : G′| = qm and G has normal subgroups of index qi for i = 0, 1, ...,m. Since |C(G)| = 3,

we conclude by Lemma 2.1 that m = 2. That is, G is of type (iii). Now, choose a proper normal

subgroup of N of G with G′ < N . Then, N is of index q. On the other hand, since the action is

irreducible and Z(G) = 1, we conclude that G′ is the unique minimal normal subgroup of G. So, all

non-trivial proper normal subgroups of G have index q. Hence, C(G) = {1, q, q2}.

Step 2. If G is not a monolith and G′ is a minimal normal subgroup, then G is in case (iv).

Let N be a minimal normal subgroup of G and N 6= G′. Then, N is central. We claim that

N = Z(G), otherwise, considering the subgroups G′, N , Z(G) and G′Z(G), we may find at least four

elements in C(G) which is a contradictin. So, N = Z(G) andG has no other minimal normal subgroups.

Let |Z(G)| = q and |G′| = pn. If r is a prime divisor of G apart from p, q, then G contains normal

subgroups of order rpn and qpn, containing G′. Therefore, |C(G)| ≥ 4, a contradiction. So, p, q are the
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only prime divisors of |G|. Now, Lemma 2.5 implies that, cd(G)) = {1, q} where q = |G : G′Z(G)|.
Applying the equality (3.1) to G/Z(G) we have:

(3.3)

qpn = q + q2 (|Irr (G|N)| − q)
⇒ qpn = q + q2

(
q2 − q

)
⇒ q2 (q − 1) = pn − 1

On the other hand, by Theorem 2.10, G splits over G′ and we have G ∼= G′ o G/G′. Therefore, G

is in case (iv). Now assume that G is of type (iv). We show that C(G) = {1, q, q2}. It is easy to

see that K = Z(G) and G′ = H ′ and G′Z(G) are the only non-trivial proper normal subgroups of

G. The equality (3.3) garantees that |Irr(G|Z(G))| = |Irr(G|G′)|. Therefore, C(G) = {1, q, q2}. This

completes the proof of this step.

Step 3. If G is not a monolith and G′ is not a minimal normal subgroup, then G is in case (v).

Let N,L be distinct minimal normal subgroups of G. Then NL = G′ and G′ is a maximal subgroup

of index q. Since G′/L and G′/N are abelian, we conclude by Lemma 2.5 that cd(G/L) = cd(G/N) =

{1, q}. Also note that |Irr(G|N)| = |Irr(G|L)|. Thus, applying the equality (3.1) to the groups G/L

and G/N , we conclude that |N | = |L|. Hence, G′ is a p-group and we deduce by Theorem 2.10 that

G ∼= C2n
p o Cq. Now by Lemma 2.4 and Lemma 2.7, we get G is in case (v). Next, we show that

C(G) = {1, q, q + (pn − 1)/q}. Let N be an arbitrary minimal normal subgroup G and N 6= G′. As

Z(G) = 1, we must have N < G′. So, G′ contains all minimal normal subgroups of G. This implies

that |G′| = p2n and that G has exactly two minimal normal subgroups. Certainly, |Irr(G|G′)| = q. Let

N be a minimal normal subgroup. Since G′/N is an abelian maximal subgroup, then the equality (3.2)

is valid. Therefore, |Irr(G|N)| = q + (|G′ : N | − 1)/q. As |G′ : N | = pn, the result follows. �

Example 3.2. Consider the group G = SmallGroup(20, 1), the first group of order 20 in the library

of GAP [2]. Then, it is easy to see that G is case (iv) in Theorem A. Therefore, C(G) = {1, 2, 4}.
However, we may check that K(G) = {1, 2, 5, 6}. Now, assume that H = SmallGroup(63, 1). Then,

K(G) = {1, 3, 9}, while C(G) = {1, 3, 5, 9}. In both examples, as Corollary B implies, the groups

contain more than one minimal normal subgroup, one of which is the derived subgroup.
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