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ABSTRACT. The non-commuting graph V(G) of a non-abelian group G is defined as follows: its vertex
set is G — Z(@) and two distinct vertices z and y are joined by an edge if and only if the commutator
of x and y is not the identity. In this paper we prove thatif G is a finite group with V(G) = V(S,),

then G = S,,, where S,, is the symmetric group of degree n, where n is a natural number.

1. Introduction

Let G be a group. The non-commuting graph V(G) of G is defined as follows: the set of vertices
of V(G) is G — Z(G), where Z((G) is the center of G and two vertices are connected whenever they
do not commute. Also we define the prime graph I'(G) of G as follows: the vertices of I'(G) are the
prime divisors of the order of G and two distinct vertices p and ¢ are joined by an edge and we write
p ~ q, if there is an element in G of order pg. We denote by 7.(G) the set of orders of elements of G.
The connected components of I'(G) are denoted by m;, i = 1,2,...,t(G), where t(G) is the number of
components. We can express the order of G as a product of some positive integer m;, i = 1,2,... t(G)
with w(m;) = m;. The integers m;s are called the order components of G. In 2006, A. Abdollahi, S.
Akbari and H. R. Maimani put forward a conjecture in [1] as follows.

AAM’s Conjecture: If M is a finite non abelian simple group and G is a group such that V(G) = V(M),
then G & M.
Ron Solomon and Andrew Woldar proved the above conjecture in [6]. In this paper we will prove that

if G is a finite group with V(G) = V(S,), then G = S,,, where S,, is the symmetric group of degree
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n. Therefore we extend the AAM’s conjecture to the case, where M is not necessarily a finite simple

group.

2. Preliminaries

The following result was proved in part(1) of Theorem 3.16 of [1].
Lemma 2.1. Let G be a finite group such that V(G) = V(S,), n > 3. Then |G| = |S,]|.
Lemma 2.2. Let G and H be two non-abelian groups. If V(G) = V(H), then
V(Ca(A)) = V(Cr(e(A)))
forall@ # A C G—Z(QG), where ¢ is the isomorphism from V(G) to V(H) and Cg(A) is non-abelian.

Proof. 1t is sufficient to show that ¢ [y (¢ a)): V(Ca(A)) — V(Cul(p(A))) is onto, where ¢ |y, (a))
is the restriction of ¢ to V(Cg(A)) and

(Ca(A)) =Cc(A) — Z(Ca(A)),
(Cr(p(A)) = Cr(p(A)) —Z(Cu(p(A))).

Assume d is an element of V(Cg(¢(A))), then d € H — Z(H) and so there exists an element ¢ of
G — Z(G) such that ¢(c) = d. From

V
Vv

d=(c) e Cu(p(A)),

it follows that [p(c),¢(g)] = 1 for all g € A and since ¢ is an isomorphism from V(G) to V(H),
[c,g] =1 for all g € A. Therefore c € Ca(A). But d € Z(Cr(p(A))), so for an element z € C(p(A))
we have [z,d] # 1. Hence x is an element of H that does not commute with d € H. This implies that
x € H—Z(H). Thus there exists 2/ € G — Z(G), such that p(z') = z. It is easy to see that [2/,¢] # 1
and therefore ¢ ¢ Z(Cc(A)). Hence

¢ € Ca(A) - Z(Ca(A)) = V(Ca(4))
and ¢(c) = d. O

The following result was proved by E. Artin in [2] and [3] and together with the classification of

finite simple groups can be stated as follows:

Lemma 2.3. Let G and M be finite simple groups, |G| = |M|, then the following holds:
(1) If |G| = |Ag| = |L3(4)|, then G = Ag or G = L3(4);
(2) If |G| = |Bn(q)| = |Crn(q)|, where n > 3, and q is odd, then G = B, (q) or G = Cy(q);
(3) If M is not in the above cases, then G = M.

As an immediate consequence of Lemma 2.3, we get the following corollary.

Corollary 2.4. Let G be a finite simple group with |G| = |A,|, where n is a natural number, n > 5,
n # 8, then G = A,,.
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Lemma 2.5. Let G and H be two finite groups with V(G) = V(H) and |G| = |H|. Then pip2---pt €
7e(G) if and only if p1pa---pr € w(H), where p;s are distinct prime numbers for i = 1,2,...,t. In
particular, T'(G) =T'(H).

Proof. If ¢ is an isomorphism from V(G) to V(H) and |G| = |H]|, then we can easily see that

1Z2(Ca(@))| = [2(Cr(p(2)))]

for all z € G. If p1pa---pr € m(G), then there exists an element z € G such that o(z) = pip2- - p;.
Thus

pip2 Pt = \<Z>’HZ(CG(Z)>\

and so

P2 pe|lZ(Crp(2))].

Hence H has an abelian subgroup of order pips - - - pt, which is a cyelic group. Therefore pips - - ps €

me(H). By a similar argument we see that if p1ps - - p; € we(H), then pips - - - pr € 7(G). O

Lemma 2.6. Let G be a finite group with V(G) = V(Sy), where 3 < n < 8 or 11 < n < 14, then
G=S,.

Proof. Since V(G) = V(S,), by Lemma 2.1, |G| = |S,|. Also by Lemma 2.5 I'(G) = I'(S,,), where T
denotes the prime graph. Thus the order components of G and S,, are the same. In [7] it is proved that
S, and Sp41 are characterizable by their order components, where p > 3 is a prime number. Hence
Sy, where 3 < n < 8 or 11 < n < 14 is characterizable by their order components and so G = S,
where 3<n<8orll<n<14 O

Lemma 2.7. Let G be a finite group with V(G) = V(S,), n =9,10,15,16, then G = S,,
Proof. We give the proof in the case n = 9, the proof in other cases is similar. Set
T = {a € So|(i)a =i,i=4,5,...,9}.

Obviously

T < Sy,

T =83
and Cs, (T — {1}) = Sg. By Lemma 2.2 we have

V(Cso (T = {1})) = V(Ca(p(T - {1}))),

where ¢ is an isomorphism from V(Sg) to V(G). Thus by Lemma 2.6 Cq(o(T — {1})) = Se.

Let NV be a minimal normal subgroup of G. If

NNOCa(p(T -{1})) =1,
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then since

INCa(p(T - {1})I|IG] = 9!
and

[Calp(T - {1}))] = 6!,

we have |N]| ’9-8-7. We know that IV is a union of conjugacy classes of GG and the size of conjugacy class

of G containing x is equal to the size of conjugacy class of Sg containing ¢~ !(x) for all x € G — {1}.
98 987 .4 9876
an .-

We can see that all conjugacy class sizes in Sg less than 9-8 -7 are 1

120 3
Let y be an arbitrary element in N — {1}. Thus the size of conjugacy class of y in G and so the size
: —1(, : 98 987 . 9876
of conjugacy class of ™" (y) in Sy is equal to 5*, =5 or =5,

Therefore we have one of the possibilities: ¢~1(y) is a 2-cycle, ¢~ 1(y) is a 3-cycle or ¢~ 1(y) is a
permutation of type 22.

In any case there exists a subgroup of Sg, say K isomorphic to S3 such that
¢ (y) € Csy (K — {13)
and
Cso (K —{1}) = Sg.
Hence

y € NN Calp(K —{1})).

By Lemma 2.6 Cg(p(K — {1})) = Sg and since

NOCa(p(K —{1})) # 1,

Ag is embedded in N.
If

N O Calp(T - {11) # 1,
then since Cq(p(T —={1}) = S and

NN Ca(p(T —{1})) 2 Calp(T - {1})),

we conclude that Ag is embedded in N in this case too.

Thus 23 - 32 5’ |N|. We know that N is a direct product of isomorphic simple groups. But 5’ |N| and
521 |N|, hence N is a simple group.

Moreover 5 « 7 in I'(Sy) and since I'(G) = I'(Sg) by Lemma 2.5 ,5 % 7 in I'(G) too. By Frattini’s
argument Ng(N5)N = G, where Ns is a Sylow 5-subgroup of N and since 7||G|, 7||Ng(N5)| or 7||N].
If 7||Ng(Ns)|, then there exists an element z of order 7 in Ng(Ns) and so (2)Ns is a subgroup of
Ng(Ns) of order 5.7. Hence (z)N5 is a cyclic group. It means that 5 ~ 7 in I'(G), which is a
contradiction. Thus 7‘|N |

Now we assert that Cq(N) = 1. Otherwise there is a minimal normal subgroup T' of G such that
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T < Cg(N). By the same argument as above we see that 23.32.5.7‘ |T|. Therefore 23 ~32-5-7‘ |Ca(N)|.
Hence 5||C(N)| and so there is an element a € C(N) such that o(a) = 5 and since 7||N|, there is
an element of order 7, say b in N. o(ab) = 5 -7, because ab = ba. But 5 = 7 in I'(G) and this is a
contradiction. Thus Cg(N) = 1.

It implies that

12

¢ = _G — Aut(N).

“=1 Ca(N)

Therefore
9! = |G|||Aut(N)].
So we proved that IV is a simple group with
2%.3%.5-7||N|,
9! =273 5. 7||Aut(N)|

and [N||27-3*-5-7. By table 1 of [5] ,we conclude that N = Ag.But

G — Aut(N),
Gl = ISq|
and
Aut(N) =2 Aut(Ag)
= So.
Hence G = Sg. O

Lemma 2.8. Let T be a finite_group and T = S1 x So X -+ X S, where S;s are isomorphic simple
groups, 1 < i <t. LetT contain a copy of the alternating group A,_s3, n > 16 and ]THn!. Then T is

a stmple group.
Proof. Without loss of generality we may assume that
T=251 x8 x--x 5.
Suppose that w1 : S1 X So X -+ x S — 51 x 1 x -+ x 11is defined by
m1(s1,82,...,8) = (s1,1,...,1)
and K is a subgroup of T isomorphic to A, _3. Set
S1=8x1x---x1
and
So X -+ xS =1x8y%---x8,.

Now we consider the following three cases.
Case 1) KNS =KNSyx---x8S=1.
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In this case ¢ : K — 71 (K) defined by ¢(k) = m1(k) for all k € K is an isomorphism from K onto
71(K). This means that K = 71(K). Thus we have

Ap 3= K=m(K)<S =5

and so
(n—3)!
5 = |[An—3][|S1].
But S;s are isomorphic simple groups, 1 < ¢ <t and thus
(n—3)!
5 =|An—s]||Sil,
1< <t
Therefore

2

t
and since |T'||n!, we obtain [@} |n!. But

for n > 16 and so t = 1 and T is a simple group.
Case 2) KNSy #1
Since S; < T, we have
1AKNS <K 2 A, 3,
which implies that K N S; = K and so
A, 3 =2K<S8 =5
Now similar argument as in Case (1) shows that 7" is a simple group .
Case 3) KNSy x -~ x Sy #1
Since
Sy X - x 8 AT,
we have
14KNSy x - xS <K =A,_3,
which implies that

KNSy x--- xS =K
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and so

An—3 =K<

So X xS =8y x - xSy,

Thus A,,_3 is embedded in Sy x --- x S;.

By repeating above argument for

2<i<Ht,
we conclude that T is a simple group. O

Lemma 2.9. Let a, b be two natural numbers. Then:
1) a®.b! < (ab)! and a®.0! = (a.0)!
2) If a > 4, then a®~1.b! < (a(b—1))!
3) 3v=1b! < (3b — 3)!
4) If b >3, then 2°71p! < (2b — 2)!
5) If b > 5, then 2072b! < 2(2b — 4)!
6) If b > 4, then 3*=2b! < 2(3b — 6)!

Proof. 1) We prove Lemma 2.9 part 1 by induction on b. If b = 1, then clearly (1) holds. Suppose
that a*k! < (ak)!. We prove that a**1(k + 1)! < (ak+ a)!.
By induction hypothesis

aF L (B 1) < (ak)la(k + 1).
But clearly
(ak)la(k+1) < (ak + a)!
and so
a" Tk + 1) < (ak + a)!

and this completes the proof of (1).
2) We prove part 2 by induction on b. If b = 1, then clearly (2) holds. Suppose that

a" k! < (a(k —1))!
for £ > 1 and a > 4. We prove that

a® (k4 1)! < (ak)!.
By induction hypothesis,

a*(k +1)! < (a(k — 1)la(k + 1).
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But since ak > 4, we have ak — 1 > 3 and so
(ak)(ak —1)---(ak —a+1) > ak + a.
Thus (ak)! > (ak — a)la(k + 1). Hence
a®(k 4+ 1)! < (ak)!

and this completes the proof of (2).
3) We prove this part by induction on b too. If b = 1, then (3) clearly holds. Suppose that

3F1El < (3K —3).
We prove that
3F(k+1)! < (3k)1.
By induction hypothesis we obtain
3Rk 4+ 1)! < (3k — 3)!13(k + 1).
It is easy to know that
E+1<k(Bk—1)(3k—2)
for £k > 1. Thus
(3k —3)1B(k+1) < (3k)!
and so
3F(k+1)! < (3k)!

and this completes the proof of (3).
4) We prove part (4) by induction on b. If b = 3, then clearly (4) holds. Suppose that

k=1l < (2k — 2)!
for k > 3. We prove that
2 (k + 1)! < (2K).

By induction hypothesis we obtain 2¥(k+1)! < (2k—2)!2(k+1). It is easy to see that k+1 < k(2k—1)
for k > 3. Thus

(2k — 2)12(k + 1) < (2k)!
and so
2k (k4 1)! < (2k)!

and this completes the proof of (4).
5) We prove this part by induction on b. If b = 5, then (5) clearly holds. Suppose that

2k =21 < 2(2k — 4)!
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for k > 5. We prove that

21k + 1) < 2(2k — 2).
By induction hypothesis

2Pk 4+ 1)) < 2(2k — 4)12(k + 1).
But since
k*—3k+1>0
for kK > 5, we have
E+1<(k—-1)(2k-23)
and so
22k — )12(k+ 1) < 2(2k — 2)L.

Hence

28k + 1) < 2(2k = 2)!

and this completes the proof of (5).
6) We prove (6) by induction on b too. If b = 4, then (6) clearly holds. Suppose that

35211 < 2(3k — 6)!
for k > 4. We prove that
3F 1k +1)! < 2(3k — 3)\.
By induction hypothesis
3F Lk +1)! < 2(3k — 6)!13(k + 1).
It is easy to see that
3(k+1) <(3k—3)(3k —4)(3k — 5)
for £k > 4 and so
2(3k —6)13(k+ 1) <2(3k — 3)!
for k > 4. Hence
3Rk +1)! < 2(3k — 3)!
and this completes the proof of (6).

Lemma 2.10. Let a > 0, b > 0 be two integers. Then alb! < (a +b)!.

55
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Proof. If a > 1, b > 1, then since

a+b>0,
a+b—-1>b—-1,...,

a+1>1,
we have
(a+b)(a+b—1)---(a+1)>10!

and so

(a+D)!

=(a+b)(a+b—1)---(a+1)a! > blal
If a =0 or b= 0, then clearly a!b! = (a + b)!. O
Lemma 2.11. Let a1, as, ..., am be integers with a; > 0, 1< i < m. Then atlas! - -an! <
(a1 + - +am).

Proof. We prove Lemma by induction on m. If m = 1;then clearly Lemma holds. Assume that
atlas! - - ag!
< (a4 ag+ =+ ag)!.
We prove that
arlas! - aglagq!
< (ar+az+--+ap + agp1)
By induction hypothesis
arlag! - aglagyq!
< (a1 +az+---+a)lagiq!.
But by Lemma 2.10 we have
(a1 + -+ ag)lagsq!
< (a1 +ag+ -+ ap+ags1)!
Thus

a1!a2! e ak+1!

< (a1 +a2+'-‘+ak+1)!.

Lemma 2.12. Let [, m, n be three natural numbers with n > 13. Then the following holds.
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1) If there exists a m-cycle, m >4 in a cycle type of x € Sy, then |Cs, (z)| < m(n —m)!

2) If there exists two l-cycles in a cycle type of x € Sy, where | = 2 or |l = 3, then |Cs, (z)] <
122!(n — 21)!

3) If there exist a 2-cycle and a 3-cycle in a cycle type of x € Sy, then |Cs, (z)| < 2.3.(n — 5)!.

Proof. 1) Assume that x € S,, is a permutation of type
]_a1 '2012 ...mam ...na"
where a; > 0, 1 <17 < n. By assumption a,,, > 1. Thus

|Cs,, (z)]| =

1%y ! mom™

am! - nrag!,
where a,,, > 1. By Lemma 2.9 part 1 and 2 we conclude that
|Cs,, (2)]
< a!(2a2)! - - m(m(ay, —1)!- - (nam)!
and so by Lemma 2.11, we have
|Cs,, (z)]

<m(ag + 209 + -+ m(ag, — 1) + -+ +nay)!

=m(n —m)!

and this completes the proof of (1).
2) Assume that x € S,, is a permutation of type

191 ...9% ... pan

where a; > 0, 1 <. < n. By assumption a; > 2, where [ = 2 or [ = 3. First suppose that [ = 2.
We have

|Cs, ()]

= 1%"a112%2aqy! - - - n"

ol
If ap > 5, then by Lemma 2.9 part 5 and 1 we conclude that

Cs, (2)] < o1123.(200 — 4)! - - - (nay,)!
and so by Lemma 2.11 we have

|Cs,, ()]
< 23(051—|-2042—4—|—"'+’I’L04n)!
= 23(n — 4)! = 222!(n — 4)!.
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If ao = 2, then

|Cs, (z)]

=1%qq122 21 n% ).
By part 1 of Lemma 2.9 and Lemma 2.11 we conclude that

|Cs,, (2)]

< 22.2la1!(3a3)! - - - (nay,)!

< 222(n — 4)\.
If ag = 3 or g = 4, then similar argument as case as = 2 shows us that
|Cs,, (z)| < 233!(n — 6)!
or
|Cs,, (z)| < 2%4!(n= 8)!
respectively and since
233!(n=6)!
<22.21(n = 4)!
and
2441(n — 8)!
< 2221(n — 4)!
for n > 13, we have
|Cs, (z)| < 222!(n — 4)!

in this case too.

Now suppose that [ = 3. If g > 4, then by Lemma 2.9 part 6 and 1 we have
|Cs,, (2)]
< o1!(200)!3%2(3a3 — 6)! - - - (nay,)!
and so by Lemma 2.11 we have
|Cs,, (z)]

< 32.2!(a1 + 200 +3a3 — 6+ - - - + nay,)!
= 322!(n — 6)\.
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If ag = 2, then
|Cs,, ()]
= 190112920513%2! - - %y,
By Lemma 2.9 part 1 and Lemma 2.11 we conclude that
|Cs,, (z)]
< 322l !(2a2)! (day)! - - - (nay,)!
< 3%2!(n — 6)!.
If a3 = 3, then similar argument as case ag = 2 shows us that
Cs,, (z)] < 33.31.(n —9)!
and since
333!(n — 9)! < 3%2!(n — 6)!
for n > 13, we have
|Cs,, (z)| < 322(n — 6)!

in this case too and so the proof of (2) is complete.

3) Again assume that z € S, is a permutation of type
101,202 .. pan,
where a; > 0, 1 <17 < n. By assumption ag > 1 and ag > 1. We have
ICs,, ()]
= 170112205133 ag! - - - n oy,
If ag > 3, then by Lemma 2.9 part 4,3 and 1 we have
|Cs, (2)]
< 11220 — 2)13(3ag — 3)! - - - (nay,)!
and so by Lemma 2.11
|Cs, (z)]
<23.(a1 +209 —24+3a3 — 3+ -+ nay)!
=23.(n—5).

If ag = 1, then we have

|Cs, ()]

=1%011.2.3%a3! - - n*ay,!.

59
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By Lemma 2.9 part 1 and 3 we have
|Cs,, (2)]
<ap!-2-3-(Bag—3)!--- (nay)!
and so by Lemma 2.11
|Cs,, (2)]
<2-3-(a1+3a3—3+ -+ nay)!
=2-3-(n—5)\
If ap = 2, then similar argument as case ag = 1 shows us that
|Cs,, (2)]
<o!22-21-3- (3az — 3)! - (nag)!
<22.20.3(a; + 303 — 3+ --- + nay,)!

=22.20.3(n—7)!
and since
22.213(n.— 7)!
<2.3(n—5)!

for n > 13, we have
ICs,, (z)| < 2.3(n —5)!
in this case too and the proof of (3) is complete. O

Lemma 2.13. Let I, k be two natural numbers with Il > 1 and 1 <l +k <n—1, where n > 13 is a
natural number. Then l(n—1)! > (14 k)(n — 1 — k)!

Proof. We prove Lemma 2.12 by induction on k. If £k = 1, then since n —1 > 2, [ > 1, we have
I(n—1)>141 and so

In=0D!'>I+1)(n—-1-1).
Thus the lemma holds whenever £ = 1. Suppose that if

1<l4+k<n—1,

[>1,
then

In—1)!>(+k)(n—1—k)
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We prove the lemma for £ + 1.
Suppose that

1<li+k+1<n—1,

[>1
Since
(n—1—k)>2,
I+ k>1,
we have
(l+Ek)(n—-1-k)
>2(l+k)>1+k+1
and so

(l+k)(n—1—Fk)
>(I+k+1)(n—1-k=1).
Thus by induction hypothesis we conclude that
l(n—1)!
>U+k+1D)(n=1—-k—-1)L
Hence the lemma is proved. O

Lemma 2.14. Let [, m, n be three natural numbers with I > 1, n > 13, m # n and Il < m. Then
l(n—1D!'>m(n—m)!

Proof. If [ = m, then clearly Lemma holds. If ] < m and 1 < m < n — 1, then since [ > 1, Lemma

2.14 concluded from Lemma 2.13. But if [ < m and m = n — 1, then we have

m(n —m)!
=(n-—11!
=n-—1.

We have (n — 1) < (n —2)2 for n > 13 and since 1 < n —2 < n — 1 by above argument for all
1 <l<n-—2 we have

In=0D!>(n—2)2.
Hence l(n —1)! >n — 1, also if | = n — 1, clearly
In=0D!'>n—1.

So the proof is complete. O
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Lemma 2.15. If z € S, and |25 < n(n — 1)(n — 2), where 25 is the conjugacy class of Sp,

n > 13 containing x. Then x = 1,  is a 2-cycle or = is a 3-cycle and |25+ = 1, |25 = @ 0

n(n—1)(n—2)
3

r

9| =
Proof. Suppose that |25 < n(n — 1)(n — 2). Then

|Cs, (z)]
n!
>
“nn—1)(n—2)
If there exists a m-cycle, m > 4 in a cycle type of x, then by Lemma 2.12 part 1

= (n—3).

|Cs,, (x)] < m(n —m)!

and by Lemma 2.14 we conclude that if m # n, then
m(n —m)! <4(n —4)L
But if m = n, then m(n — m)! = n. It is easy to know that
n < 4(n —4)!

for n > 13. Therefore if there exists a m-cycle, m > 4/n a cycle type of z, then

|Cs,, (x)| <.4(n —4)!.
But we have |Cs, (z)| > (n — 3)! and so

(n=3)! <4(n—4),

which is a contradiction, because m > 13. Thus there is no m-cycle, m > 4 in a cycle type of z. If
there exist two 2-cycles or two 3=cycles in a cycle type of x, then by Lemma 2.12 part 2 we conclude
that

|Cs,, (z)] < 222!(n — 4)!
or

|Cs,, (z)| < 3%2!(n — 6)!
respectively and so

(n —3)! < 2%22!(n — 4)!
or

(n — 3)! < 3%2!(n — 6)!,

which is a contradiction, because n > 13. Also if there exists a 3-cycle and a 2-cycle in a cycle type

of z, then by Lemma 2.12 part 3 we conclude that

|Cs,, ()] <2.3.(n —5)!
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and so
(n—3)! < 2.3.(n — 5)!,

which is a contradiction with n > 13. Thus 2 = 1 or x is a 2-cycle or z is a 3-cycle. Hence |25 = 1

n(nzfl) S n(n—1)(n—2) M

or |z5| = or x°" = 3 .

Lemma 2.16. Let x be an element of S,,, n > 13. If |Cs, (z)| = 3(n — 3)!, then z is a 3-cycle.
Proof. 1f |Cs, ()| = 3(n — 3)!, then
|Cs,, (2)] = (n = 3)!

and so by Lemma 2.15 we conclude that £ = 1 or x is a 2-cycle or x is a_3-cycle. But if x =1 or z is

a 2-cycle, then clearly
Cs, (z)] # 3(n = 3)!.

(n! # 3(n —3)! and 2(n — 2)! # 3(n — 3)!) and so x is a 3-cycle. O

3. Main result

In this section we will prove our main result.

Theorem 3.1. Let G be a finite group with V(G) = V(S,,), where S,, is the symmetric group of degree
n and n > 3, then G 2 S,,.

Proof. By Lemma 2.1, we have |G| = |S,|. Since V(G) = V(S,),

|G - Z(G)|
= |Sn - Z(Sn)| = |Sn’ -1

and so |Z(G)| = 1.

By Lemmas 2.6 and 2.7 we may assume that n > 16 . Without loss of generality we can assume that
¢ :S, — G and p(1) = 1, where ¢ is an isomorphism from V(S,) to V(G).

Now we prove the theorem by induction on n, where n > 16. If n = 16, then theorem holds by Lemma
2.7. Suppose the theorem is true for all m < n and assume that n > 16. We will prove that the result
is valid for S,,.

Set

Clearly
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By Lemma 2.2 we have
V(Cs, (4)) = V(Ca(p(A)))
and since Cs, (A) = S,,_3, we have
V(Sn-3) = V(Ca(p(A))).

Thus by induction hypothesis Ci(p(A)) = S,,—3. Therefore G has a subgroup isomorphic to S,_3 i.e.

Ca(p(A)).
Let H = Cg(p(A)). Now we assume that N is an arbitrary minimal normal subgroup of G. We will
prove that NV is a simple group and that

A, 3—>NNP

for all subgroups P of GG isomorphic to S, _3. In particular IV contains all even permutations of P, for
all

P <@,
P=S,_s.

Let P be an arbitrary subgroup of G isomorphic to S,_3. We have N N P < P. We assert that
NNP#1 If NN P =1, then we have

WV PI=|N|[P||G] = n.
Thus
|IN|.(n — 3)!’n!,

since |P| = (n—3)!. This implies that |N||n(n—1)(n—2). Moreover N is a union of conjugacy classes
of G and the size of conjugacy class of G containing x is equal to the size of conjugacy class of S,
containing ¢~ !(x) forall x € G — {1}.

By Lemma 2.15 we see that all conjugacy class sizes less than n(n — 1)(n — 2) in S,,, n > 16 are 1,
n(n2—1) and n(n—lﬁ(n—?).

Let y be an arbitrary element of N — {1}. Thus the size of the conjugacy class of G containing y

and so the size of conjugacy class of S,, containing p~!(y) is equal to n(n;l) or n(nflg(nﬁ). Also by
Lemma 2.15 ¢~ 1(y) is a 2-cycle or ¢~ 1(y) is a 3-cycle.
In any case there exists a subgroup of S,, say F isomorphic to Sz such that ¢~!(y) € Cs, (E) and

Cs, (FE) = S,—3.
So y € Cq(p(F)), also we know that y € N — {1}. Therefore

y € NNCa(p(E))
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and

By Lemma 2.2

and so by induction hypothesis

Ca(p(E)) = Sps.

Since

1# NN Ca(p(E))
< Cg(p(E)) = Sp-s,
we conclude that
Ap_3 = NN Ca(o(B)).
Set R=NNCg(p(E)). Therefore

(n;?’)!HR‘-

Since PN N =1,
PNR
CPNN=1
and so PN R = 1. Thus |PR|=|P||R|. On the other hand |P| = (n — 3)! and

(n ; 3)! IR,

So

a2
03 g = P

But since PR C GG, we have
|PR| < |G| =nl.

So
[(n —3)!?

5 <nl,

65

which is a contradiction, since we assumed that n > 16. Hence PN N # 1 for all subgroup P of G

isomorphic to S,_3. In particular N N H # 1. Also

1ANNP<IP=S, 4
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implies that
A, 3> NNP

forall P< G, P2 S,_3.

Since N is a minimal normal subgroup of G, N is a direct product of isomorphic simple group, say
N =85 X x5,
where S;’s are isomorphic simple groups, 1 < i < t. Also since
A, 33—~ NNH,

A, _3 <= N. Thus by Lemma 2.8 N is a simple group.

Next set
B={peS,|(@)p=14i=1,2,....,m— 3}
Clearly
B <S,,
= 93
and
Cs,(B) =S,_3.

It is easy to see that

By Lemma 2.2 we have

and so by induction hypothesis

Similarly Ca(p(B)) = Sp—3.

By above argument

Ap—3 = NN Caq(p(A))
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and
An—3 — NN CG(SO(B))
Let

L < NN Cg(p(A)),
K < NnCq(p(B))

and L =2 K =2 A,,_3. We have

LNK
< NN Cq(p(A) N Cale(B))
< Ca(p(A) N Ca(p(B))

= Sn—ﬁ-

Now we will prove the following claim.

Claim: LN K # Cg(p(A)) N Ca(p(B))

Suppose by way of contradiction, that

M. R. Darafsheh and P. Yousefzadeh

Lo K= Cal(p(A)) NCalp(B)).

Assume that a = (1 2 3) € S,,. Clearly a € Cs,, (B). Since

|Cs,, (B) N Cs,, (a)]
= |Ces, ()(a)| = 3(n — 6)!,

we conclude that

|Ca(p(B)) N Ca(p(a))l

= [Ceg ey (p(a))] = 3(n - 6)!.

But
Ca(p(B)) = Sp3
and by Lemma 2.16 if

y € Sn—37

Cs,,_5 ()| = 3(n — 6),
n > 16,

67
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then y is a 3-cycle. Thus ¢(a) is a 3-cycle in Cg(¢(B)) = Sp—3.
Therefore ¢(a) is an even permutation in Cg(¢(B)) = S,,—3 and so

pla) e K2 A,_3
(Note that K < Cg(p(B)) ). Also we have
Cs,(A) N Cs,(B) € Cs, (a),
SO
LN K =Ca(p(A)) NCalp(B)) < Calp(a)),
which implies that

Ca(p(A)) N Calp(B))
< Cg(p(a)) N K = Cr(p(a).

On the other hand (¢(a)) < Ck(¢(a)). Since

Cs, (Cs, (a)) N Cs, (A)

NCs,(B) =1,
we have
(p(a)) N Calp(A)) N Cale(B))
C Ce(Ca(e(a))) NOa(p(A)) N Calp(B)) =1
and so
(p(a)) N Calp(A))
NCq(p(B)) = 1.
Therefore

[(p(a))Ca(p(A) N Calp(B))]
= [{p(a))|Ca(p(A)) N Calp(B))| = 3(n —6)\.

Moreover since a commutes with all elements of Cs, (4) N Cs, (B), ¢(a) commutes with all elements
of

Ca(p(A4)) N Calp(B)).
So

(p(a))Ca(p(A))
NCalp(B)) < G.
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But we have

(p(a)) < Ck(p(a)),
Ca(p(A)) NCa(p(B)) < Cr(p(a))

and thus

(p(a))Calp(A) N Ca(p(B)) < Ck(p(a)).

Hence
3(n — 6)!|Ck (v(a))],
where K = A, _3. But This is impossible, because ¢(a) is a 3-cycle in K and so
ICr (p(a))] = |Ca,_s(¢(a))]

(n—6)!

=3.
2

Hence

LN K # Ca(p(A) NCale(B))

and the claim is proved. For the order of N we will prove the followings:
!
L [N|> %

We know that L, K < N and |L| = |K| = @ Also
LK S Ca(p(4) NCalp(B))

and so

[Ca(e(4)) N Calp(B)

LNK| <
LnK| < )

From L, K < N, we deducethat LK < N. Thus

IN| > |LK]
_ LK
ILNE|
Z|IK]
- ICG(@(A))QCG(w(B))\

(n—3)! (n—3)!
2 2

(n—6)!

2

On the other hand
(n—3)! (n—3)!

)! |
2 2 n!
(n56)! e

69
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for n > 16. Thus |N| > "Z!.
2. IN| £ %

‘We know that

Ca(p(4)) = Ca(p(B)) = Sp-3

and
NNCea(p(A) #1
and
NN Ca(p(B)) # 1.
If Co(p(A)) < N and Cg(p(B)) < N, then

Ca(p(A))Ca(e(B)) & N.

M. R. Darafsheh and P. Yousefzadeh

Thus
IN| > [Ca(p(4))Cale(B))]
[Calp(A)]|Ca(e(B))|
 [Ca(@A) A Cale(B))
an Bl - 3)
(n—6)!
But
(n—3)!(n—3)! S n!
(n—6)! 2
for n > 16, which implies that |N| = |G| and since N is an arbitrary minimal normal subgroup of G,

we conclude that G is a simple group. By assumption V(G) = V(S,) and [6] we have G = S,,, so S,

must be a simple group too, which is a contradiction.

Hence

NN Cq(p(A)) # Calp(A))

or

NN Ca(p(B)) # Cale(B)),

Suppose that

NNCa(p(A)) # Calp(A)).
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We know that

1# NN Cqlp(4))
g CG((P(A)) = Sn-3-

Therefore
IN N Calp())] = A5l = "2
and so we have
INCa(p(A))|
_ INI[Ca(e(4))]
IN N Calp(A))|
|IN|(n — 3)!
= mr = 2|N|.

2
Moreover N < G implies that NCg(p(A)) < G. Thus

INCa(p(A)| = 2IN[|G] = nl.

Now if |[N| = %!, then we have %m’n!, a contradiction. This shows that |N| # %‘
3. N =4

From |N| > % and IN|||G| = n!, we‘conclude that |N| is equal to one of nnlornl. By 2 [N| # %'
If IN| = |G| = n!, then G is a simple group, since N is an arbitrary minimal normal subgroup of G.
By assumption V(G) = V(S,,). Now sinee G is a simple group, by [6] G = S,,. So S,, must be a simple

sl _ n!
group too, a contradiction. Hence |N| = 7.

From |N| = %’, simplicity of N and by corollary 2.4, N = A,,. We assert that Cg(N) = 1. Otherwise
there is a minimal normal subgroup of G, say M such that M < Cg(N). We proved that all minimal

normal subgroups of G are isomorphic to A,,. Thus M = A,, and since
NNCg(N)=Z(N) =1,
MNN=1.
On the other hand M N < G and so
IMN]| = [M||N|[|G].
It follows that (%')2“G] = n!, a contradiction. Hence Cg(N) =1 and so

.G
G:T
G
— Ty Aut(N
CG(N)<—> ut(N)
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and since for n > 16,
Aut(N) =2 Aut(A,) =S,

we conclude that G is embedded into S,. But |G| =|S,| and so G = S,,.
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