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Abstract. In this paper we present some results about subgroup which is generalization of the sub-

group R⊗2 (G) = {a ∈ G|[a, g] ⊗ g = 1⊗, ∀g ∈ G} of right 2⊗-Engel elements of a given group G. If

p is an odd prime, then with the help of these results, we obtain some results about tensor squares

of p-groups satisfying the law [x, g, y] ⊗ g = 1⊗, for all x, g, y ∈ G. In particular p-groups satisfying

the law [x, g, y] ⊗ g = 1⊗ have abelian tensor squares. Moreover, we can determine tensor squares of

two-generator p-groups of class three satisfying the law [x, g, y]⊗ g = 1⊗.

1. Introduction

Throughout this paper p is an odd prime and a p-group is a group in which every element has order

a power of p.

For any group G, the non-abelian tensor square G ⊗ G is a group generated by the symbols g ⊗ h,

subject to the relations,

gg′ ⊗ h = (gg
′ ⊗ hg′)(g′ ⊗ h),

g ⊗ hh′ = (g ⊗ h′)(gh′ ⊗ hh′),

for all g, g′, h, h′ ∈ G, where gh = h−1gh is conjugation on the right. The non-abelian tensor square

is a special case of the non-abelian tensor product which has its origins in homotopy theory. It was

introduced by R. Brown and J. L. Loday in [3] and [4], extending ideas of J. H. C. Whitehead in [13].

In [2], R. Brown, D. L. Johnson, and E. F. Robertson start the investigation of non-abelian tensor

squares as group theoretical objects.
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The set of all elements a in G such that a⊗ g = 1⊗, for all g in G, is called the tensor centre of G and

denoted by Z⊗(G). This concept was introduced by G. J. Ellis [5].

Following [9] The set of right n⊗-Engel elements of a group G is defined as

R⊗n (G) = {a ∈ G : [a,n−1 x]⊗ x = 1⊗ ∀x ∈ G}.

Here commutators are denoted by [x, y] = x−1y−1xy and [x1, . . . , xn, xn+1] = [[x1, . . . , xn], xn+1]. Also

for x ∈ G, the set of all xg for g ∈ G is called, the conjugacy class of x in G and is denoted by xG.

The set of right n⊗-Engel elements in groups have been studied by several authors (see for example

[1], [9], [10]). One of the results of [1] shows that R⊗2 (G) is always a characteristic subgroup of G.

Moravec in [9] investigated the properties of right 2⊗-Engel elements of a group G. The subgroup

B⊗(G) studied in this paper is a generalization of R⊗2 (G).

Definition 1.1. Let G be a group. We define

C⊗(G) = {a ∈ G|[ay, g, x]⊗ g = [y, g, x]⊗ g ∀g, y, x ∈ G},
B⊗(G) = {a ∈ G|[a, g, x]⊗ g = 1⊗ ∀g, x ∈ G}.

One can easily check that C⊗(G) is a characteristic subgroup of G. It will be shown that B⊗(G) =

C⊗(G). Thus B⊗(G) is a characteristic subgroup of G.

At first, we determine some information about B⊗(G). Next we show that every p-group satisfying

the law [x, g, y]⊗ g = 1⊗ has an abelian tensor square and γ3(G) ≤ Z⊗(G). With the help of this we

can compute tensor squares of two-generator p-groups of class 3 satisfying the law [x, g, y]⊗ g = 1⊗.

2. Preliminary Results

In this section we summarize some basic results which will be used in the proof of our main results.

Lemma 2.1. ([12, 5.1.5]) Let G be a group and x, y, z ∈ G. Then

[xy, z] = [x, z]y[y, z] = [x, z][x, z, y][y, z]. (2.1.1)

[x, yz] = [x, z][x, y]z = [x, z][x, y][x, y, z]. (2.1.2)

[g−1, h]g = [g, h]−1 = [g, h−1]h. (2.1.3)

[x, y−1, z]y[y, z−1, x]z[z, x−1, y]x = 1. (2.1.4)

Lemma 2.2. ([2]) Let g, g′, h, h′ ∈ G. The following relations hold in G⊗G:

(g−1 ⊗ h)g = (g ⊗ h)−1 = (g ⊗ h−1)h. (2.2.1)

(g′ ⊗ h′)g⊗h = (g′ ⊗ h′)[g,h]. (2.2.2)

[g, h]⊗ g′ = (g ⊗ h)−1(g ⊗ h)g
′
. (2.2.3)

g′ ⊗ [g, h] = (g ⊗ h)−g
′
(g ⊗ h). (2.2.4)

[g, h]⊗ [g′, h′] = [g ⊗ h, g′ ⊗ h′]. (2.2.5)

Proposition 2.3. ([2]) For a given group G, there exists a homomorphism

λ : G⊗G→ G′ such that λ(g ⊗ h) = [g, h], for all g, h ∈ G.
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Lemma 2.4. ([1,9]) Let G be a group, a ∈ R⊗2 (G) and x, y, z ∈ G. Then

[a, x]⊗ y = ([a, y]⊗ x)−1. (2.4.1)

[a, x]z ⊗ x = 1⊗. (2.4.2)

[a, x] ∈ R⊗2 (G). (2.4.3)

[a, x]⊗ [y, z] = 1⊗. (2.4.4)

[x, y]⊗ a = ([x, a]⊗ y)2 and a⊗ [x, y] = ([a, x]⊗ y)2. (2.4.5)

([a, x, y]⊗ z)2 = 1⊗. (2.4.6)

Theorem 2.5. ([7]) The variety of groups which are nilpotent of class n or less (where n is a fixed

integer greater than 2) may be defined by the law

[x, y1, . . . , yn−1, x] = 1.

3. Results for B⊗(G)

The goal of this section is to prove the following results for B⊗(G), which are tensor analogues to

the work of Kappe in [6].

Lemma 3.1. Let G be a group, g, x, d, d′, d′′ ∈ G, i, j ∈ Z and a ∈ B⊗(G). Then

[a, g, x]d ⊗ gd′ = 1⊗. (3.1.1)

[a, gi, x]d ⊗ gd′ = 1⊗. (3.1.2)

[[a, gi]d, x]d
′ ⊗ (gj)d

′′
= 1⊗. (3.1.3)

[a, g, x]d ⊗ ad′ = 1⊗. (3.1.4)

Proof. Commutator expansion gives,

1⊗ = [a, g, xd]⊗ g

= [a, g, d][a, g, x]d ⊗ g

= ([a, g, d]⊗ g)[a,g,d]
d
([a, g, x]d ⊗ g)

= [a, g, x]d ⊗ g,

lead to (3.1.1).

To prove (3.1.2) for i > 0, we use induction on i. (3.1.1) is as the basis of an inductive proof.

Now assume that (3.1.2) follows when i is a fixed positive k, we prove that (3.1.2) is true for i = k+1.

[a, gk+1, x]d ⊗ gd′ = [a, gk.g, x]d ⊗ gd′

= [[a, g][a, gk]g, x]d ⊗ gd′

= ([a, g, x]w[[a, gk]g, x])d ⊗ gd′

= ([a, g, x]wd ⊗ gd′)w′([[a, gk]g, x]d ⊗ gd′)

= [a, gk, xg
−1

]gd ⊗ gd′

= 1⊗,
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where w = [a, gk]g and w′ = [[a, gk]g, x]d.

If i < 0, then put t = −i. Hence,

[a, gi, x]d ⊗ gd′ = [a, g−t, x]d ⊗ gd′

= [[a, gt]−g
−t
, x]d ⊗ gd′ by(2.1.3)

= [[a, gt]−1, xg
t
]g
−td ⊗ gd′

= [a, gt, xg
t
]−wd ⊗ gd′ by(2.1.3)

= ([a, gt, xg
t
]wd ⊗ gd′)−w′ by(2.2.1)

= 1⊗,

where w = [a, gt]−1g−t and w′ = [a, gt, xg
t
]−wd.

These imply (3.1.2).

(3.1.3) is proved in a way similar to (3.1.2).

For the proof of (3.1.4) note that,

1⊗ = [a, ag, x]d ⊗ (ag)d
′

= [[a, ag], x]d ⊗ ad′gd′

= ([a, g, x]d ⊗ gd′)([a, g, x]d ⊗ ad′)gd
′

= ([a, g, x]d ⊗ ad′)gd
′
, by(3.1.1)

proving (3.1.4). �

Theorem 3.2. Let G be a group. Then we have

B⊗(G) = C⊗(G). (3.2.1)

R⊗2 (G) ⊆ B⊗(G). (3.2.2)

[a, g, x, h]⊗ g = 1⊗, for a ∈ B⊗(G) and g, x, h ∈ G. (3.2.3)

[a, g, x, h]⊗ h = 1⊗, for a ∈ B⊗(G) and g, x, h ∈ G. (3.2.4)

([a, g, x, b, c]⊗ h)2 = 1⊗, for a ∈ B⊗(G) and g, x, b, c, h ∈ G. (3.2.5)

[a, g, x]⊗ h = ([a, h, x]⊗ g)−1, for a ∈ B⊗(G) and g, x, h ∈ G. (3.2.6)

Proof. To prove (3.2.1) let a ∈ B⊗(G). Then [[a, g]y, x][y,g] ⊗ g = 1⊗ by (3.1.3). Hence,

[ay, g, x]⊗ g = ([[a, g]y, x][y,g] ⊗ g)[y,g,x]([y, g, x]⊗ g)

= [y, g, x]⊗ g

i.e., B⊗(G) ⊆ C⊗(G) and hence (3.2.1) follows since clearly C⊗(G) ⊆ B⊗(G).

To prove (3.2.2), let a ∈ R⊗2 (G). Then by proposition 2.3, [a, g, g] = 1. Hence, by (2.4.3) and (2.4.1)
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we have

[a, g, x]⊗ g = ([[a, g], g]⊗ x)−1

= (1⊗ x)−1

= 1⊗,

proving R⊗2 (G) ⊆ B⊗(G).

To prove (3.2.3), we have

[a, g, x, h]⊗ g = [[a, g]−1[a, g]x, h]⊗ g

= [a, g, h]−w[[a, g]x, h]⊗ g

= ([a, g, h]w ⊗ g)−w
′
([[a, g]x, h]⊗ g)

= 1⊗, by(3.1.3)

where w = [a, g]−1[a, g]x and w′ = [a, g, h]−w[[a, g]x, h].

To prove (3.2.4), since a ∈ B⊗(G), then by proposition 2.3 we have 1 = [a, gh, x, gh]. Hence, commu-

tator expansion gives

1 = [[a, h][a, g]h, x, gh]

= [[a, h, x][a,g]
h
[[a, g]h, x], gh]

= [y1y2, gh],

where y1 = [a, h, x][a,g]
h

and y2 = [[a, g]h, x]. Now by (3.1.3), y1 ⊗ h = 1⊗ and y2 ⊗ g = 1⊗. Hence, by

proposition 2.3 we have [y1, h] = 1 and [y2, g] = 1. Then the commutator expansion of 1 = [y1y2, gh]

gives

1 = [y1, gh]y2 [y2, gh] = [y1, h]y2 [y1, g]hy2 [y2, h][y2, g]h.

Hence, 1 = [y1, g]hy2 [y2, h] and so

1⊗ = [y1, g]hy2 [y2, h]⊗ h

= ([y1, g]hy2 ⊗ h)[y2,h]([y2, h]⊗ h).

Now we prove [y1, g]hy2 ⊗ h = 1⊗. We have

1⊗ = yghy21 ⊗ h by(3.1.3)

= (y1[y1, g])hy2 ⊗ h

= (yhy21 ⊗ h)[y1,g]
hy2

([y1, g]hy2 ⊗ h)

= [y1, g]hy2 ⊗ h. by(3.1.3)

Hence, we obtain

1⊗ = [y2, h]⊗ h = [[a, g]h, x, h]⊗ h.
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The substitution of xh for x finally gives

1⊗ = [[a, g]h, xh, h]⊗ h = ([a, g, x, h]⊗ h)h,

proving (3.2.4).

To prove (3.2.5), [a, g, x] ∈ R⊗2 (G) by (3.2.4). Hence, (3.2.5) follows by (2.4.6).

Finally for (3.2.6), expansion of 1⊗ = [a, gh, x]⊗ gh, as in the proof (3.2.4), leads to

1⊗ = (y1 ⊗ g)hy2(y2 ⊗ h),

where y1 = [a, h, x][a,g]
h

and y2 = [[a, g]h, x]. Now by (3.1.4) we have [a, h, x] ⊗ [a, g]h = 1⊗, since

[a, g]h ∈ 〈aG〉. Hence, [[a, h, x], [a, g]h] = 1 by proposition 2.3. Therefore y1 = [a, h, x]. Now we have

(y1 ⊗ g)hy2 = ([a, h, x]⊗ g)([[a, h, x], g]⊗ hy2) by (2.2.3)

= ([a, h, x]⊗ g)([[a, h, x], g]⊗ y2)([[a, h, x], g]⊗ h)y2

= ([a, h, x]⊗ g)([[a, h, x], g]⊗ y2) by (3.2.3)

= [a, h, x]⊗ g by (3.1.4), since y2 ∈ 〈aG〉.

To simplify y2 ⊗ h, write [a, g]h = [a, g][a, g, h] and expand

y2 ⊗ h = [a, g, x]w0 [a, g, h, x]⊗ h
= ([a, g, x]w0 ⊗ h)w1([a, g, h, x]⊗ h)

= ([a, g, x]w0 ⊗ h)w1 since [a, g] ∈ B⊗(G)

= ([a, g, x]w0 ⊗ h)([a, g, x]w0 , h]⊗ w1), by (2.2.3)

where w0 = [a, g, h] and w1 = [w0, x]. Now [a, g, x] ⊗ w0 = 1⊗ by (3.1.4), since w0 ∈ 〈aG〉. Hence,

[[a, g, x], w0] = 1 by proposition 2.3. Therefore [a, g, x]w0 = [a, g, x]. Also ([a, g, x]w0 , h]⊗w1) = 1⊗ by

(3.1.4), since w1 ∈ 〈aG〉. Hence,

y2 ⊗ h = [a, g, x]⊗ h.

Now, altogether we have

1⊗ = (y1 ⊗ g)hy2(y2 ⊗ h) = ([a, h, x]⊗ g)([a, g, x]⊗ h),

proving (3.2.6). �

4. The variety with the tensor square

A variety is a class of groups defined by laws, or identical relations.

Lemma 4.1. Every group G of the variety with the law

[x, g, y]⊗ g = 1⊗, (4.1.1)

for all x, g, y ∈ G is nilpotent of class at most 3.
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Proof. Expansion of 1⊗ = [x, xg, y]⊗ xg implies that

1⊗ = [x, g, y]⊗ x.

Thus G is nilpotent of class at most 3 by proposition 2.3 and theorem 2.5. �

Proposition 4.2. Let G be a group satisfying the law (4.1.1) and a, b, x, y ∈ G. Then

G′ ⊆ R⊗2 (G). (4.2.1)

[a, b]⊗ [x, y] = ([a, b, x]⊗ y)2 and [a, b]⊗ [x, y] = ([a, [x, y]]⊗ b)2. (4.2.2)

([a, b]⊗ [x, y])2 = 1⊗. (4.2.3)

Proof. To prove (4.2.1), by (2.1.4) and lemma 4.1 we have

[x−1, y−1, z][y, z−1, x−1][z, x, y] = 1,

for all x, y, z ∈ G. Hence, 1⊗ = [x−1, y−1, z][y, z−1, x−1][z, x, y]⊗ y−1. The equation yields

1⊗ = [z, x, y]⊗ y,

proving (4.2.1).

Next, (4.2.2) follows from (4.2.1) and (2.4.5).

Finally for (4.2.3), we have

[a, b]⊗ [x, y] = ([x, y, a]−1 ⊗ b)2 by (4.2.2)

= ([x, y, a]⊗ b)−2 by (2.2.1), (2.2.3) and 4.1

= ([x, y, b]⊗ a)2 by (4.2.1) and (2.4.1)

= ([x, a, b]⊗ y)−2 by (3.2.6)

= ([a, x, b]⊗ y)2 by (2.2.1), (2.2.3) and 4.1

= ([a, x, y]⊗ b)−2 by (4.2.1) and (2.4.1)

= ([a, b, y]⊗ x)2 by (3.2.6)

= ([a, b, x]⊗ y)−2 by (4.2.1) and (2.4.1)

= ([a, b]⊗ [x, y])−1, by (4.2.2)

proving, (4.2.3) �

Theorem 4.3. A group G has a finite covering by subgroups satisfying the law (4.1.1) if and only if

|G : B⊗(G)| <∞.

Proof. Suppose that G =
⋃n
i=1Hi where Hi are subgroups of G satisfying the law (4.1.1). The result

of B. H. Neumann [11], shows that we may assume that |G : Hi| <∞ for every i. Hence, the subgroup

D =
⋂n
i=1Hi has a finite index in G. It is clear that D ≤ B⊗(G) and hence, |G : B⊗(G)| <∞.

Conversely, let {g1, . . . , gn} be a transversal of B⊗(G) in G and let Hi = 〈gi〉B⊗(G). We have

G =
⋃n
i=1Hi, hence it suffices to prove that each Hi satisfying the law (4.1.1).

Let x = gia, y = gjb and z be arbitrary elements of 〈g〉B⊗(G), where i, j ∈ Z and a, b ∈ B⊗(G). Since

a, b ∈ B⊗(G), using (3.1.4), we obtain,

[x, y, z]⊗ y = [gia, gjb, z]⊗ gjb
= [[gi, gjb]a[a, gjb], z]⊗ gjb
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= [[gi, gjb]a, z]w[a, gjb, z]⊗ gjb
= ([[gi, gjb]a, z]w ⊗ gjb)w′([a, gjb, z]⊗ gjb)
= ([[gi, b]a, z]w⊗b)w′([[gi, b]a, z]w⊗gj)bw′ a ∈ B⊗(G)

= ([[gi, b]a, z]w ⊗ gj)bw′ b ∈ B⊗(G)

= ([[b, gi]a, z]v ⊗ gj)−v′

= 1⊗, b ∈ B⊗(G)

where w = [a, gjb], w′ = [a, gjb, z], v = [b, gi]−aw, v′ = [[b, gi]a, z]−vbw′, as required. �

Theorem 4.4. Let G be a p-group satisfying the law (4.1.1). Then

G⊗G is abelian. (4.4.1)

γ3(G) ≤ Z⊗(G). (4.4.2)

Proof. If G is an abelian p-group, then the result is obvious. Otherwise, G⊗G has no element of order

2, since G is a p-group and p is an odd prime. Hence, [a, b]⊗ [x, y] = 1⊗ by (4.2.3). So (2.2.5) implies

(4.4.1). Next we have ([a, b, x]⊗ y)2 = 1⊗ by (4.2.2) since [a, b]⊗ [x, y] = 1⊗. Thus 1⊗ = [a, b, x]⊗ y,

proving (4.4.2). �

Corollary 4.5. Let G be a two-generator p-group of class 3 satisfying the law (4.1.1). Then we can

determine tensor square of G.

Proof. If G is a p-group satisfying the law (4.1.1), then by (4.4.2), γ3(G) ≤ Z⊗(G) . Now using the

result of G. J. Ellis [5], we see that G ⊗ G ∼= G
γ3(G) ⊗

G
γ3(G) , hence the calculations of tensor squares

reduce to the calculations of tensor squares of class 2 groups. From [8], we obtain the complete

classification of tensor square of two-generator p-groups of class 2. Hence by Theorem 36 from [8]

G⊗G ∼=

{
Cpα × Cpβ × Cpβ × Cpβ × Cpρ × Cpρ ifρ ≤ σ
Cpα × Cpβ × Cpβ × Cpβ+τ × Cpσ × Cpσ ifρ > σ

where τ = min(α− β, ρ− σ) and α, β, γ, ρ and σ are defined integers as in Theorem 1 from [8](see [8]

for more information). �
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