

International Journal of Group Theory
ISSN (print): 2251-7650, ISSN (on-line): 2251-7669
Vol. 2 No. 2 (2013), pp. 47-72.
© 2013 University of Isfahan



# CHARACTERIZATION OF THE SYMMETRIC GROUP BY ITS NON-COMMUTING GRAPH

M. R. DARAFSHEH AND P. YOUSEFZADEH\*

## Communicated by Alireza Abdollahi

ABSTRACT. The non-commuting graph  $\nabla(G)$  of a non-abelian group G is defined as follows: its vertex set is G - Z(G) and two distinct vertices x and y are joined by an edge if and only if the commutator of x and y is not the identity. In this paper we prove that if G is a finite group with  $\nabla(G) \cong \nabla(\mathbb{S}_n)$ , then  $G \cong \mathbb{S}_n$ , where  $\mathbb{S}_n$  is the symmetric group of degree n, where n is a natural number.

# 1. Introduction

Let G be a group. The non-commuting graph  $\nabla(G)$  of G is defined as follows: the set of vertices of  $\nabla(G)$  is G - Z(G), where Z(G) is the center of G and two vertices are connected whenever they do not commute. Also we define the prime graph  $\Gamma(G)$  of G as follows: the vertices of  $\Gamma(G)$  are the prime divisors of the order of G and two distinct vertices p and q are joined by an edge and we write  $p \sim q$ , if there is an element in G of order pq. We denote by  $\pi_e(G)$  the set of orders of elements of G. The connected components of  $\Gamma(G)$  are denoted by  $\pi_i$ ,  $i = 1, 2, \ldots, t(G)$ , where t(G) is the number of components. We can express the order of G as a product of some positive integer  $m_i$ ,  $i = 1, 2, \ldots, t(G)$ with  $\pi(m_i) = \pi_i$ . The integers  $m_i$ s are called the order components of G. In 2006, A. Abdollahi, S. Akbari and H. R. Maimani put forward a conjecture in [1] as follows.

AAM's Conjecture: If M is a finite non abelian simple group and G is a group such that  $\nabla(G) \cong \nabla(M)$ , then  $G \cong M$ .

Ron Solomon and Andrew Woldar proved the above conjecture in [6]. In this paper we will prove that if G is a finite group with  $\nabla(G) \cong \nabla(\mathbb{S}_n)$ , then  $G \cong \mathbb{S}_n$ , where  $\mathbb{S}_n$  is the symmetric group of degree

MSC(2010): Primary: 20F05; Secondary: 05C05.

Keywords: non-commuting graph, symmetric group, finite groups.

Received: 30 August 2012, Accepted: 20 October 2012.

<sup>\*</sup>Corresponding author.

n. Therefore we extend the AAM's conjecture to the case, where M is not necessarily a finite simple group.

### 2. Preliminaries

The following result was proved in part(1) of Theorem 3.16 of [1].

**Lemma 2.1.** Let G be a finite group such that  $\nabla(G) \cong \nabla(\mathbb{S}_n)$ ,  $n \ge 3$ . Then  $|G| = |\mathbb{S}_n|$ .

**Lemma 2.2.** Let G and H be two non-abelian groups. If  $\nabla(G) \cong \nabla(H)$ , then

$$\nabla(C_G(A)) \cong \nabla(C_H(\varphi(A)))$$

for all  $\emptyset \neq A \subseteq G - Z(G)$ , where  $\varphi$  is the isomorphism from  $\nabla(G)$  to  $\nabla(H)$  and  $C_G(A)$  is non-abelian.

*Proof.* It is sufficient to show that  $\varphi \mid_{V(C_G(A))} : V(C_G(A)) \longrightarrow V(C_H(\varphi(A)))$  is onto, where  $\varphi \mid_{V(C_G(A))}$  is the restriction of  $\varphi$  to  $V(C_G(A))$  and

$$V(C_G(A)) = C_G(A) - Z(C_G(A)),$$
  
$$V(C_H(\varphi(A))) = C_H(\varphi(A)) - Z(C_H(\varphi(A))).$$

Assume d is an element of  $V(C_H(\varphi(A)))$ , then  $d \in H - Z(H)$  and so there exists an element c of G - Z(G) such that  $\varphi(c) = d$ . From

$$d = \varphi(c) \in C_H(\varphi(A)),$$

it follows that  $[\varphi(c), \varphi(g)] = 1$  for all  $g \in A$  and since  $\varphi$  is an isomorphism from  $\nabla(G)$  to  $\nabla(H)$ , [c,g] = 1 for all  $g \in A$ . Therefore  $c \in C_G(A)$ . But  $d \notin Z(C_H(\varphi(A)))$ , so for an element  $x \in C_H(\varphi(A))$ we have  $[x,d] \neq 1$ . Hence x is an element of H that does not commute with  $d \in H$ . This implies that  $x \in H - Z(H)$ . Thus there exists  $x' \in G - Z(G)$ , such that  $\varphi(x') = x$ . It is easy to see that  $[x', c] \neq 1$ and therefore  $c \notin Z(C_G(A))$ . Hence

$$c \in C_G(A) - Z(C_G(A)) = V(C_G(A))$$

and  $\varphi(c) = d$ .

The following result was proved by E. Artin in [2] and [3] and together with the classification of finite simple groups can be stated as follows:

**Lemma 2.3.** Let G and M be finite simple groups, |G| = |M|, then the following holds:

- (1) If  $|G| = |A_8| = |L_3(4)|$ , then  $G \cong A_8$  or  $G \cong L_3(4)$ ;
- (2) If  $|G| = |B_n(q)| = |C_n(q)|$ , where  $n \ge 3$ , and q is odd, then  $G \cong B_n(q)$  or  $G \cong C_n(q)$ ;
- (3) If M is not in the above cases, then  $G \cong M$ .

As an immediate consequence of Lemma 2.3, we get the following corollary.

**Corollary 2.4.** Let G be a finite simple group with  $|G| = |A_n|$ , where n is a natural number,  $n \ge 5$ ,  $n \ne 8$ , then  $G \cong A_n$ .

www.SID.ir

**Lemma 2.5.** Let G and H be two finite groups with  $\nabla(G) \cong \nabla(H)$  and |G| = |H|. Then  $p_1 p_2 \cdots p_t \in \pi_e(G)$  if and only if  $p_1 p_2 \cdots p_t \in \pi_e(H)$ , where  $p_i$ 's are distinct prime numbers for  $i = 1, 2, \ldots, t$ . In particular,  $\Gamma(G) = \Gamma(H)$ .

*Proof.* If  $\varphi$  is an isomorphism from  $\nabla(G)$  to  $\nabla(H)$  and |G| = |H|, then we can easily see that

$$|Z(C_G(x))| = |Z(C_H(\varphi(x)))|$$

for all  $x \in G$ . If  $p_1 p_2 \cdots p_t \in \pi_e(G)$ , then there exists an element  $z \in G$  such that  $o(z) = p_1 p_2 \cdots p_t$ . Thus

$$p_1 p_2 \cdots p_t = |\langle z \rangle| ||Z(C_G(z))|$$

and so

$$p_1 p_2 \cdots p_t ||Z(C_H(\varphi(z)))|$$

Hence H has an abelian subgroup of order  $p_1p_2\cdots p_t$ , which is a cyclic group. Therefore  $p_1p_2\cdots p_t \in \pi_e(H)$ . By a similar argument we see that if  $p_1p_2\cdots p_t \in \pi_e(H)$ , then  $p_1p_2\cdots p_t \in \pi_e(G)$ .

**Lemma 2.6.** Let G be a finite group with  $\nabla(G) \cong \nabla(\mathbb{S}_n)$ , where  $3 \le n \le 8$  or  $11 \le n \le 14$ , then  $G \cong \mathbb{S}_n$ .

Proof. Since  $\nabla(G) \cong \nabla(\mathbb{S}_n)$ , by Lemma 2.1,  $|G| = |\mathbb{S}_n|$ . Also by Lemma 2.5  $\Gamma(G) = \Gamma(\mathbb{S}_n)$ , where  $\Gamma$  denotes the prime graph. Thus the order components of G and  $\mathbb{S}_n$  are the same. In [7] it is proved that  $\mathbb{S}_p$  and  $\mathbb{S}_{p+1}$  are characterizable by their order components, where  $p \ge 3$  is a prime number. Hence  $\mathbb{S}_n$ , where  $3 \le n \le 8$  or  $11 \le n \le 14$  is characterizable by their order components and so  $G \cong \mathbb{S}_n$ , where  $3 \le n \le 8$  or  $11 \le n \le 14$ 

**Lemma 2.7.** Let G be a finite group with  $\nabla(G) \cong \nabla(\mathbb{S}_n)$ , n = 9, 10, 15, 16, then  $G \cong \mathbb{S}_n$ 

*Proof.* We give the proof in the case n = 9, the proof in other cases is similar. Set

$$T = \{ \alpha \in \mathbb{S}_9 | (i)\alpha = i, i = 4, 5, \dots, 9 \}.$$

Obviously

 $T \leq \mathbb{S}_9,$  $T \cong \mathbb{S}_3$ 

and  $C_{\mathbb{S}_9}(T - \{1\}) \cong \mathbb{S}_6$ . By Lemma 2.2 we have

$$\nabla(C_{\mathbb{S}_9}(T-\{1\})) \cong \nabla(C_G(\varphi(T-\{1\}))),$$

where  $\varphi$  is an isomorphism from  $\nabla(\mathbb{S}_9)$  to  $\nabla(G)$ . Thus by Lemma 2.6  $C_G(\varphi(T - \{1\})) \cong \mathbb{S}_6$ . Let N be a minimal normal subgroup of G. If

$$N \cap C_G(\varphi(T - \{1\})) = 1,$$

then since

$$|NC_G(\varphi(T - \{1\}))|||G| = 9!$$

and

$$|C_G(\varphi(T - \{1\}))| = 6!,$$

we have  $|N||9\cdot 8\cdot 7$ . We know that N is a union of conjugacy classes of G and the size of conjugacy class of G containing x is equal to the size of conjugacy class of  $\mathbb{S}_9$  containing  $\varphi^{-1}(x)$  for all  $x \in G - \{1\}$ . We can see that all conjugacy class sizes in  $\mathbb{S}_9$  less than  $9 \cdot 8 \cdot 7$  are  $1, \frac{9\cdot 8}{2}, \frac{9\cdot 8\cdot 7}{3}$  and  $\frac{9\cdot 8\cdot 7\cdot 6}{8}$ .

Let y be an arbitrary element in  $N - \{1\}$ . Thus the size of conjugacy class of y in G and so the size of conjugacy class of  $\varphi^{-1}(y)$  in  $\mathbb{S}_9$  is equal to  $\frac{9.8}{2}$ ,  $\frac{9.8\cdot7}{3}$  or  $\frac{9.8\cdot7\cdot6}{8}$ . Therefore we have one of the perceptilities:  $(\varphi^{-1}(y))$  is a 2 grade  $(\varphi^{-1}(y))$  is a 2 grade or  $(\varphi^{-1}(y))$  is a

Therefore we have one of the possibilities:  $\varphi^{-1}(y)$  is a 2-cycle,  $\varphi^{-1}(y)$  is a 3-cycle or  $\varphi^{-1}(y)$  is a permutation of type 2<sup>2</sup>.

In any case there exists a subgroup of  $S_9$ , say K isomorphic to  $S_3$  such that

$$\varphi^{-1}(y) \in C_{\mathbb{S}_9}(K - \{1\})$$

and

$$C_{\mathbb{S}_9}(K-\{1\})\cong \mathbb{S}_6.$$

Hence

$$y \in N \cap C_G(\varphi(K - \{1\})).$$

By Lemma 2.6  $C_G(\varphi(K - \{1\})) \cong \mathbb{S}_6$  and since

$$N \cap C_G(\varphi(K - \{1\})) \neq 1,$$

 $\mathbb{A}_6$  is embedded in N.

 $\operatorname{If}$ 

$$N \cap C_G(\varphi(T - \{1\})) \neq 1,$$

then since  $C_G(\varphi(T - \{1\}) \cong \mathbb{S}_6$  and

$$N \cap C_G(\varphi(T - \{1\})) \trianglelefteq C_G(\varphi(T - \{1\})),$$

we conclude that  $\mathbb{A}_6$  is embedded in N in this case too.

Thus  $2^3 \cdot 3^2 \cdot 5 ||N|$ . We know that N is a direct product of isomorphic simple groups. But 5 ||N| and  $5^2 \nmid |N|$ , hence N is a simple group.

Moreover  $5 \approx 7$  in  $\Gamma(\mathbb{S}_9)$  and since  $\Gamma(G) = \Gamma(\mathbb{S}_9)$  by Lemma 2.5,  $5 \neq 7$  in  $\Gamma(G)$  too. By Frattini's argument  $N_G(N_5)N = G$ , where  $N_5$  is a Sylow 5-subgroup of N and since  $7||G|, 7||N_G(N_5)|$  or 7||N|. If  $7||N_G(N_5)|$ , then there exists an element z of order 7 in  $N_G(N_5)$  and so  $\langle z \rangle N_5$  is a subgroup of  $N_G(N_5)$  of order 5.7. Hence  $\langle z \rangle N_5$  is a cyclic group. It means that  $5 \sim 7$  in  $\Gamma(G)$ , which is a contradiction. Thus 7||N|.

Now we assert that  $C_G(N) = 1$ . Otherwise there is a minimal normal subgroup T of G such that

 $T \leq C_G(N)$ . By the same argument as above we see that  $2^3 \cdot 3^2 \cdot 5 \cdot 7 ||T|$ . Therefore  $2^3 \cdot 3^2 \cdot 5 \cdot 7 ||C_G(N)|$ . Hence  $5||C_G(N)|$  and so there is an element  $a \in C_G(N)$  such that o(a) = 5 and since 7||N|, there is an element of order 7, say b in N.  $o(ab) = 5 \cdot 7$ , because ab = ba. But  $5 \approx 7$  in  $\Gamma(G)$  and this is a contradiction. Thus  $C_G(N) = 1$ .

It implies that

$$G \cong \frac{G}{1} = \frac{G}{C_G(N)} \hookrightarrow Aut(N).$$

Therefore

$$9! = |G| ||Aut(N)|.$$

So we proved that N is a simple group with

$$2^{3} \cdot 3^{2} \cdot 5 \cdot 7 ||N|,$$
  
9! = 2<sup>7</sup> \cdot 3<sup>4</sup> \cdot 5 \cdot 7 ||Aut(N)|

and  $|N||^{2^7} \cdot 3^4 \cdot 5 \cdot 7$ . By table 1 of [5] ,we conclude that  $N \cong \mathbb{A}_9$ . But

$$G \hookrightarrow Aut(N),$$
$$|G| = |\mathbb{S}_9|$$
$$Aut(N) \cong Aut(\mathbb{A}_9)$$
$$\cong \mathbb{S}_9.$$

Hence  $G \cong \mathbb{S}_9$ .

and

**Lemma 2.8.** Let T be a finite group and  $T \cong S_1 \times S_2 \times \cdots \times S_t$ , where  $S_is$  are isomorphic simple groups,  $1 \leq i \leq t$ . Let T contain a copy of the alternating group  $\mathbb{A}_{n-3}$ ,  $n \geq 16$  and |T||n!. Then T is a simple group.

*Proof.* Without loss of generality we may assume that

$$T = S_1 \times S_2 \times \cdots \times S_t.$$

Suppose that  $\pi_1: S_1 \times S_2 \times \cdots \times S_t \to S_1 \times 1 \times \cdots \times 1$  is defined by

$$\pi_1(s_1, s_2, \dots, s_t) = (s_1, 1, \dots, 1)$$

and K is a subgroup of T isomorphic to  $\mathbb{A}_{n-3}$ . Set

$$\overline{S_1} = S_1 \times 1 \times \dots \times 1$$

and

$$\overline{S_2 \times \cdots \times S_t} = 1 \times S_2 \times \cdots \times S_t.$$

Now we consider the following three cases.

Case 1)  $K \cap \overline{S_1} = K \cap \overline{S_2 \times \cdots \times S_t} = 1.$ 

www.SID.ir

In this case  $\phi: K \to \pi_1(K)$  defined by  $\phi(k) = \pi_1(k)$  for all  $k \in K$  is an isomorphism from K onto  $\pi_1(K)$ . This means that  $K \cong \pi_1(K)$ . Thus we have

$$\mathbb{A}_{n-3} \cong K \cong \pi_1(K) \le \overline{S_1} \cong S_1$$

and so

$$\frac{(n-3)!}{2} = |\mathbb{A}_{n-3}| \big| |S_1|.$$

But  $S_i$ s are isomorphic simple groups,  $1 \le i \le t$  and thus

$$\frac{(n-3)!}{2} = |\mathbb{A}_{n-3}| ||S_i|,$$
$$1 \le i \le t.$$

Therefore

$$\left[\frac{(n-3)!}{2}\right]^t ||T|$$

and since |T| | n!, we obtain  $\left[\frac{(n-3)!}{2}\right]^t | n!$ . But

$$\left[\frac{(n-3)!}{2}\right]^2 \nmid n!$$

for  $n \ge 16$  and so t = 1 and T is a simple group.

Case 2)  $K \cap \overline{S_1} \neq 1$ Since  $\overline{S_1} \leq T$ , we have

$$1 \neq K \cap \overline{S_1} \trianglelefteq K \cong \mathbb{A}_{n-3},$$

which implies that  $K \cap \overline{S_1} = K$  and so

$$\mathbb{A}_{n-3} \cong K \leq \overline{S_1} \cong S_1.$$

Now similar argument as in Case (1) shows that T is a simple group .

Case 3)  $K \cap \overline{S_2 \times \cdots \times S_t} \neq 1$ Since

$$\overline{S_2 \times \cdots \times S_t} \trianglelefteq T,$$

we have

$$1 \neq K \cap \overline{S_2 \times \cdots \times S_t} \trianglelefteq K \cong \mathbb{A}_{n-3},$$

which implies that

$$K \cap \overline{S_2 \times \dots \times S_t} = K$$

and so

$$A_{n-3} \cong K \le \overline{S_2 \times \dots \times S_t} \cong S_2 \times \dots \times S_t.$$

Thus  $\mathbb{A}_{n-3}$  is embedded in  $S_2 \times \cdots \times S_t$ . By repeating above argument for

$$T_i = S_i \times \dots \times S_t,$$
$$2 \le i \le t,$$

we conclude that T is a simple group.

Lemma 2.9. Let a, b be two natural numbers. Then:

1)  $a^{b}.b! \leq (ab)!$  and  $a^{0}.0! = (a.0)!$ 2) If  $a \geq 4$ , then  $a^{b-1}.b! \leq (a(b-1))!$ 3)  $3^{b-1}b! \leq (3b-3)!$ 4) If  $b \geq 3$ , then  $2^{b-1}b! \leq (2b-2)!$ 5) If  $b \geq 5$ , then  $2^{b-2}b! \leq 2(2b-4)!$ 6) If  $b \geq 4$ , then  $3^{b-2}b! \leq 2(3b-6)!$ 

*Proof.* 1) We prove Lemma 2.9 part 1 by induction on *b*. If b = 1, then clearly (1) holds. Suppose that  $a^k k! \leq (ak)!$ . We prove that  $a^{k+1}(k+1)! \leq (ak+a)!$ . By induction hypothesis

$$a^{k+1}(k+1)! \le (ak)!a(k+1).$$

But clearly

$$(ak)!a(k+1) \le (ak+a)!$$

and so

$$a^{k+1}(k+1)! \le (ak+a)!$$

and this completes the proof of (1).

2) We prove part 2 by induction on b. If b = 1, then clearly (2) holds. Suppose that

$$a^{k-1}k! \le (a(k-1))!$$

for  $k \ge 1$  and  $a \ge 4$ . We prove that

$$a^k(k+1)! \le (ak)!.$$

By induction hypothesis,

$$a^{k}(k+1)! \le (a(k-1))!a(k+1).$$

www.SID.ir

But since  $ak \ge 4$ , we have  $ak - 1 \ge 3$  and so

$$(ak)(ak-1)\cdots(ak-a+1) \ge ak+a.$$

Thus  $(ak)! \ge (ak - a)!a(k + 1)$ . Hence

$$a^k(k+1)! \le (ak)!$$

and this completes the proof of (2).

3) We prove this part by induction on b too. If 
$$b = 1$$
, then (3) clearly holds. Suppose that

$$3^{k-1}k! \le (3k-3)!$$

We prove that

$$3^k(k+1)! \le (3k)!.$$

By induction hypothesis we obtain

$$3^{k}(k+1)! \le (3k-3)!3(k+1).$$

It is easy to know that

$$k + 1 \le k(3k - 1)(3k - 2)$$

for  $k \geq 1$ . Thus

$$(3k-3)!3(k+1) \le (3k)!$$

and so

 $3^k(k+1)! \le (3k)!$ 

and this completes the proof of (3).

4) We prove part (4) by induction on b. If b = 3, then clearly (4) holds. Suppose that

$$2^{k-1}k! \le (2k-2)!$$

for  $k \geq 3$ . We prove that

$$2^k(k+1)! \le (2k)!.$$

By induction hypothesis we obtain  $2^k(k+1)! \leq (2k-2)!2(k+1)$ . It is easy to see that  $k+1 \leq k(2k-1)$  for  $k \geq 3$ . Thus

$$(2k-2)!2(k+1) \le (2k)!$$

and so

$$2^k(k+1)! \le (2k)!$$

and this completes the proof of (4).

5) We prove this part by induction on b. If b = 5, then (5) clearly holds. Suppose that

$$2^{k-2}k! \le 2(2k-4)!$$

for  $k \geq 5$ . We prove that

$$2^{k-1}(k+1)! \le 2(2k-2)!.$$

By induction hypothesis

$$2^{k-1}(k+1)! \le 2(2k-4)!2(k+1).$$

But since

$$k^2 - 3k + 1 \ge 0$$

for  $k \geq 5$ , we have

$$k+1 \le (k-1)(2k-3)$$

and so

$$2(2k-4)!2(k+1) \le 2(2k-2)!.$$

Hence

$$2^{k-1}(k+1)! \le 2(2k-2)!$$

and this completes the proof of (5).

6) We prove (6) by induction on b too. If b = 4, then (6) clearly holds. Suppose that

$$3^{k-2}k! \le 2(3k-6)!$$

for  $k \geq 4$ . We prove that

$$3^{k-1}(k+1)! \le 2(3k-3)!.$$

By induction hypothesis

$$3^{k-1}(k+1)! \le 2(3k-6)!3(k+1)$$

It is easy to see that

$$3(k+1) \le (3k-3)(3k-4)(3k-5)$$

for  $k\geq 4$  and so

$$2(3k-6)!3(k+1) \le 2(3k-3)!$$

for  $k \geq 4$ . Hence

$$3^{k-1}(k+1)! \le 2(3k-3)!$$

and this completes the proof of (6).

**Lemma 2.10.** Let  $a \ge 0$ ,  $b \ge 0$  be two integers. Then  $a!b! \le (a+b)!$ .

www.SID.ir

M. R. Darafsheh and P. Yousefzadeh

*Proof.* If  $a \ge 1$ ,  $b \ge 1$ , then since

$$a + b > b,$$
  
 $a + b - 1 > b - 1, \dots,$   
 $a + 1 > 1.$ 

we have

$$(a+b)(a+b-1)\cdots(a+1) > b!$$

-

and so

$$(a+b)!$$
  
=  $(a+b)(a+b-1)\cdots(a+1)a! > b!a!.$ 

If a = 0 or b = 0, then clearly a!b! = (a + b)!.

**Lemma 2.11.** Let  $a_1, a_2, \ldots, a_m$  be integers with  $a_i \ge 0, 1 \le i \le m$ . Then  $a_1!a_2!\cdots a_m! \le (a_1 + \cdots + a_m)!$ .

*Proof.* We prove Lemma by induction on m. If m = 1, then clearly Lemma holds. Assume that

$$a_1!a_2!\cdots a_k!$$
  
$$\leq (a_1+a_2+\cdots+a_k)!.$$

We prove that

$$a_1!a_2!\cdots a_k!a_{k+1}!$$
  
 $\leq (a_1+a_2+\cdots+a_k+a_{k+1})!.$ 

By induction hypothesis

$$a_1!a_2!\cdots a_k!a_{k+1}!$$
  
 $\leq (a_1+a_2+\cdots+a_k)!a_{k+1}!$ 

But by Lemma 2.10 we have

$$(a_1 + \dots + a_k)!a_{k+1}!$$
  
 $\leq (a_1 + a_2 + \dots + a_k + a_{k+1})!.$ 

Thus

$$a_1!a_2!\cdots a_{k+1}!$$
  
 $\leq (a_1+a_2+\cdots+a_{k+1})!$ 

**Lemma 2.12.** Let l, m, n be three natural numbers with  $n \ge 13$ . Then the following holds.

- 1) If there exists a m-cycle,  $m \ge 4$  in a cycle type of  $x \in \mathbb{S}_n$ , then  $|C_{\mathbb{S}_n}(x)| \le m(n-m)!$
- 2) If there exists two l-cycles in a cycle type of  $x \in S_n$ , where l = 2 or l = 3, then  $|C_{S_n}(x)| \le l^2 2! (n-2l)!$
- 3) If there exist a 2-cycle and a 3-cycle in a cycle type of  $x \in S_n$ , then  $|C_{S_n}(x)| \le 2.3.(n-5)!$ .

*Proof.* 1) Assume that  $x \in \mathbb{S}_n$  is a permutation of type

$$1^{\alpha_1} \cdot 2^{\alpha_2} \cdots m^{\alpha_m} \cdots n^{\alpha_n},$$

where  $\alpha_i \ge 0, 1 \le i \le n$ . By assumption  $\alpha_m \ge 1$ . Thus

$$|C_{\mathbb{S}_n}(x)| =$$
  
1<sup>\alpha\_1</sup>\alpha\_1!\dots m^{\alpha\_m}\alpha\_m!\dots n^{\alpha\_n}\alpha\_n!,

where  $\alpha_m \geq 1$ . By Lemma 2.9 part 1 and 2 we conclude that

$$|C_{\mathbb{S}_n}(x)| \le \alpha_1!(2\alpha_2)!\cdots m(m(\alpha_m-1))!\cdots(n\alpha_n)!$$

and so by Lemma 2.11, we have

$$C_{\mathbb{S}_n}(x)|$$
  

$$\leq m(\alpha_1 + 2\alpha_2 + \dots + m(\alpha_m - 1) + \dots + n\alpha_n)!$$
  

$$= m(n - m)!$$

and this completes the proof of (1).

2) Assume that  $x \in \mathbb{S}_n$  is a permutation of type

$$1^{\alpha_1}\cdots 2^{\alpha_2}\cdots n^{\alpha_n}$$

where  $\alpha_i \ge 0, 1 \le i \le n$ . By assumption  $\alpha_l \ge 2$ , where l = 2 or l = 3. First suppose that l = 2. We have

$$|C_{\mathbb{S}_n}(x)|$$
  
=  $1^{\alpha_1} \alpha_1 ! 2^{\alpha_2} \alpha_2 ! \cdots n^{\alpha_n} \alpha_n ! .$ 

If  $\alpha_2 \geq 5$ , then by Lemma 2.9 part 5 and 1 we conclude that

$$|C_{\mathbb{S}_n}(x)| \le \alpha_1! 2^3 (2\alpha_2 - 4)! \cdots (n\alpha_n)!$$

and so by Lemma 2.11 we have

$$\begin{aligned} |C_{\mathbb{S}_n}(x)| \\ &\leq 2^3(\alpha_1 + 2\alpha_2 - 4 + \dots + n\alpha_n)! \\ &= 2^3(n-4)! = 2^2 2!(n-4)!. \end{aligned}$$

If  $\alpha_2 = 2$ , then

$$|C_{\mathbb{S}_n}(x)|$$
  
= 1<sup>\alpha\_1</sup> \alpha\_1! 2<sup>2</sup> \cdot 2! \dots n^{\alpha\_n} \alpha\_n!.

By part 1 of Lemma 2.9 and Lemma 2.11 we conclude that

$$\begin{aligned} &|C_{\mathbb{S}_n}(x)| \\ &\leq 2^2 \cdot 2! \alpha_1 ! (3\alpha_3)! \cdots (n\alpha_n)! \\ &\leq 2^2 \cdot 2! (n-4)!. \end{aligned}$$

If  $\alpha_2 = 3$  or  $\alpha_2 = 4$ , then similar argument as case  $\alpha_2 = 2$  shows us that

$$|C_{\mathbb{S}_n}(x)| \le 2^3 3! (n-6)!$$

or

$$|C_{\mathbb{S}_n}(x)| \le 2^4 4! (n-8)!$$

respectively and since

$$2^{3}3!(n-6)!$$
  
 $\leq 2^{2}.2!(n-4)!$ 

and

$$2^{4}4!(n-8)!$$
  

$$\leq 2^{2}2!(n-4)!$$

for  $n \ge 13$ , we have

$$|C_{\mathbb{S}_n}(x)| \le 2^2 2! (n-4)!$$

in this case too.

Now suppose that l = 3. If  $\alpha_3 \ge 4$ , then by Lemma 2.9 part 6 and 1 we have

$$|C_{\mathbb{S}_n}(x)|$$
  
 $\leq \alpha_1!(2\alpha_2)!3^22(3\alpha_3-6)!\cdots(n\alpha_n)!$ 

and so by Lemma 2.11 we have

$$|C_{\mathbb{S}_n}(x)|$$
  

$$\leq 3^2 \cdot 2! (\alpha_1 + 2\alpha_2 + 3\alpha_3 - 6 + \dots + n\alpha_n)!$$
  

$$= 3^2 \cdot 2! (n-6)!.$$

If  $\alpha_3 = 2$ , then

$$|C_{\mathbb{S}_n}(x)|$$
  
= 1<sup>\alpha\_1</sup>\alpha\_1!2^{\alpha\_2}\alpha\_2!3^22!\dots n^{\alpha\_n}\alpha\_n!

By Lemma 2.9 part 1 and Lemma 2.11 we conclude that

$$|C_{\mathbb{S}_n}(x)| \le 3^2 2! \alpha_1! (2\alpha_2)! (4\alpha_4)! \cdots (n\alpha_n)! \le 3^2 2! (n-6)!.$$

If  $\alpha_3 = 3$ , then similar argument as case  $\alpha_3 = 2$  shows us that

$$|C_{\mathbb{S}_n}(x)| \le 3^3 \cdot 3! \cdot (n-9)!$$

and since

$$3^{3}3!(n-9)! \le 3^{2}2!(n-6)$$

for  $n \geq 13$ , we have

$$|C_{\mathbb{S}_n}(x)| \le 3^2 2! (n-6)!$$

in this case too and so the proof of (2) is complete.

3) Again assume that  $x \in \mathbb{S}_n$  is a permutation of type

$$1^{\alpha_1} \cdot 2^{\alpha_2} \cdots n^{\alpha_n},$$

where  $\alpha_i \ge 0, 1 \le i \le n$ . By assumption  $\alpha_2 \ge 1$  and  $\alpha_3 \ge 1$ . We have

$$|C_{\mathbb{S}_n}(x)|$$
  
=  $1^{\alpha_1}\alpha_1! 2^{\alpha_2}\alpha_2! 3^{\alpha_3}\alpha_3! \cdots n^{\alpha_n}\alpha_n!.$ 

If  $\alpha_2 \geq 3$ , then by Lemma 2.9 part 4,3 and 1 we have

$$|C_{\mathbb{S}_n}(x)|$$
  
  $\leq \alpha_1! 2(2\alpha_2 - 2)! 3(3\alpha_3 - 3)! \cdots (n\alpha_n)!$ 

and so by Lemma 2.11

$$|C_{\mathbb{S}_n}(x)| \le 2.3.(\alpha_1 + 2\alpha_2 - 2 + 3\alpha_3 - 3 + \dots + n\alpha_n)! = 2.3.(n-5)!.$$

If  $\alpha_2 = 1$ , then we have

$$|C_{\mathbb{S}_n}(x)|$$
  
= 1<sup>\alpha\_1</sup>\alpha\_1!.2.3<sup>\alpha\_3</sup>\alpha\_3!\dots n^\alpha\_n \alpha\_n!.

By Lemma 2.9 part 1 and 3 we have

$$|C_{\mathbb{S}_n}(x)|$$
  
$$\leq \alpha_1! \cdot 2 \cdot 3 \cdot (3\alpha_3 - 3)! \cdots (n\alpha_n)!$$

and so by Lemma 2.11

$$|C_{\mathbb{S}_n}(x)|$$
  

$$\leq 2 \cdot 3 \cdot (\alpha_1 + 3\alpha_3 - 3 + \dots + n\alpha_n)!$$
  

$$= 2 \cdot 3 \cdot (n-5)!.$$

If  $\alpha_2 = 2$ , then similar argument as case  $\alpha_2 = 1$  shows us that

$$\begin{aligned} |C_{\mathbb{S}_n}(x)| \\ &\leq \alpha_1! 2^2 \cdot 2! \cdot 3 \cdot (3\alpha_3 - 3)! \cdots (n\alpha_n)! \\ &\leq 2^2 \cdot 2! \cdot 3(\alpha_1 + 3\alpha_3 - 3 + \dots + n\alpha_n)! \\ &= 2^2 \cdot 2! \cdot 3(n - 7)! \end{aligned}$$

and since

$$2^{2}.2!.3(n-7)!$$
  
 $\leq 2.3(n-5)!$ 

for  $n \geq 13$ , we have

$$|C_{\mathbb{S}_n}(x)| \le 2.3(n-5)!$$

in this case too and the proof of (3) is complete.

**Lemma 2.13.** Let l, k be two natural numbers with l > 1 and 1 < l + k < n - 1, where  $n \ge 13$  is a natural number. Then l(n-l)! > (l+k)(n-l-k)!

*Proof.* We prove Lemma 2.12 by induction on k. If k = 1, then since n - l > 2, l > 1, we have l(n - l) > l + 1 and so

$$l(n-l)! > (l+1)(n-l-1)!.$$

Thus the lemma holds whenever k = 1. Suppose that if

$$1 < l + k < n - 1$$
,  
 $l > 1$ ,

then

$$l(n-l)! > (l+k)(n-l-k)!$$

www.SID.ir

We prove the lemma for k + 1. Suppose that

$$1 < l + k + 1 < n - 1$$
  
 $l > 1$ .

Since

$$(n-l-k) > 2$$
$$l+k > 1,$$

we have

$$(l+k)(n-l-k)$$
  
> 2(l+k) > l+k+1

and so

Thus by induction hypothesis we conclude that

$$l(n-l)!$$
  
>  $(l+k+1)(n-l-k-1)!.$ 

Hence the lemma is proved.

**Lemma 2.14.** Let l, m, n be three natural numbers with  $l > 1, n \ge 13, m \ne n$  and  $l \le m$ . Then  $l(n-l)! \ge m(n-m)!$ 

*Proof.* If l = m, then clearly Lemma holds. If l < m and 1 < m < n - 1, then since l > 1, Lemma 2.14 concluded from Lemma 2.13. But if l < m and m = n - 1, then we have

$$m(n-m)!$$
  
=  $(n-1)1!$   
=  $n-1$ .

We have  $(n-1) < (n-2)^2$  for  $n \ge 13$  and since 1 < n-2 < n-1 by above argument for all  $1 < l \le n-2$  we have

$$l(n-l)! \ge (n-2)2!.$$

Hence l(n-l)! > n-1, also if l = n-1, clearly

$$l(n-l)! \ge n-1.$$

So the proof is complete.

www.SID.ir

$$(l+k)(n-l-k)$$
  
> 2(l+k) > l+k+1  
 $(l+k)(n-l-k)!$ 

$$> (l+k+1)(n-l-k-1)!.$$

**Lemma 2.15.** If  $x \in \mathbb{S}_n$  and  $|x^{\mathbb{S}_n}| \leq n(n-1)(n-2)$ , where  $x^{\mathbb{S}_n}$  is the conjugacy class of  $\mathbb{S}_n$ ,  $n \geq 13$  containing x. Then x = 1, x is a 2-cycle or x is a 3-cycle and  $|x^{\mathbb{S}_n}| = 1$ ,  $|x^{\mathbb{S}_n}| = \frac{n(n-1)}{2}$  or  $|x^{\mathbb{S}_n}| = \frac{n(n-1)(n-2)}{3}$ .

*Proof.* Suppose that  $|x^{\mathbb{S}_n}| \leq n(n-1)(n-2)$ . Then

$$|C_{\mathbb{S}_n}(x)|$$
  
 $\geq \frac{n!}{n(n-1)(n-2)} = (n-3)!.$ 

If there exists a *m*-cycle,  $m \ge 4$  in a cycle type of *x*, then by Lemma 2.12 part 1

 $|C_{\mathbb{S}_n}(x)| \le m(n-m)!$ 

and by Lemma 2.14 we conclude that if  $m \neq n$ , then

$$m(n-m)! \le 4(n-4)!.$$

But if m = n, then m(n - m)! = n. It is easy to know that

$$n < 4(n-4)!$$

for  $n \ge 13$ . Therefore if there exists a *m*-cycle,  $m \ge 4$  in a cycle type of *x*, then

$$|C_{\mathbb{S}_n}(x)| \le 4(n-4)!.$$

But we have  $|C_{\mathbb{S}_n}(x)| \ge (n-3)!$  and so

$$(n-3)! \le 4(n-4)!,$$

which is a contradiction, because  $n \ge 13$ . Thus there is no *m*-cycle,  $m \ge 4$  in a cycle type of *x*. If there exist two 2-cycles or two 3-cycles in a cycle type of *x*, then by Lemma 2.12 part 2 we conclude that

$$|C_{\mathbb{S}_n}(x)| \le 2^2 2! (n-4)!$$

or

$$|C_{\mathbb{S}_n}(x)| \le 3^2 2! (n-6)!$$

respectively and so

$$(n-3)! \le 2^2 2! (n-4)!$$

or

$$(n-3)! \le 3^2 2! (n-6)!,$$

which is a contradiction, because  $n \ge 13$ . Also if there exists a 3-cycle and a 2-cycle in a cycle type of x, then by Lemma 2.12 part 3 we conclude that

$$|C_{\mathbb{S}_n}(x)| \le 2.3.(n-5)!$$

and so

$$(n-3)! \le 2.3.(n-5)!,$$

which is a contradiction with  $n \ge 13$ . Thus x = 1 or x is a 2-cycle or x is a 3-cycle. Hence  $|x^{\mathbb{S}_n}| = 1$  or  $|x^{\mathbb{S}_n}| = \frac{n(n-1)}{2}$  or  $x^{\mathbb{S}_n} = \frac{n(n-1)(n-2)}{3}$ .

**Lemma 2.16.** Let x be an element of  $\mathbb{S}_n$ ,  $n \ge 13$ . If  $|C_{\mathbb{S}_n}(x)| = 3(n-3)!$ , then x is a 3-cycle.

*Proof.* If  $|C_{\mathbb{S}_n}(x)| = 3(n-3)!$ , then

$$|C_{\mathbb{S}_n}(x)| \ge (n-3)!$$

and so by Lemma 2.15 we conclude that x = 1 or x is a 2-cycle or x is a 3-cycle. But if x = 1 or x is a 2-cycle, then clearly

$$|C_{\mathbb{S}_n}(x)| \neq 3(n-3)!.$$

 $(n! \neq 3(n-3)!$  and  $2(n-2)! \neq 3(n-3)!)$  and so x is a 3-cycle.

# 3. Main result

In this section we will prove our main result.

**Theorem 3.1.** Let G be a finite group with  $\nabla(G) \cong \nabla(\mathbb{S}_n)$ , where  $\mathbb{S}_n$  is the symmetric group of degree n and  $n \ge 3$ , then  $G \cong \mathbb{S}_n$ .

*Proof.* By Lemma 2.1, we have  $|G| = |\mathbb{S}_n|$ . Since  $\nabla(G) \cong \nabla(\mathbb{S}_n)$ ,

$$|G - Z(G)|$$
  
=  $|\mathbb{S}_n - Z(\mathbb{S}_n)| = |\mathbb{S}_n| - 1$ 

and so |Z(G)| = 1.

By Lemmas 2.6 and 2.7 we may assume that  $n \ge 16$ . Without loss of generality we can assume that  $\varphi : \mathbb{S}_n \to G$  and  $\varphi(1) = 1$ , where  $\varphi$  is an isomorphism from  $\nabla(\mathbb{S}_n)$  to  $\nabla(G)$ .

Now we prove the theorem by induction on n, where  $n \ge 16$ . If n = 16, then theorem holds by Lemma 2.7. Suppose the theorem is true for all m < n and assume that  $n \ge 16$ . We will prove that the result is valid for  $S_n$ .

Set

$$A = \{ \alpha \in \mathbb{S}_n | (i)\alpha = i, i = 4, 5, \dots, n \}.$$

Clearly

 $A \leq \mathbb{S}_n,$  $A \cong \mathbb{S}_3.$ 

www.SID.ir

M. R. Darafsheh and P. Yousefzadeh

By Lemma 2.2 we have

$$\nabla(C_{\mathbb{S}_n}(A)) \cong \nabla(C_G(\varphi(A)))$$

and since  $C_{\mathbb{S}_n}(A) \cong \mathbb{S}_{n-3}$ , we have

$$\nabla(\mathbb{S}_{n-3}) \cong \nabla(C_G(\varphi(A))).$$

Thus by induction hypothesis  $C_G(\varphi(A)) \cong \mathbb{S}_{n-3}$ . Therefore G has a subgroup isomorphic to  $\mathbb{S}_{n-3}$  i.e.  $C_G(\varphi(A))$ .

Let  $H = C_G(\varphi(A))$ . Now we assume that N is an arbitrary minimal normal subgroup of G. We will prove that N is a simple group and that

$$\mathbb{A}_{n-3} \hookrightarrow N \cap P$$

for all subgroups P of G isomorphic to  $\mathbb{S}_{n-3}$ . In particular N contains all even permutations of P, for all

$$P \le G,$$
$$P \cong \mathbb{S}_{n-3}.$$

Let P be an arbitrary subgroup of G isomorphic to  $\mathbb{S}_{n-3}$ . We have  $N \cap P \leq P$ . We assert that  $N \cap P \neq 1$ . If  $N \cap P = 1$ , then we have

$$|NP| = |N||P|||G| = n!.$$

Thus

$$|N|.(n-3)!|n!,$$

since |P| = (n-3)!. This implies that |N||n(n-1)(n-2). Moreover N is a union of conjugacy classes of G and the size of conjugacy class of G containing x is equal to the size of conjugacy class of  $\mathbb{S}_n$ containing  $\varphi^{-1}(x)$  for all  $x \in G - \{1\}$ .

By Lemma 2.15 we see that all conjugacy class sizes less than n(n-1)(n-2) in  $\mathbb{S}_n$ ,  $n \ge 16$  are 1,  $\frac{n(n-1)}{2}$  and  $\frac{n(n-1)(n-2)}{3}$ .

Let y be an arbitrary element of  $N - \{1\}$ . Thus the size of the conjugacy class of G containing y and so the size of conjugacy class of  $\mathbb{S}_n$  containing  $\varphi^{-1}(y)$  is equal to  $\frac{n(n-1)}{2}$  or  $\frac{n(n-1)(n-2)}{3}$ . Also by Lemma 2.15  $\varphi^{-1}(y)$  is a 2-cycle or  $\varphi^{-1}(y)$  is a 3-cycle.

In any case there exists a subgroup of  $\mathbb{S}_n$ , say E isomorphic to  $\mathbb{S}_3$  such that  $\varphi^{-1}(y) \in C_{\mathbb{S}_n}(E)$  and

$$C_{\mathbb{S}_n}(E) \cong \mathbb{S}_{n-3}.$$

So  $y \in C_G(\varphi(E))$ , also we know that  $y \in N - \{1\}$ . Therefore

$$y \in N \cap C_G(\varphi(E))$$

and

$$N \cap C_G(\varphi(E)) \neq 1.$$

By Lemma 2.2

$$\nabla(\mathbb{S}_{n-3}) \cong \nabla(C_{\mathbb{S}_n}(E))$$
$$\cong \nabla(C_G(\varphi(E)))$$

and so by induction hypothesis

$$C_G(\varphi(E)) \cong \mathbb{S}_{n-3}$$

Since

$$1 \neq N \cap C_G(\varphi(E))$$
$$\trianglelefteq C_G(\varphi(E)) \cong \mathbb{S}_{n-3},$$

we conclude that

$$\mathbb{A}_{n-3} \hookrightarrow N \cap C_G(\varphi(E)).$$

Set  $R = N \cap C_G(\varphi(E))$ . Therefore

Since  $P \cap N = 1$ ,

$$\subseteq P\cap N=1$$

and so  $P \cap R = 1$ . Thus |PR| = |P||R|. On the other hand |P| = (n-3)! and

$$\frac{(n-3)!}{2} ||R|.$$

 $\operatorname{So}$ 

$$\frac{[(n-3)!]^2}{2} ||P||R| = |PR|.$$

But since  $PR \subseteq G$ , we have

$$|PR| \le |G| = n!.$$

 $\operatorname{So}$ 

$$\frac{[(n-3)!]^2}{2} \le n!,$$

which is a contradiction, since we assumed that  $n \ge 16$ . Hence  $P \cap N \ne 1$  for all subgroup P of G isomorphic to  $\mathbb{S}_{n-3}$ . In particular  $N \cap H \ne 1$ . Also

$$1 \neq N \cap P \trianglelefteq P \cong \mathbb{S}_{n-3}$$

M. R. Darafsheh and P. Yousefzadeh

implies that

$$\mathbb{A}_{n-3} \hookrightarrow N \cap P$$

for all  $P \leq G$ ,  $P \cong \mathbb{S}_{n-3}$ .

Since N is a minimal normal subgroup of G, N is a direct product of isomorphic simple group, say

$$N \cong S_1 \times \cdots \times S_t,$$

where  $S_i$ 's are isomorphic simple groups,  $1 \le i \le t$ . Also since

$$\mathbb{A}_{n-3} \hookrightarrow N \cap H,$$

 $\mathbb{A}_{n-3} \hookrightarrow N$ . Thus by Lemma 2.8 N is a simple group.

Next set

$$B = \{\beta \in \mathbb{S}_n | (i)\beta = i, i = 1, 2, \dots, n-3\}.$$

 $B \leq \mathbb{S}_n,$ 

 $B \cong \mathbb{S}_3$ 

 $\cong \mathbb{S}_n$ 

-3-

Clearly

and

It is easy to see that

$$C_{\mathbb{S}_n}(A) \cap C_{\mathbb{S}_n}(B) \cong \mathbb{S}_{n-6}.$$

(B)

By Lemma 2.2 we have

$$\nabla(\mathbb{S}_{n-6})$$

$$\cong \nabla(C_{\mathbb{S}_n}(A) \cap C_{\mathbb{S}_n}(B))$$

$$= \nabla(C_{\mathbb{S}_n}(A \cup B))$$

$$\cong \nabla(C_G(\varphi(A \cup B)))$$

$$= \nabla(C_G(\varphi(A) \cup \varphi(B)))$$

$$= \nabla(C_G(\varphi(A)) \cap C_G(\varphi(B)))$$

and so by induction hypothesis

$$C_G(\varphi(A)) \cap C_G(\varphi(B)) \cong \mathbb{S}_{n-6}.$$

Similarly  $C_G(\varphi(B)) \cong \mathbb{S}_{n-3}$ . By above argument

$$\mathbb{A}_{n-3} \hookrightarrow N \cap C_G(\varphi(A))$$

and

$$\mathbb{A}_{n-3} \hookrightarrow N \cap C_G(\varphi(B)).$$

Let

$$L \le N \cap C_G(\varphi(A)),$$
$$K \le N \cap C_G(\varphi(B))$$

and  $L \cong K \cong \mathbb{A}_{n-3}$ . We have

$$L \cap K$$

$$\leq N \cap C_G(\varphi(A)) \cap C_G(\varphi(B))$$

$$\leq C_G(\varphi(A)) \cap C_G(\varphi(B))$$

$$\cong \mathbb{S}_{n-6}.$$
im.

Now we will prove the following claim.

Claim:  $L \cap K \neq C_G(\varphi(A)) \cap C_G(\varphi(B))$ 

Suppose by way of contradiction, that

$$L \cap K = C_G(\varphi(A)) \cap C_G(\varphi(B)).$$

Assume that  $a = (1 \ 2 \ 3) \in \mathbb{S}_n$ . Clearly  $a \in C_{\mathbb{S}_n}(B)$ . Since

$$|C_{\mathbb{S}_n}(B) \cap C_{\mathbb{S}_n}(a)|$$
  
=  $|C_{C_{\mathbb{S}_n}(B)}(a)| = 3(n-6)!$ 

we conclude that

$$|C_G(\varphi(B)) \cap C_G(\varphi(a))|$$
  
=  $|C_{C_G(\varphi(B))}(\varphi(a))| = 3(n-6)!.$ 

But

$$C_G(\varphi(B)) \cong \mathbb{S}_{n-3}$$

and by Lemma 2.16 if

$$y \in S_{n-3},$$
  
 $|C_{S_{n-3}}(y)| = 3(n-6)!,$   
 $n \ge 16,$ 

then y is a 3-cycle. Thus  $\varphi(a)$  is a 3-cycle in  $C_G(\varphi(B)) \cong \mathbb{S}_{n-3}$ . Therefore  $\varphi(a)$  is an even permutation in  $C_G(\varphi(B)) \cong \mathbb{S}_{n-3}$  and so

$$\varphi(a) \in K \cong \mathbb{A}_{n-3}$$

(Note that  $K \leq C_G(\varphi(B))$ ). Also we have

$$C_{\mathbb{S}_n}(A) \cap C_{\mathbb{S}_n}(B) \subseteq C_{\mathbb{S}_n}(a),$$

 $\mathbf{SO}$ 

$$L \cap K = C_G(\varphi(A)) \cap C_G(\varphi(B)) \le C_G(\varphi(a)),$$

which implies that

$$C_G(\varphi(A)) \cap C_G(\varphi(B))$$
  
$$\leq C_G(\varphi(a)) \cap K = C_K(\varphi(a))$$

On the other hand  $\langle \varphi(a) \rangle \leq C_K(\varphi(a))$ . Since

$$C_{\mathbb{S}_n}(C_{\mathbb{S}_n}(a)) \cap C_{\mathbb{S}_n}(A)$$
$$\cap C_{\mathbb{S}_n}(B) = 1,$$

we have

$$\begin{split} \langle \varphi(a) \rangle &\cap C_G(\varphi(A)) \cap C_G(\varphi(B)) \\ &\subseteq C_G(C_G(\varphi(a))) \cap C_G(\varphi(A)) \cap C_G(\varphi(B)) = 1 \end{split}$$

and so

$$\langle \varphi(a) \rangle \cap C_G(\varphi(A))$$
  
 $\cap C_G(\varphi(B)) = 1.$ 

Therefore

$$|\langle \varphi(a) \rangle C_G(\varphi(A)) \cap C_G(\varphi(B))|$$
  
=  $|\langle \varphi(a) \rangle || C_G(\varphi(A)) \cap C_G(\varphi(B))| = 3(n-6)!.$ 

Moreover since a commutes with all elements of  $C_{\mathbb{S}_n}(A) \cap C_{\mathbb{S}_n}(B)$ ,  $\varphi(a)$  commutes with all elements of

$$C_G(\varphi(A)) \cap C_G(\varphi(B)).$$

 $\operatorname{So}$ 

$$\langle \varphi(a) \rangle C_G(\varphi(A))$$
  
 $\cap C_G(\varphi(B)) \leq G.$ 

But we have

$$\langle \varphi(a) \rangle \le C_K(\varphi(a)),$$
  
 $C_G(\varphi(A)) \cap C_G(\varphi(B)) \le C_K(\varphi(a))$ 

and thus

$$\langle \varphi(a) \rangle C_G(\varphi(A)) \cap C_G(\varphi(B)) \leq C_K(\varphi(a)).$$

Hence

 $3(n-6)! ||C_K(\varphi(a))|,$ 

where  $K \cong \mathbb{A}_{n-3}$ . But This is impossible, because  $\varphi(a)$  is a 3-cycle in K and so

$$|C_K(\varphi(a))| = |C_{\mathbb{A}_{n-3}}(\varphi(a))|$$
$$= 3 \cdot \frac{(n-6)!}{2}.$$

Hence

$$L \cap K \neq C_G(\varphi(A)) \cap C_G(\varphi(B))$$

and the claim is proved. For the order of N we will prove the followings:

1.  $|N| > \frac{n!}{4}$ 

We know that  $L, K \leq N$  and  $|L| = |K| = \frac{(n-3)!}{2}$ . Also

$$L \cap K \lneq C_G(\varphi(A)) \cap C_G(\varphi(B))$$

and so

$$|L \cap K| \le \frac{|C_G(\varphi(A)) \cap C_G(\varphi(B))|}{2}$$

From  $L, K \leq N$ , we deduce that  $LK \leq N$ . Thus

$$\begin{split} |N| &\geq |LK| \\ &= \frac{|L||K|}{|L \cap k|} \\ &\geq \frac{|L||K|}{\frac{|C_G(\varphi(A)) \cap C_G(\varphi(B))|}{2}} \\ &= \frac{\frac{(n-3)!}{2} \frac{(n-3)!}{2}}{\frac{(n-6)!}{2}}. \end{split}$$

On the other hand

$$\frac{\frac{(n-3)!}{2}\frac{(n-3)!}{2}}{\frac{(n-6)!}{2}} > \frac{n!}{4}$$

for  $n \ge 16$ . Thus  $|N| > \frac{n!}{4}$ .

2. 
$$|N| \neq \frac{n!}{3}$$

We know that

$$C_G(\varphi(A)) \cong C_G(\varphi(B)) \cong \mathbb{S}_{n-3}$$

and

$$N \cap C_G(\varphi(A)) \neq 1$$

and

 $N \cap C_G(\varphi(B)) \neq 1.$ 

If  $C_G(\varphi(A)) \leq N$  and  $C_G(\varphi(B)) \leq N$ , then

$$C_G(\varphi(A))C_G(\varphi(B)) \subseteq N.$$

Thus

$$\begin{split} |N| &\geq |C_G(\varphi(A))C_G(\varphi(B))| \\ &= \frac{|C_G(\varphi(A))||C_G(\varphi(B))|}{|C_G(\varphi(A)) \cap C_G(\varphi(B))|} \\ &= \frac{(n-3)!(n-3)!}{(n-6)!}. \end{split}$$

But

$$\frac{(n-3)!(n-3)!}{(n-6)!} > \frac{n!}{2}$$

for  $n \ge 16$ , which implies that |N| = |G| and since N is an arbitrary minimal normal subgroup of G, we conclude that G is a simple group. By assumption  $\nabla(G) \cong \nabla(\mathbb{S}_n)$  and [6] we have  $G \cong \mathbb{S}_n$ , so  $\mathbb{S}_n$ must be a simple group too, which is a contradiction.

Hence

$$N \cap C_G(\varphi(A)) \neq C_G(\varphi(A))$$

or

$$N \cap C_G(\varphi(B)) \neq C_G(\varphi(B)).$$

Suppose that

$$N \cap C_G(\varphi(A)) \neq C_G(\varphi(A)).$$

We know that

$$1 \neq N \cap C_G(\varphi(A))$$
$$\leq C_G(\varphi(A)) \cong \mathbb{S}_{n-3}.$$

Therefore

$$|N \cap C_G(\varphi(A))| = |\mathbb{A}_{n-3}| = \frac{(n-3)!}{2}$$

and so we have

$$|NC_G(\varphi(A))|$$

$$= \frac{|N||C_G(\varphi(A))|}{|N \cap C_G(\varphi(A))|}$$

$$= \frac{|N|(n-3)!}{\frac{(n-3)!}{2}} = 2|N|.$$

$$A)) \leq G$$
 Thus

Moreover  $N \trianglelefteq G$  implies that  $NC_G(\varphi(A)) \le G$ . Thus

$$|NC_G(\varphi(A))|=2|N|\big||G|=n!.$$

Now if  $|N| = \frac{n!}{3}$ , then we have  $\frac{2n!}{3}|n!$ , a contradiction. This shows that  $|N| \neq \frac{n!}{3}$ .

3.  $|N| = \frac{n!}{2}$ 

From  $|N| > \frac{n!}{4}$  and |N|||G| = n!, we conclude that |N| is equal to one of  $\frac{n!}{3}$ ,  $\frac{n!}{2}$  or n!. By  $2 |N| \neq \frac{n!}{3}$ . If |N| = |G| = n!, then G is a simple group, since N is an arbitrary minimal normal subgroup of G. By assumption  $\nabla(G) \cong \nabla(\mathbb{S}_n)$ . Now since G is a simple group, by [6]  $G \cong \mathbb{S}_n$ . So  $\mathbb{S}_n$  must be a simple group too, a contradiction. Hence  $|N| = \frac{n!}{2}$ .

From  $|N| = \frac{n!}{2}$ , simplicity of N and by corollary 2.4,  $N \cong \mathbb{A}_n$ . We assert that  $C_G(N) = 1$ . Otherwise there is a minimal normal subgroup of G, say M such that  $M \leq C_G(N)$ . We proved that all minimal normal subgroups of G are isomorphic to  $\mathbb{A}_n$ . Thus  $M \cong \mathbb{A}_n$  and since

$$N \cap C_G(N) = Z(N) = 1,$$
  
 $M \cap N = 1.$ 

On the other hand  $MN \leq G$  and so

$$|MN| = |M||N|||G|.$$

It follows that  $\left(\frac{n!}{2}\right)^2 ||G| = n!$ , a contradiction. Hence  $C_G(N) = 1$  and so

$$G \cong \frac{G}{1}$$
$$= \frac{G}{C_G(N)} \hookrightarrow Aut(N)$$

and since for  $n \ge 16$ ,

$$Aut(N) \cong Aut(\mathbb{A}_n) \cong \mathbb{S}_n,$$

we conclude that G is embedded into  $\mathbb{S}_n$ . But  $|G| = |\mathbb{S}_n|$  and so  $G \cong \mathbb{S}_n$ .

## References

- [1] A. Abdollahi, S. Akbari and H. R. Maimani, Non-commting graph of a group, J. Algebra, 298 (2006) 468-492.
- [2] E. Artin, The orders of the linear groups, Comm. Pure Appl. Math., 8 (1955) 355-365.
- [3] E. Artin, The orders of the classical simple groups, Comm. Pure Appl. Math., 8 (1955) 455-472.
- [4] M. R. Darafsheh, Groups with the same non-commuting graph, Discrete Appl. Math., 157 no. 4 (2009) 833-837.
- [5] M. R. Darafsheh and P. Yousefzadeh, A characterization of the group  $\mathbb{A}_{22}$  by non-commuting graph, to appear in Bull. Korean Math. Soc.
- [6] R. Solomon and A. Woldar, All simple groups are charcterized by their non-commuting graphs, preprint, 2012.
- [7] S. H. Alavi and A. Daneshkhah, A new characterization of alternating and symmetric groups, J. Appl. Math. Comput., 17 (2005) 245-258.

#### M. R. Darafsheh

School of Mathematics, Statistics and Computer Science, College of Science, University of Tehran, Tehran, Iran Email: darafsheh@ut.ac.ir

### Pedram Yousefzadeh

Department of Mathematics, K. N. Toosi University of Technology, Tehran, Iran Email: pedram\_yous@yahoo.com

rci