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Abstract. The non-commuting graph ∇(G) of a non-abelian group G is defined as follows: its vertex

set is G− Z(G) and two distinct vertices x and y are joined by an edge if and only if the commutator

of x and y is not the identity. In this paper we prove that if G is a finite group with ∇(G) ∼= ∇(Sn),

then G ∼= Sn, where Sn is the symmetric group of degree n, where n is a natural number.

1. Introduction

Let G be a group. The non-commuting graph ∇(G) of G is defined as follows: the set of vertices

of ∇(G) is G − Z(G), where Z(G) is the center of G and two vertices are connected whenever they

do not commute. Also we define the prime graph Γ(G) of G as follows: the vertices of Γ(G) are the

prime divisors of the order of G and two distinct vertices p and q are joined by an edge and we write

p ∼ q, if there is an element in G of order pq. We denote by πe(G) the set of orders of elements of G.

The connected components of Γ(G) are denoted by πi, i = 1, 2, . . . , t(G), where t(G) is the number of

components. We can express the order of G as a product of some positive integer mi, i = 1, 2, . . . , t(G)

with π(mi) = πi. The integers mis are called the order components of G. In 2006, A. Abdollahi, S.

Akbari and H. R. Maimani put forward a conjecture in [1] as follows.

AAM’s Conjecture: If M is a finite non abelian simple group and G is a group such that∇(G) ∼= ∇(M),

then G ∼= M .

Ron Solomon and Andrew Woldar proved the above conjecture in [6]. In this paper we will prove that

if G is a finite group with ∇(G) ∼= ∇(Sn), then G ∼= Sn, where Sn is the symmetric group of degree
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n. Therefore we extend the AAM’s conjecture to the case, where M is not necessarily a finite simple

group.

2. Preliminaries

The following result was proved in part(1) of Theorem 3.16 of [1].

Lemma 2.1. Let G be a finite group such that ∇(G) ∼= ∇(Sn), n ≥ 3. Then |G| = |Sn|.

Lemma 2.2. Let G and H be two non-abelian groups. If ∇(G) ∼= ∇(H), then

∇(CG(A)) ∼= ∇(CH(ϕ(A)))

for all ∅ 6= A ⊆ G−Z(G), where ϕ is the isomorphism from ∇(G) to ∇(H) and CG(A) is non-abelian.

Proof. It is sufficient to show that ϕ |V (CG(A)): V (CG(A)) −→ V (CH(ϕ(A))) is onto, where ϕ |V (CG(A))

is the restriction of ϕ to V (CG(A)) and

V (CG(A)) = CG(A)− Z(CG(A)),

V (CH(ϕ(A))) = CH(ϕ(A))− Z(CH(ϕ(A))).

Assume d is an element of V (CH(ϕ(A))), then d ∈ H − Z(H) and so there exists an element c of

G− Z(G) such that ϕ(c) = d. From

d = ϕ(c) ∈ CH(ϕ(A)),

it follows that [ϕ(c), ϕ(g)] = 1 for all g ∈ A and since ϕ is an isomorphism from ∇(G) to ∇(H),

[c, g] = 1 for all g ∈ A. Therefore c ∈ CG(A). But d 6∈ Z(CH(ϕ(A))), so for an element x ∈ CH(ϕ(A))

we have [x, d] 6= 1. Hence x is an element of H that does not commute with d ∈ H. This implies that

x ∈ H −Z(H). Thus there exists x′ ∈ G−Z(G), such that ϕ(x′) = x. It is easy to see that [x′, c] 6= 1

and therefore c 6∈ Z(CG(A)). Hence

c ∈ CG(A)− Z(CG(A)) = V (CG(A))

and ϕ(c) = d. �

The following result was proved by E. Artin in [2] and [3] and together with the classification of

finite simple groups can be stated as follows:

Lemma 2.3. Let G and M be finite simple groups, |G| = |M |, then the following holds:

(1) If |G| = |A8| = |L3(4)|, then G ∼= A8 or G ∼= L3(4);

(2) If |G| = |Bn(q)| = |Cn(q)|, where n ≥ 3, and q is odd, then G ∼= Bn(q) or G ∼= Cn(q);

(3) If M is not in the above cases, then G ∼= M .

As an immediate consequence of Lemma 2.3, we get the following corollary.

Corollary 2.4. Let G be a finite simple group with |G| = |An|, where n is a natural number, n ≥ 5,

n 6= 8, then G ∼= An.
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Lemma 2.5. Let G and H be two finite groups with ∇(G) ∼= ∇(H) and |G| = |H|. Then p1p2 · · · pt ∈
πe(G) if and only if p1p2 · · · pt ∈ πe(H), where p,is are distinct prime numbers for i = 1, 2, . . . , t. In

particular, Γ(G) = Γ(H).

Proof. If ϕ is an isomorphism from ∇(G) to ∇(H) and |G| = |H|, then we can easily see that

|Z(CG(x))| = |Z(CH(ϕ(x)))|

for all x ∈ G. If p1p2 · · · pt ∈ πe(G), then there exists an element z ∈ G such that o(z) = p1p2 · · · pt.
Thus

p1p2 · · · pt = |〈z〉|
∣∣|Z(CG(z))|

and so

p1p2 · · · pt
∣∣|Z(CH(ϕ(z)))|.

Hence H has an abelian subgroup of order p1p2 · · · pt, which is a cyclic group. Therefore p1p2 · · · pt ∈
πe(H). By a similar argument we see that if p1p2 · · · pt ∈ πe(H), then p1p2 · · · pt ∈ πe(G). �

Lemma 2.6. Let G be a finite group with ∇(G) ∼= ∇(Sn), where 3 ≤ n ≤ 8 or 11 ≤ n ≤ 14, then

G ∼= Sn.

Proof. Since ∇(G) ∼= ∇(Sn), by Lemma 2.1, |G| = |Sn|. Also by Lemma 2.5 Γ(G) = Γ(Sn), where Γ

denotes the prime graph. Thus the order components of G and Sn are the same. In [7] it is proved that

Sp and Sp+1 are characterizable by their order components, where p ≥ 3 is a prime number. Hence

Sn, where 3 ≤ n ≤ 8 or 11 ≤ n ≤ 14 is characterizable by their order components and so G ∼= Sn,

where 3 ≤ n ≤ 8 or 11 ≤ n ≤ 14 �

Lemma 2.7. Let G be a finite group with ∇(G) ∼= ∇(Sn), n = 9, 10, 15, 16, then G ∼= Sn

Proof. We give the proof in the case n = 9, the proof in other cases is similar. Set

T = {α ∈ S9|(i)α = i, i = 4, 5, . . . , 9}.

Obviously

T ≤ S9,

T ∼= S3

and CS9(T − {1}) ∼= S6. By Lemma 2.2 we have

∇(CS9(T − {1})) ∼= ∇(CG(ϕ(T − {1}))),

where ϕ is an isomorphism from ∇(S9) to ∇(G). Thus by Lemma 2.6 CG(ϕ(T − {1})) ∼= S6.

Let N be a minimal normal subgroup of G. If

N ∩ CG(ϕ(T − {1})) = 1,
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then since

|NCG(ϕ(T − {1}))|
∣∣|G| = 9!

and

|CG(ϕ(T − {1}))| = 6!,

we have |N |
∣∣9·8·7. We know that N is a union of conjugacy classes of G and the size of conjugacy class

of G containing x is equal to the size of conjugacy class of S9 containing ϕ−1(x) for all x ∈ G− {1}.
We can see that all conjugacy class sizes in S9 less than 9 · 8 · 7 are 1, 9·8

2 , 9·8·7
3 and 9·8·7·6

8 .

Let y be an arbitrary element in N − {1}. Thus the size of conjugacy class of y in G and so the size

of conjugacy class of ϕ−1(y) in S9 is equal to 9·8
2 , 9·8·7

3 or 9·8·7·6
8 .

Therefore we have one of the possibilities: ϕ−1(y) is a 2-cycle, ϕ−1(y) is a 3-cycle or ϕ−1(y) is a

permutation of type 22.

In any case there exists a subgroup of S9, say K isomorphic to S3 such that

ϕ−1(y) ∈ CS9(K − {1})

and

CS9(K − {1}) ∼= S6.

Hence

y ∈ N ∩ CG(ϕ(K − {1})).

By Lemma 2.6 CG(ϕ(K − {1})) ∼= S6 and since

N ∩ CG(ϕ(K − {1})) 6= 1,

A6 is embedded in N .

If

N ∩ CG(ϕ(T − {1})) 6= 1,

then since CG(ϕ(T − {1}) ∼= S6 and

N ∩ CG(ϕ(T − {1}))E CG(ϕ(T − {1})),

we conclude that A6 is embedded in N in this case too.

Thus 23 · 32 · 5
∣∣|N |. We know that N is a direct product of isomorphic simple groups. But 5

∣∣|N | and

52 - |N |, hence N is a simple group.

Moreover 5 � 7 in Γ(S9) and since Γ(G) = Γ(S9) by Lemma 2.5 ,5 6∼ 7 in Γ(G) too. By Frattini’s

argument NG(N5)N = G, where N5 is a Sylow 5-subgroup of N and since 7
∣∣|G|, 7

∣∣|NG(N5)| or 7
∣∣|N |.

If 7
∣∣|NG(N5)|, then there exists an element z of order 7 in NG(N5) and so 〈z〉N5 is a subgroup of

NG(N5) of order 5.7. Hence 〈z〉N5 is a cyclic group. It means that 5 ∼ 7 in Γ(G), which is a

contradiction. Thus 7
∣∣|N |.

Now we assert that CG(N) = 1. Otherwise there is a minimal normal subgroup T of G such that
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T ≤ CG(N). By the same argument as above we see that 23 ·32 ·5·7
∣∣|T |. Therefore 23 ·32 ·5·7

∣∣|CG(N)|.
Hence 5

∣∣|CG(N)| and so there is an element a ∈ CG(N) such that o(a) = 5 and since 7
∣∣|N |, there is

an element of order 7, say b in N . o(ab) = 5 · 7, because ab = ba. But 5 � 7 in Γ(G) and this is a

contradiction. Thus CG(N) = 1.

It implies that

G ∼=
G

1
=

G

CG(N)
↪→ Aut(N).

Therefore

9! = |G|
∣∣|Aut(N)|.

So we proved that N is a simple group with

23 · 32 · 5 · 7
∣∣|N |,

9! = 27 · 34 · 5 · 7
∣∣|Aut(N)|

and |N |
∣∣27 · 34 · 5 · 7. By table 1 of [5] ,we conclude that N ∼= A9. But

G ↪→ Aut(N),

|G| = |S9|

and

Aut(N) ∼= Aut(A9)

∼= S9.

Hence G ∼= S9. �

Lemma 2.8. Let T be a finite group and T ∼= S1 × S2 × · · · × St, where Sis are isomorphic simple

groups, 1 ≤ i ≤ t. Let T contain a copy of the alternating group An−3, n ≥ 16 and |T |
∣∣n!. Then T is

a simple group.

Proof. Without loss of generality we may assume that

T = S1 × S2 × · · · × St.

Suppose that π1 : S1 × S2 × · · · × St → S1 × 1× · · · × 1 is defined by

π1(s1, s2, . . . , st) = (s1, 1, . . . , 1)

and K is a subgroup of T isomorphic to An−3. Set

S1 = S1 × 1× · · · × 1

and

S2 × · · · × St = 1× S2 × · · · × St.

Now we consider the following three cases.

Case 1) K ∩ S1 = K ∩ S2 × · · · × St = 1.
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In this case φ : K → π1(K) defined by φ(k) = π1(k) for all k ∈ K is an isomorphism from K onto

π1(K). This means that K ∼= π1(K). Thus we have

An−3
∼= K ∼= π1(K) ≤ S1

∼= S1

and so

(n− 3)!

2
= |An−3|

∣∣|S1|.

But Sis are isomorphic simple groups, 1 ≤ i ≤ t and thus

(n− 3)!

2
=|An−3|

∣∣|Si|,
1 ≤ i ≤ t.

Therefore [
(n− 3)!

2

]t∣∣|T |
and since |T |

∣∣n!, we obtain
[

(n−3)!
2

]t∣∣n!. But[
(n− 3)!

2

]2

- n!

for n ≥ 16 and so t = 1 and T is a simple group.

Case 2) K ∩ S1 6= 1

Since S1 E T , we have

1 6= K ∩ S1 EK ∼= An−3,

which implies that K ∩ S1 = K and so

An−3
∼= K ≤ S1

∼= S1.

Now similar argument as in Case (1) shows that T is a simple group .

Case 3) K ∩ S2 × · · · × St 6= 1

Since

S2 × · · · × St E T,

we have

1 6= K ∩ S2 × · · · × St EK ∼= An−3,

which implies that

K ∩ S2 × · · · × St = K
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and so

An−3
∼= K ≤

S2 × · · · × St ∼= S2 × · · · × St.

Thus An−3 is embedded in S2 × · · · × St.
By repeating above argument for

Ti = Si× · · · × St,

2 ≤ i ≤ t,

we conclude that T is a simple group. �

Lemma 2.9. Let a, b be two natural numbers. Then:

1) ab.b! ≤ (ab)! and a0.0! = (a.0)!

2) If a ≥ 4, then ab−1.b! ≤ (a(b− 1))!

3) 3b−1b! ≤ (3b− 3)!

4) If b ≥ 3, then 2b−1b! ≤ (2b− 2)!

5) If b ≥ 5, then 2b−2b! ≤ 2(2b− 4)!

6) If b ≥ 4, then 3b−2b! ≤ 2(3b− 6)!

Proof. 1) We prove Lemma 2.9 part 1 by induction on b. If b = 1, then clearly (1) holds. Suppose

that akk! ≤ (ak)!. We prove that ak+1(k + 1)! ≤ (ak + a)!.

By induction hypothesis

ak+1(k + 1)! ≤ (ak)!a(k + 1).

But clearly

(ak)!a(k + 1) ≤ (ak + a)!

and so

ak+1(k + 1)! ≤ (ak + a)!

and this completes the proof of (1).

2) We prove part 2 by induction on b. If b = 1, then clearly (2) holds. Suppose that

ak−1k! ≤ (a(k − 1))!

for k ≥ 1 and a ≥ 4. We prove that

ak(k + 1)! ≤ (ak)!.

By induction hypothesis,

ak(k + 1)! ≤ (a(k − 1))!a(k + 1).
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But since ak ≥ 4, we have ak − 1 ≥ 3 and so

(ak)(ak − 1) · · · (ak − a+ 1) ≥ ak + a.

Thus (ak)! ≥ (ak − a)!a(k + 1). Hence

ak(k + 1)! ≤ (ak)!

and this completes the proof of (2).

3) We prove this part by induction on b too. If b = 1, then (3) clearly holds. Suppose that

3k−1k! ≤ (3k − 3)!.

We prove that

3k(k + 1)! ≤ (3k)!.

By induction hypothesis we obtain

3k(k + 1)! ≤ (3k − 3)!3(k + 1).

It is easy to know that

k + 1 ≤ k(3k − 1)(3k − 2)

for k ≥ 1. Thus

(3k − 3)!3(k + 1) ≤ (3k)!

and so

3k(k + 1)! ≤ (3k)!

and this completes the proof of (3).

4) We prove part (4) by induction on b. If b = 3, then clearly (4) holds. Suppose that

2k−1k! ≤ (2k − 2)!

for k ≥ 3. We prove that

2k(k + 1)! ≤ (2k)!.

By induction hypothesis we obtain 2k(k+1)! ≤ (2k−2)!2(k+1). It is easy to see that k+1 ≤ k(2k−1)

for k ≥ 3. Thus

(2k − 2)!2(k + 1) ≤ (2k)!

and so

2k(k + 1)! ≤ (2k)!

and this completes the proof of (4).

5) We prove this part by induction on b. If b = 5, then (5) clearly holds. Suppose that

2k−2k! ≤ 2(2k − 4)!
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for k ≥ 5. We prove that

2k−1(k + 1)! ≤ 2(2k − 2)!.

By induction hypothesis

2k−1(k + 1)! ≤ 2(2k − 4)!2(k + 1).

But since

k2 − 3k + 1 ≥ 0

for k ≥ 5, we have

k + 1 ≤ (k − 1)(2k − 3)

and so

2(2k − 4)!2(k + 1) ≤ 2(2k − 2)!.

Hence

2k−1(k + 1)! ≤ 2(2k − 2)!

and this completes the proof of (5).

6) We prove (6) by induction on b too. If b = 4, then (6) clearly holds. Suppose that

3k−2k! ≤ 2(3k − 6)!

for k ≥ 4. We prove that

3k−1(k + 1)! ≤ 2(3k − 3)!.

By induction hypothesis

3k−1(k + 1)! ≤ 2(3k − 6)!3(k + 1).

It is easy to see that

3(k + 1) ≤ (3k − 3)(3k − 4)(3k − 5)

for k ≥ 4 and so

2(3k − 6)!3(k + 1) ≤ 2(3k − 3)!

for k ≥ 4. Hence

3k−1(k + 1)! ≤ 2(3k − 3)!

and this completes the proof of (6). �

Lemma 2.10. Let a ≥ 0, b ≥ 0 be two integers. Then a!b! ≤ (a+ b)!.
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Proof. If a ≥ 1, b ≥ 1, then since

a+ b > b,

a+ b− 1 > b− 1, . . . ,

a+ 1 > 1,

we have

(a+ b)(a+ b− 1) · · · (a+ 1) > b!

and so

(a+ b)!

= (a+ b)(a+ b− 1) · · · (a+ 1)a! > b!a!.

If a = 0 or b = 0, then clearly a!b! = (a+ b)!. �

Lemma 2.11. Let a1, a2, . . . , am be integers with ai ≥ 0, 1 ≤ i ≤ m. Then a1!a2! · · · am! ≤
(a1 + · · ·+ am)!.

Proof. We prove Lemma by induction on m. If m = 1, then clearly Lemma holds. Assume that

a1!a2! · · · ak!

≤ (a1 + a2 + · · ·+ ak)!.

We prove that

a1!a2! · · · ak!ak+1!

≤ (a1 + a2 + · · ·+ ak + ak+1)!.

By induction hypothesis

a1!a2! · · · ak!ak+1!

≤ (a1 + a2 + · · ·+ ak)!ak+1!.

But by Lemma 2.10 we have

(a1 + · · ·+ ak)!ak+1!

≤ (a1 + a2 + · · ·+ ak + ak+1)!.

Thus

a1!a2! · · · ak+1!

≤ (a1 + a2 + · · ·+ ak+1)!.

�

Lemma 2.12. Let l, m, n be three natural numbers with n ≥ 13. Then the following holds.
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1) If there exists a m-cycle, m ≥ 4 in a cycle type of x ∈ Sn, then |CSn(x)| ≤ m(n−m)!

2) If there exists two l-cycles in a cycle type of x ∈ Sn, where l = 2 or l = 3, then |CSn(x)| ≤
l22!(n− 2l)!

3) If there exist a 2-cycle and a 3-cycle in a cycle type of x ∈ Sn, then |CSn(x)| ≤ 2.3.(n− 5)!.

Proof. 1) Assume that x ∈ Sn is a permutation of type

1α1 · 2α2 · · ·mαm · · ·nαn ,

where αi ≥ 0, 1 ≤ i ≤ n. By assumption αm ≥ 1. Thus

|CSn(x)| =

1α1α1! · · ·mαmαm! · · ·nαnαn!,

where αm ≥ 1. By Lemma 2.9 part 1 and 2 we conclude that

|CSn(x)|

≤ α1!(2α2)! · · ·m(m(αm − 1))! · · · (nαn)!

and so by Lemma 2.11, we have

|CSn(x)|

≤ m(α1 + 2α2 + · · ·+m(αm − 1) + · · ·+ nαn)!

= m(n−m)!

and this completes the proof of (1).

2) Assume that x ∈ Sn is a permutation of type

1α1 · · · 2α2 · · ·nαn

where αi ≥ 0, 1 ≤ i ≤ n. By assumption αl ≥ 2, where l = 2 or l = 3. First suppose that l = 2.

We have

|CSn(x)|

= 1α1α1!2α2α2! · · ·nαnαn!.

If α2 ≥ 5, then by Lemma 2.9 part 5 and 1 we conclude that

|CSn(x)| ≤ α1!23.(2α2 − 4)! · · · (nαn)!

and so by Lemma 2.11 we have

|CSn(x)|

≤ 23(α1 + 2α2 − 4 + · · ·+ nαn)!

= 23(n− 4)! = 222!(n− 4)!.
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If α2 = 2, then

|CSn(x)|

= 1α1α1!22 · 2! · · ·nαnαn!.

By part 1 of Lemma 2.9 and Lemma 2.11 we conclude that

|CSn(x)|

≤ 22.2!α1!(3α3)! · · · (nαn)!

≤ 222!(n− 4)!.

If α2 = 3 or α2 = 4, then similar argument as case α2 = 2 shows us that

|CSn(x)| ≤ 233!(n− 6)!

or

|CSn(x)| ≤ 244!(n− 8)!

respectively and since

233!(n− 6)!

≤ 22.2!(n− 4)!

and

244!(n− 8)!

≤ 222!(n− 4)!

for n ≥ 13, we have

|CSn(x)| ≤ 222!(n− 4)!

in this case too.

Now suppose that l = 3. If α3 ≥ 4, then by Lemma 2.9 part 6 and 1 we have

|CSn(x)|

≤ α1!(2α2)!322(3α3 − 6)! · · · (nαn)!

and so by Lemma 2.11 we have

|CSn(x)|

≤ 32.2!(α1 + 2α2 + 3α3 − 6 + · · ·+ nαn)!

= 322!(n− 6)!.
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If α3 = 2, then

|CSn(x)|

= 1α1α1!2α2α2!322! · · ·nαnαn!.

By Lemma 2.9 part 1 and Lemma 2.11 we conclude that

|CSn(x)|

≤ 322!α1!(2α2)!(4α4)! · · · (nαn)!

≤ 322!(n− 6)!.

If α3 = 3, then similar argument as case α3 = 2 shows us that

|CSn(x)| ≤ 33.3!.(n− 9)!

and since

333!(n− 9)! ≤ 322!(n− 6)!

for n ≥ 13, we have

|CSn(x)| ≤ 322!(n− 6)!

in this case too and so the proof of (2) is complete.

3) Again assume that x ∈ Sn is a permutation of type

1α1 · 2α2 · · ·nαn ,

where αi ≥ 0, 1 ≤ i ≤ n. By assumption α2 ≥ 1 and α3 ≥ 1. We have

|CSn(x)|

= 1α1α1!2α2α2!3α3α3! · · ·nαnαn!.

If α2 ≥ 3, then by Lemma 2.9 part 4,3 and 1 we have

|CSn(x)|

≤ α1!2(2α2 − 2)!3(3α3 − 3)! · · · (nαn)!

and so by Lemma 2.11

|CSn(x)|

≤ 2.3.(α1 + 2α2 − 2 + 3α3 − 3 + · · ·+ nαn)!

= 2.3.(n− 5)!.

If α2 = 1, then we have

|CSn(x)|

= 1α1α1!.2.3α3α3! · · ·nαnαn!.
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By Lemma 2.9 part 1 and 3 we have

|CSn(x)|

≤ α1! · 2 · 3 · (3α3 − 3)! · · · (nαn)!

and so by Lemma 2.11

|CSn(x)|

≤ 2 · 3 · (α1 + 3α3 − 3 + · · ·+ nαn)!

= 2 · 3 · (n− 5)!.

If α2 = 2, then similar argument as case α2 = 1 shows us that

|CSn(x)|

≤ α1!22 · 2! · 3 · (3α3 − 3)! · · · (nαn)!

≤ 22 · 2! · 3(α1 + 3α3 − 3 + · · ·+ nαn)!

= 22 · 2! · 3(n− 7)!

and since

22.2!.3(n− 7)!

≤ 2.3(n− 5)!

for n ≥ 13, we have

|CSn(x)| ≤ 2.3(n− 5)!

in this case too and the proof of (3) is complete. �

Lemma 2.13. Let l, k be two natural numbers with l > 1 and 1 < l + k < n − 1, where n ≥ 13 is a

natural number. Then l(n− l)! > (l + k)(n− l − k)!

Proof. We prove Lemma 2.12 by induction on k. If k = 1, then since n − l > 2, l > 1, we have

l(n− l) > l + 1 and so

l(n− l)! > (l + 1)(n− l − 1)!.

Thus the lemma holds whenever k = 1. Suppose that if

1 < l + k < n− 1,

l > 1,

then

l(n− l)! > (l + k)(n− l − k)!.
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We prove the lemma for k + 1.

Suppose that

1 < l + k + 1 < n− 1,

l > 1.

Since

(n− l − k) > 2,

l + k > 1,

we have

(l + k)(n− l − k)

> 2(l + k) > l + k + 1

and so

(l + k)(n− l − k)!

> (l + k + 1)(n− l − k − 1)!.

Thus by induction hypothesis we conclude that

l(n− l)!

> (l + k + 1)(n− l − k − 1)!.

Hence the lemma is proved. �

Lemma 2.14. Let l, m, n be three natural numbers with l > 1, n ≥ 13, m 6= n and l ≤ m. Then

l(n− l)! ≥ m(n−m)!

Proof. If l = m, then clearly Lemma holds. If l < m and 1 < m < n − 1, then since l > 1, Lemma

2.14 concluded from Lemma 2.13. But if l < m and m = n− 1, then we have

m(n−m)!

= (n− 1)1!

= n− 1.

We have (n − 1) < (n − 2)2 for n ≥ 13 and since 1 < n − 2 < n − 1 by above argument for all

1 < l ≤ n− 2 we have

l(n− l)! ≥ (n− 2)2!.

Hence l(n− l)! > n− 1, also if l = n− 1, clearly

l(n− l)! ≥ n− 1.

So the proof is complete. �
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Lemma 2.15. If x ∈ Sn and |xSn | ≤ n(n − 1)(n − 2), where xSn is the conjugacy class of Sn,

n ≥ 13 containing x. Then x = 1, x is a 2-cycle or x is a 3-cycle and |xSn | = 1, |xSn | = n(n−1)
2 or

|xSn | = n(n−1)(n−2)
3 .

Proof. Suppose that |xSn | ≤ n(n− 1)(n− 2). Then

|CSn(x)|

≥ n!

n(n− 1)(n− 2)
= (n− 3)!.

If there exists a m-cycle, m ≥ 4 in a cycle type of x, then by Lemma 2.12 part 1

|CSn(x)| ≤ m(n−m)!

and by Lemma 2.14 we conclude that if m 6= n, then

m(n−m)! ≤ 4(n− 4)!.

But if m = n, then m(n−m)! = n. It is easy to know that

n < 4(n− 4)!

for n ≥ 13. Therefore if there exists a m-cycle, m ≥ 4 in a cycle type of x, then

|CSn(x)| ≤ 4(n− 4)!.

But we have |CSn(x)| ≥ (n− 3)! and so

(n− 3)! ≤ 4(n− 4)!,

which is a contradiction, because n ≥ 13. Thus there is no m-cycle, m ≥ 4 in a cycle type of x. If

there exist two 2-cycles or two 3-cycles in a cycle type of x, then by Lemma 2.12 part 2 we conclude

that

|CSn(x)| ≤ 222!(n− 4)!

or

|CSn(x)| ≤ 322!(n− 6)!

respectively and so

(n− 3)! ≤ 222!(n− 4)!

or

(n− 3)! ≤ 322!(n− 6)!,

which is a contradiction, because n ≥ 13. Also if there exists a 3-cycle and a 2-cycle in a cycle type

of x, then by Lemma 2.12 part 3 we conclude that

|CSn(x)| ≤ 2.3.(n− 5)!
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and so

(n− 3)! ≤ 2.3.(n− 5)!,

which is a contradiction with n ≥ 13. Thus x = 1 or x is a 2-cycle or x is a 3-cycle. Hence |xSn | = 1

or |xSn | = n(n−1)
2 or xSn = n(n−1)(n−2)

3 . �

Lemma 2.16. Let x be an element of Sn, n ≥ 13. If |CSn(x)| = 3(n− 3)!, then x is a 3-cycle.

Proof. If |CSn(x)| = 3(n− 3)!, then

|CSn(x)| ≥ (n− 3)!

and so by Lemma 2.15 we conclude that x = 1 or x is a 2-cycle or x is a 3-cycle. But if x = 1 or x is

a 2-cycle, then clearly

|CSn(x)| 6= 3(n− 3)!.

(n! 6= 3(n− 3)! and 2(n− 2)! 6= 3(n− 3)!) and so x is a 3-cycle. �

3. Main result

In this section we will prove our main result.

Theorem 3.1. Let G be a finite group with ∇(G) ∼= ∇(Sn), where Sn is the symmetric group of degree

n and n ≥ 3, then G ∼= Sn.

Proof. By Lemma 2.1, we have |G| = |Sn|. Since ∇(G) ∼= ∇(Sn),

|G− Z(G)|

= |Sn − Z(Sn)| = |Sn| − 1

and so |Z(G)| = 1.

By Lemmas 2.6 and 2.7 we may assume that n ≥ 16 . Without loss of generality we can assume that

ϕ : Sn → G and ϕ(1) = 1, where ϕ is an isomorphism from ∇(Sn) to ∇(G).

Now we prove the theorem by induction on n, where n ≥ 16. If n = 16, then theorem holds by Lemma

2.7. Suppose the theorem is true for all m < n and assume that n ≥ 16. We will prove that the result

is valid for Sn.

Set

A = {α ∈ Sn|(i)α = i, i = 4, 5, . . . , n}.

Clearly

A ≤ Sn,

A ∼= S3.
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By Lemma 2.2 we have

∇(CSn(A)) ∼= ∇(CG(ϕ(A)))

and since CSn(A) ∼= Sn−3, we have

∇(Sn−3) ∼= ∇(CG(ϕ(A))).

Thus by induction hypothesis CG(ϕ(A)) ∼= Sn−3. Therefore G has a subgroup isomorphic to Sn−3 i.e.

CG(ϕ(A)).

Let H = CG(ϕ(A)). Now we assume that N is an arbitrary minimal normal subgroup of G. We will

prove that N is a simple group and that

An−3 ↪→ N ∩ P

for all subgroups P of G isomorphic to Sn−3. In particular N contains all even permutations of P , for

all

P ≤ G,

P ∼= Sn−3.

Let P be an arbitrary subgroup of G isomorphic to Sn−3. We have N ∩ P E P . We assert that

N ∩ P 6= 1. If N ∩ P = 1, then we have

|NP | = |N ||P |
∣∣|G| = n!.

Thus

|N |.(n− 3)!
∣∣n!,

since |P | = (n−3)!. This implies that |N |
∣∣n(n−1)(n−2). Moreover N is a union of conjugacy classes

of G and the size of conjugacy class of G containing x is equal to the size of conjugacy class of Sn
containing ϕ−1(x) for all x ∈ G− {1}.
By Lemma 2.15 we see that all conjugacy class sizes less than n(n − 1)(n − 2) in Sn, n ≥ 16 are 1,
n(n−1)

2 and n(n−1)(n−2)
3 .

Let y be an arbitrary element of N − {1}. Thus the size of the conjugacy class of G containing y

and so the size of conjugacy class of Sn containing ϕ−1(y) is equal to n(n−1)
2 or n(n−1)(n−2)

3 . Also by

Lemma 2.15 ϕ−1(y) is a 2-cycle or ϕ−1(y) is a 3-cycle.

In any case there exists a subgroup of Sn, say E isomorphic to S3 such that ϕ−1(y) ∈ CSn(E) and

CSn(E) ∼= Sn−3.

So y ∈ CG(ϕ(E)), also we know that y ∈ N − {1}. Therefore

y ∈ N ∩ CG(ϕ(E))
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and

N ∩ CG(ϕ(E)) 6= 1.

By Lemma 2.2

∇(Sn−3) ∼= ∇(CSn(E))

∼= ∇(CG(ϕ(E))

and so by induction hypothesis

CG(ϕ(E)) ∼= Sn−3.

Since

1 6= N ∩ CG(ϕ(E))

E CG(ϕ(E)) ∼= Sn−3,

we conclude that

An−3 ↪→ N ∩ CG(ϕ(E)).

Set R = N ∩ CG(ϕ(E)). Therefore

(n− 3)!

2

∣∣|R|.
Since P ∩N = 1,

P ∩R

⊆ P ∩N = 1

and so P ∩R = 1. Thus |PR| = |P ||R|. On the other hand |P | = (n− 3)! and

(n− 3)!

2

∣∣|R|.
So

[(n− 3)!]2

2

∣∣|P ||R| = |PR|.
But since PR ⊆ G, we have

|PR| ≤ |G| = n!.

So

[(n− 3)!]2

2
≤ n!,

which is a contradiction, since we assumed that n ≥ 16. Hence P ∩ N 6= 1 for all subgroup P of G

isomorphic to Sn−3. In particular N ∩H 6= 1. Also

1 6= N ∩ P E P ∼= Sn−3
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implies that

An−3 ↪→ N ∩ P

for all P ≤ G, P ∼= Sn−3.

Since N is a minimal normal subgroup of G, N is a direct product of isomorphic simple group, say

N ∼= S1 × · · · × St,

where Si
,s are isomorphic simple groups, 1 ≤ i ≤ t. Also since

An−3 ↪→ N ∩H,

An−3 ↪→ N . Thus by Lemma 2.8 N is a simple group.

Next set

B = {β ∈ Sn|(i)β = i, i = 1, 2, . . . , n− 3}.

Clearly

B ≤ Sn,

B ∼= S3

and

CSn(B) ∼= Sn−3.

It is easy to see that

CSn(A) ∩ CSn(B) ∼= Sn−6.

By Lemma 2.2 we have

∇(Sn−6)

∼= ∇(CSn(A) ∩ CSn(B))

= ∇(CSn(A ∪B))

∼= ∇(CG(ϕ(A ∪B)))

= ∇(CG(ϕ(A) ∪ ϕ(B)))

= ∇(CG(ϕ(A)) ∩ CG(ϕ(B)))

and so by induction hypothesis

CG(ϕ(A)) ∩ CG(ϕ(B)) ∼= Sn−6.

Similarly CG(ϕ(B)) ∼= Sn−3.

By above argument

An−3 ↪→ N ∩ CG(ϕ(A))
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and

An−3 ↪→ N ∩ CG(ϕ(B)).

Let

L ≤ N ∩ CG(ϕ(A)),

K ≤ N ∩ CG(ϕ(B))

and L ∼= K ∼= An−3. We have

L ∩K

≤ N ∩ CG(ϕ(A)) ∩ CG(ϕ(B))

≤ CG(ϕ(A)) ∩ CG(ϕ(B))

∼= Sn−6.

Now we will prove the following claim.

Claim: L ∩K 6= CG(ϕ(A)) ∩ CG(ϕ(B))

Suppose by way of contradiction, that

L ∩K = CG(ϕ(A)) ∩ CG(ϕ(B)).

Assume that a = (1 2 3) ∈ Sn. Clearly a ∈ CSn(B). Since

|CSn(B) ∩ CSn(a)|

= |CCSn (B)(a)| = 3(n− 6)!,

we conclude that

|CG(ϕ(B)) ∩ CG(ϕ(a))|

= |CCG(ϕ(B))(ϕ(a))| = 3(n− 6)!.

But

CG(ϕ(B)) ∼= Sn−3

and by Lemma 2.16 if

y ∈ Sn−3,

|CSn−3(y)| = 3(n− 6)!,

n ≥ 16,
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then y is a 3-cycle. Thus ϕ(a) is a 3-cycle in CG(ϕ(B)) ∼= Sn−3.

Therefore ϕ(a) is an even permutation in CG(ϕ(B)) ∼= Sn−3 and so

ϕ(a) ∈ K ∼= An−3

(Note that K ≤ CG(ϕ(B)) ). Also we have

CSn(A) ∩ CSn(B) ⊆ CSn(a),

so

L ∩K = CG(ϕ(A)) ∩ CG(ϕ(B)) ≤ CG(ϕ(a)),

which implies that

CG(ϕ(A)) ∩ CG(ϕ(B))

≤ CG(ϕ(a)) ∩K = CK(ϕ(a).

On the other hand 〈ϕ(a)〉 ≤ CK(ϕ(a)). Since

CSn(CSn(a)) ∩ CSn(A)

∩ CSn(B) = 1,

we have

〈ϕ(a)〉 ∩ CG(ϕ(A)) ∩ CG(ϕ(B))

⊆ CG(CG(ϕ(a))) ∩ CG(ϕ(A)) ∩ CG(ϕ(B)) = 1

and so

〈ϕ(a)〉 ∩ CG(ϕ(A))

∩ CG(ϕ(B)) = 1.

Therefore

|〈ϕ(a)〉CG(ϕ(A)) ∩ CG(ϕ(B))|

= |〈ϕ(a)〉||CG(ϕ(A)) ∩ CG(ϕ(B))| = 3(n− 6)!.

Moreover since a commutes with all elements of CSn(A) ∩ CSn(B), ϕ(a) commutes with all elements

of

CG(ϕ(A)) ∩ CG(ϕ(B)).

So

〈ϕ(a)〉CG(ϕ(A))

∩ CG(ϕ(B)) ≤ G.
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But we have

〈ϕ(a)〉 ≤ CK(ϕ(a)),

CG(ϕ(A)) ∩ CG(ϕ(B)) ≤ CK(ϕ(a))

and thus

〈ϕ(a)〉CG(ϕ(A)) ∩ CG(ϕ(B)) ≤ CK(ϕ(a)).

Hence

3(n− 6)!
∣∣|CK(ϕ(a))|,

where K ∼= An−3. But This is impossible, because ϕ(a) is a 3-cycle in K and so

|CK(ϕ(a))| = |CAn−3(ϕ(a))|

= 3.
(n− 6)!

2
.

Hence

L ∩K 6= CG(ϕ(A)) ∩ CG(ϕ(B))

and the claim is proved. For the order of N we will prove the followings:

1. |N | > n!
4

We know that L,K ≤ N and |L| = |K| = (n−3)!
2 . Also

L ∩K � CG(ϕ(A)) ∩ CG(ϕ(B))

and so

|L ∩K| ≤ |CG(ϕ(A)) ∩ CG(ϕ(B))|
2

.

From L,K ≤ N , we deduce that LK ≤ N . Thus

|N | ≥ |LK|

=
|L||K|
|L ∩ k|

≥ |L||K|
|CG(ϕ(A))∩CG(ϕ(B))|

2

=
(n−3)!

2
(n−3)!

2
(n−6)!

2

.

On the other hand

(n−3)!
2

(n−3)!
2

(n−6)!
2

>
n!

4
,
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for n ≥ 16. Thus |N | > n!
4 .

2. |N | 6= n!
3

We know that

CG(ϕ(A)) ∼= CG(ϕ(B)) ∼= Sn−3

and

N ∩ CG(ϕ(A)) 6= 1

and

N ∩ CG(ϕ(B)) 6= 1.

If CG(ϕ(A)) ≤ N and CG(ϕ(B)) ≤ N , then

CG(ϕ(A))CG(ϕ(B)) ⊆ N.

Thus

|N | ≥ |CG(ϕ(A))CG(ϕ(B))|

=
|CG(ϕ(A))||CG(ϕ(B))|
|CG(ϕ(A)) ∩ CG(ϕ(B))|

=
(n− 3)!(n− 3)!

(n− 6)!
.

But

(n− 3)!(n− 3)!

(n− 6)!
>
n!

2

for n ≥ 16, which implies that |N | = |G| and since N is an arbitrary minimal normal subgroup of G,

we conclude that G is a simple group. By assumption ∇(G) ∼= ∇(Sn) and [6] we have G ∼= Sn, so Sn
must be a simple group too, which is a contradiction.

Hence

N ∩ CG(ϕ(A)) 6= CG(ϕ(A))

or

N ∩ CG(ϕ(B)) 6= CG(ϕ(B)).

Suppose that

N ∩ CG(ϕ(A)) 6= CG(ϕ(A)).
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We know that

1 6= N ∩ CG(ϕ(A))

E CG(ϕ(A)) ∼= Sn−3.

Therefore

|N ∩ CG(ϕ(A))| = |An−3| =
(n− 3)!

2

and so we have

|NCG(ϕ(A))|

=
|N ||CG(ϕ(A))|
|N ∩ CG(ϕ(A))|

=
|N |(n− 3)!

(n−3)!
2

= 2|N |.

Moreover N EG implies that NCG(ϕ(A)) ≤ G. Thus

|NCG(ϕ(A))| = 2|N |
∣∣|G| = n!.

Now if |N | = n!
3 , then we have 2n!

3

∣∣n!, a contradiction. This shows that |N | 6= n!
3 .

3. |N | = n!
2

From |N | > n!
4 and |N |

∣∣|G| = n!, we conclude that |N | is equal to one of n!
3 , n!

2 or n!. By 2 |N | 6= n!
3 .

If |N | = |G| = n!, then G is a simple group, since N is an arbitrary minimal normal subgroup of G.

By assumption ∇(G) ∼= ∇(Sn). Now since G is a simple group, by [6] G ∼= Sn. So Sn must be a simple

group too, a contradiction. Hence |N | = n!
2 .

From |N | = n!
2 , simplicity of N and by corollary 2.4, N ∼= An. We assert that CG(N) = 1. Otherwise

there is a minimal normal subgroup of G, say M such that M ≤ CG(N). We proved that all minimal

normal subgroups of G are isomorphic to An. Thus M ∼= An and since

N ∩ CG(N) = Z(N) = 1,

M ∩N = 1.

On the other hand MN ≤ G and so

|MN | = |M ||N |
∣∣|G|.

It follows that (n!
2 )2
∣∣|G| = n!, a contradiction. Hence CG(N) = 1 and so

G ∼=
G

1

=
G

CG(N)
↪→ Aut(N)
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and since for n ≥ 16,

Aut(N) ∼= Aut(An) ∼= Sn,

we conclude that G is embedded into Sn. But |G| = |Sn| and so G ∼= Sn.

�
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