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ABSTRACT. In this paper we present some results about subgroup which is generalization of the sub-
group RS (G) = {a € G|la,g9] ® g = 1g,¥g € G} of right 2g-Engel elements of a given group G. If
p is an odd prime, then with the help of these results, we obtain some results about tensor squares
of p-groups satisfying the law [z,g,y] ® g = 1g, for all , g,y € G. In particular p-groups satisfying
the law [z, g,y] ® g = 1g have abelian tensor squares. Moreover, we can determine tensor squares of

two-generator p-groups of class three satisfying the law [z,g,y] ® g = 1g.

1. Introduction

Throughout this paper p is an odd prime and a p-group is a group in which every element has order

a power of p.
For any group G, the non-abelian tensor square G ® GG is a group generated by the symbols g ® h,
subject to the relations;

99 @h = (g @h)(g' ®h),

g®hh' = (g 1) (g" @ h"),
for all g,¢',h,h' € G, where g" = h™1gh is conjugation on the right. The non-abelian tensor square
is a special case of the non-abelian tensor product which has its origins in homotopy theory. It was
introduced by R. Brown and J. L. Loday in [3] and [4], extending ideas of J. H. C. Whitehead in [13].
In [2], R. Brown, D. L. Johnson, and E. F. Robertson start the investigation of non-abelian tensor
squares as group theoretical objects.
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The set of all elements a in G such that a ® g = 1g, for all g in G, is called the tensor centre of G and
denoted by Z®(G). This concept was introduced by G. J. Ellis [5].
Following [9] The set of right ng-Engel elements of a group G is defined as

R(G)={a€G:lap17]®@x=1y VzeG}

Yyy and [21, ..., 20, Tne1] = [[71,- - -, Zn), Tna1]- Also

Here commutators are denoted by [z,y] = 271y~
for 2 € G, the set of all 9 for g € G is called, the conjugacy class of z in G and is denoted by z€.

The set of right ng-Engel elements in groups have been studied by several authors (see for example
[1], [9], [10]). One of the results of [1] shows that RS (G) is always a characteristic subgroup of G.
Moravec in [9] investigated the properties of right 2g-Engel elements of a group G. The subgroup

B®(@) studied in this paper is a generalization of RS (G).

Definition 1.1. Let G be a group. We define
C*(G) ={a€Gllay.g,2] ®g=ly,9.2] ® g Vg,y,z € G},
B®(G) = {a € Glla,g,x] ® g = 1g Vg,z € G}.

One can easily check that C®(@G) is a characteristic subgroup of G. It will be shown that B®(G) =
C®(@). Thus B®(Q) is a characteristic subgroup of G.
At first, we determine some information about B®(G). Next we show that every p-group satisfying
the law [z, g,y] ® g = 1g has an abelian tensor square and v3(G) < Z®(G). With the help of this we

can compute tensor squares of two-generator p-groups of class 3 satisfying the law [z, ¢9,y] ® g = 1g.

2. PRELIMINARY RESULTS

In this section we summarize some basic results which will be used in the proof of our main results.

Lemma 2.1. ([12, 5.1.5]) Let G be a group and x,y,z € G. Then

[zy, 2] = [z, 2)"[y, 2} = [, 2][@, 2, y][y, 2]. (2.1.1)
[, yz] = [, 2][x, y]z = [z, 2][w, y][z, y, 2]. (2.1.2)
[g71,h)9 = [g,n) " =g, )" (2.1.3)
[,y 1 2]y, 271, 2?2, 27 L, y]® = 1. (2.1.4)

Lemma 2.2. ([2]) Let g,¢',h,h’ € G. The following relations hold in G ® G:

(groh)d=(gah)t=(gah ). (2.2.1)
(¢’ ® h)9%h = (¢’ @ h')l9M. (2.2.2)

g, h®@g =(g@h)" (g h)d. (2.2.3)
g ®[g,h=(g®h) (g h). (2.2.4)
[g.h @ [g W] =[g®h,g @I (2.2.5)

Proposition 2.3. (/2]) For a given group G, there exists a homomorphism
A:G®G — G such that \N(g ® h) = [g, h], for all g,h € G.
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Lemma 2.4. ([1,9]) Let G be a group, a € RS (G) and x,y,z € G. Then

[a,2] @y = ([a,y) @ )" (2.4.1)

[0, 2] @z = 1. (2.4.2)

la,2] € RS(G). (2.4.3)

[a,2] ® [y, 2] = 1. (2.4.4)

[z,y] ®@a = ([z,a] ®y)* and a® [z,y] = ([a,2] @ y)*. (2.4.5)
([a,2,y] ® 2)* = lg. (2.4.6)

Theorem 2.5. ([7]) The variety of groups which are nilpotent of class n or less (where n is a fizved
integer greater than 2) may be defined by the law

[T, Y15 Yn—1,2] = 1.
3. RESULTS FOR B®(G)

The goal of this section is to prove the following results for B®(G), which are tensor analogues to

the work of Kappe in [6].

Lemma 3.1. Let G be a group, g,x,d,d',d" € G, i,j € Z and a € B®(G). Then
(@, 9,2 ®gd/ =lg.  (3.L1)

[a,g%, 7] @ g¢ = 1g. (3.1.2)
[[a, 917, ] ® (gj)d” =lg. (3.1.3)
[a,9,7]? ® a? = 1g. (3.1.4)

Proof. Commutator expansion gives,

ly = [a,gy2d] ® g
=[a,9.d|[a,g,2)* ® g
= ([a,9,d] @ 9)l** " ([a, g,2]" @ g)
=la,9,2]"® g,
lead to (3.1.1).

To prove (3.1.2) for ¢ > 0, we use induction on 4. (3.1.1) is as the basis of an inductive proof.

Now assume that (3.1.2) follows when 7 is a fixed positive k, we prove that (3.1.2) is true for i = k+ 1.

k+1 d d

[a, 6", 2] @ g% = [a,9".g,2] ® g*

= [[a, gl[a, g1, 2] ® g*

= ([a, ,2]"[a, g")?, 2])? ® g*

= (la,9,2]"* ® ¢*)" (([a, g")%, 2]* ® g*)
— [aﬁgk’xg*l]gd ®gd/

= 1®7
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where w = [a, g¥]9 and w' = [[a, ¢*]7, z]%.
If i < 0, then put ¢t = —i. Hence,

U

[aa giv x]d ® gd = [CL, g_tv x]d ® gd

= [la,g]7 L all@ g’ by(2.1.3)

= [la,g'] 7", 29} " @ g7

=[a,g" 2% " @ g% by(2.1.3)

= ([a, g%, 29" @ ¢¥)™™"  by(2.2.1)

- 1®7

where w = [a, g!] g~ and w' = [a, gt, 29'] 4.
These imply (3.1.2).
(3.1.3) is proved in a way similar to (3.1.2).

For the proof of (3.1.4) note that,

1 = [a,a9,2]" ® (ag)?

([a, ag], 2] ® a® ¢*

d/

[a, 9,20 g*)([@ g, 2]" @ a” )

(
(fa, fral @a?)" | by(3.1.1)
proving (3.1.4). O

Theorem 3.2. Let G be a_group. Then we have

B®(G) =C®%(G). (3.2.1)

RY(G) € B®(G). " (3:2.2)

la,9,2,h| ® g = 1g, for a € B®(G) and g,z,h € G. (3.2.3)

[a,g,2,h) ® h = 1g, for a € B®(G) and g,z,h € G. (3.2.4)
([a,g,2,b,c] ® h)? = 1g, for a € B®(G) and g,x,b,c,h € G. (3.2.5)
[a,9,2] ® h = ([a,h, 7] ® g)~%, for a € B®(G) and g,x,h € G. (3.2.6)

Proof. To prove (3.2.1) let a € B®(G). Then [[a, g]Y, z]¥9 ® g = 1g by (3.1.3). Hence,

(ay,9.2] © g = ([[a, 9", 2] © 9)¥97)([y, g,2] © g)

= [yagax]@)g

i.e., B®(G) C C?(G) and hence (3.2.1) follows since clearly C®(G) C B®(G).
To prove (3.2.2), let a € RY(G). Then by proposition 2.3, [a, g, g] = 1. Hence, by (2.4.3) and (2.4.1)
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we have
la,9,2) ® g = ([[a, g}, 9] @ )~
=(lez)™!
- 1®7
proving RS (G) C B®(G).
To prove (3.2.3), we have
la, 92,0 @ g = [[a, 9] '[a,g]",h] @ g
=[a,9,h]""[[a,g]", R ® g
= ([a,g,h]" @ )™ ([[a, )", h] @ g)
—1g, by(3.1.3)

where w = [a,g]_l[a,g]‘D and w' = [a, g, h]~*][a, g]*, h)].

29

To prove (3.2.4), since a € B®(G), then by proposition 2.3 we have 1.=a, gh, z, gh]. Hence, commu-

tator expansion gives
1 = [[a, h] [a’g]hwrvgh]
= la, b, )" Jja, g)"" 2], gh]
= [y1y2, gh],

where y1 = [a, h, z](®9)"

and y2 = [[a, g]",z]. Now by (3.1.3), 1 ® h = 1g and y2 ® g = 1g. Hence, by

proposition 2.3 we have [y1, h] =1 and [y, g] = 1. Then the commutator expansion of 1 = [y1y2, gh]

gives
1 = [y1,9h]%[yo, gh] = [y1, h]*2[y1, 91" [yo, B [ya, ]

Hence, 1 = [y1, g]"™2[y2, h] and so

lg = [y1,9]"2[y2, k] @ h
= ([y1, 9)"™2 @ h)¥2" ([yo, h] @ h).

Now we prove [y1,9]"? @ h = 1g. We have

lo =472 @h  by(3.1.3)
= (nly. g)"™ @ h
= (" @ W) ([y1, " @ )
= [y, g™ @h. by(3.1.3)

Hence, we obtain

lg = [y2,h] @ h = [[a,g]h,x,h] ® h.
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The substitution of z" for z finally gives
h _.h h
lg = [[a,g]", 2", h] ® h = ([a,g,2,h] @ h)",

proving (3.2.4).
To prove (3.2.5), [a, g,7] € RY(G) by (3.2.4). Hence, (3.2.5) follows by (2.4.6).
Finally for (3.2.6), expansion of 1g = [a, gh, x| ® gh, as in the proof (3.2.4), leads to

lg = (11 ® 9)"*(y2 ® h),

where y; = [a, h, 2]l*9" and y3 = [[a, g]", z]. Now by (3.1.4) we have [a,h, 2] ® [a,g]" = 1g, since
[a, g]" € (a®). Hence, [[a, h, 7], [a,g]"] = 1 by proposition 2.3. Therefore y; = [a, h, x]. Now we have

(la, h, 2] ® g)([[a, h, z], 9] ® hy2) by (2.2.3)
(la, h,z] @ g)([[a, b, z], 9] @w2)([[a, h, 2]; 9] ® h)¥2
([a7hv$] ®g)([[a, h,x],g] ® y2) by (3.2.3)

= [a,h,z]®g by (3.1.4), since yo € (a®).

(y1 ® g)hv2

To simplify yo ® h, write [a, g]" = [a, g][a, g, h] and expand

Y2 b2y h = [a,g,x]wo[a,g, h,ZL‘] ® h

(la, g, 2@ h)** ([a, g, h, x] @ h)

(lo, 9.6 "h)  since [a, ] € B2(G)
(la,9.2)* ® h)([a, g, 2], h] @ w1), Dby (2.2.3)

where wg = [a,g,h] and w1 = [wg,x]. Now [a,g,2] ® wy = 1g by (3.1.4), since wg € (a®). Hence,
[[a, g, x],wo] = 1 by proposition 2.3. Therefore [a, g, z]"° = [a, g, x]. Also ([a,g,x]"°, h] @ w1) = 1g by
(3.1.4), since wy € (a®). Hence,

y2®h: [a,g,x]@h.

Now, altogether we have
1® = (yl ® g)hyz(yQ ® h) = ([a7 ha J:] ® g)([a,g,x] ® h)7
proving (3.2.6). O
4. The variety with the tensor square
A variety is a class of groups defined by laws, or identical relations.

Lemma 4.1. Every group G of the variety with the law

[‘Tagay]@g:l@, (411)

for all x, g,y € G is nilpotent of class at most 3.


www.SID.ir

Int. J. Group Theory 2 no. 2 (2013) 25-33 M.M. Nasrabadi, A. Gholamian and M.J. Sadeghifard
Proof. Expansion of 1g = [z, 2g,y] ® xg implies that

lg = [z,9,y] ® .
Thus G is nilpotent of class at most 3 by proposition 2.3 and theorem 2.5.

Proposition 4.2. Let G be a group satisfying the law (4.1.1) and a,b,z,y € G. Then

G' C RY(G). (4.2.1)
[a,b] ® [x,y] = ([a,b,2] ® y)? and [a,b] @ [z,y] = ([a, [z,y]] @ b)2.  (4.2.2)
(0,8 ® [2,4) = 1o (42.3)

Proof. To prove (4.2.1), by (2.1.4) and lemma 4.1 we have

1

=ty 2y, 27 e [z 2, y] = 1,

1

for all z,y,2 € G. Hence, 1g = [71, y~1, 2][y, 271, 271][2, 2,y] ® y~!. The equation yields

lg = [Zal'ay] & Y,
proving (4.2.1).
Next, (4.2.2) follows from (4.2.1) and (2.4.5).
Finally for (4.2.3), we have
[z,y,a]7! ®b)? by (4.2.2)
2

(
= ([#,y;0] @ b)~ by (2.2.1), (2.2.3) and 4.1
= ([w,y,b] ®a)®> by (4.2.1) and (2.4.1)
=([z,a,b]®@y)™2 by (3.2.6)
= ([a,z,b) ®y)?> by (2.2.1), (2.2.3) and 4.1
= ([a,z,y] ®b)"2 by (4.2.1) and (2.4.1)
= ([a,b,y] ® 2)®> by (3.2.6)
= ([a,b,z]) ®y)™2 by (4.2.1) and (2.4.1)

{l

a,b] @ [z,y])~", by (4.2.2)
proving, (4.2.3)

31

O

Theorem 4.3. A group G has a finite covering by subgroups satisfying the law (4.1.1) if and only if

G : B5(G)| < oo.

Proof. Suppose that G = |J;_; H; where H; are subgroups of G satisfying the law (4.1.1). The result

of B. H. Neumann [11], shows that we may assume that |G : H;| < oo for every i. Hence, the subgroup

D = (i, H; has a finite index in G. Tt is clear that D < B¥(G) and hence, |G : B®(G)| < .

Conversely, let {g1,...,gn,} be a transversal of B®(G) in G and let H; = (g;)B®(G). We have

G = J;| H;, hence it suffices to prove that each H; satisfying the law (4.1.1).

Let z = g‘a,y = ¢’b and z be arbitrary elements of (¢) B¥(G), where 4,5 € Z and a,b € B®(G). Since

a,b € B®(G), using (3.1.4), we obtain,
[z,y,2] ® y = [g'a, ’b, 2] @ g’b
= [lg*, 9’b]*[a, g’0], 2] ® g’b
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= [l¢", gjb] z]*[a, g7b, 2] @ g7b

= (lls, 701", 2" © 1) (la,¢b, 2] @ g'b)
= ([lg",0)", 2]* ®b)* ([[¢",0]*, 2" @¢7)™"  a € B¥(G)
= ([lg", 0], 21" ®9J)bw be B¥(G)
= ([[b.g'",2]" ® g/)
=1lg, be B®G)
where w = [a, ¢'b],w’ = [a, ¢’b, 2],v = [b, g'] ~%w, v’ = [[b, ¢']%, 2] "Vbw’, as required O

Theorem 4.4. Let G be a p-group satisfying the law (4.1.1). Then
G ® G is abelian. (4.4.1)
13(G) < Z2(G).  (4.4.2)

Proof. If GG is an abelian p-group, then the result is obvious. Otherwise, G ® G has no element of order
2, since G is a p-group and p is an odd prime. Hence, [a,b] ® [z, y] =1g by (4.2.3). So (2.2.5) implies
(4.4.1). Next we have ([a,b, 2] ® y)? = 1g by (4.2.2) since [a,b] @ [z, y} = 1g+ Thus 1g = [a,b,z] @ v,
proving (4.4.2). O

Corollary 4.5. Let G be a two-generator p-group of class 3 satisfying the law (4.1.1). Then we can

determine tensor square of G.

Proof. If G is a p-group satisfying the law (4.1.1); then by (4.4.2), 73(G) < Z®(G) . Now using the
result of G. J. Ellis [5], we see that G ® G = % ® %, hence the calculations of tensor squares
reduce to the calculations of tensor squares of class 2 groups. From [8], we obtain the complete

classification of tensor square of two-generator p-groups of class 2. Hence by Theorem 36 from [§]

GeG Opa X O X Cpp X Cpp X Cpo X Cpo ifp<o
Cpa X Cp,B X Cpﬁ X Cp3+7— X de X Cpa pr >0

where 7 = min(a — 8, p —a) and ay B, 7, p and o are defined integers as in Theorem 1 from [8](see [§]

for more information). d
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