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Abstract. Edge distance-balanced graphs are graphs in which for every edge e = uv the number of

edges closer to vertex u than to vertex v is equal to the number of edges closer to v than to u. In this

paper, we study this property under some graph operations.

1. Introduction

Let a and b be two adjacent vertices of the graph G, and e = ab the edge connecting them. For an

edge e = ab of a graph G, let nG
a (e) be the number of vertices closer to a than to b. In other words,

nG
a (e) = |{u ∈ V (G)|d(u, a) < d(u, b)}|. In addition, let nG

0 (e) be the number of vertices with equal

distances to a and b, i. e., nG
0 (ab) = |{u ∈ V (G)|d(u, a) = d(u, b)}|.

A graph G is said to be distance-balanced, if nG
a (e) = nG

b (e), for each edge e = ab ∈ E(G), see

[1, 5] for details. These graphs were, at least implicitly, first studied by Handa [4] who is considered

distance-balanced partial cubes. The term itself, however, is due to Jerebič et al. [7] who is studied

distance-balanced graphs in the framework of various kinds of graph products. Let G be a graph,

e = uv ∈ E(G), mG
u (e) denotes the number of edges lying closer to the vertex u than the vertex v,

and mG
v (e) is defined analogously. Here is our key definition. We call a graph G to be edge distance-

balanced, if mG
a (e) = mG

b (e) holds for each edge e = ab ∈ E(G). As examples of edge distance-balanced

graphs, we mention the complete graph Kn on n ≥ 2 vertices and the complete bipartite graph Kn,n

on 2n vertices.

Let G and H be two graphs. The corona product GoH is obtained by taking one copy of G

and |V (G)| copies of H; and by joining each vertex of the ith copy of H to the ith vertex of G,
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i = 1, 2, · · · , |V (G)| , see [10, 13]. The Cartesian product G × H of the graphs G and H has the

vertex set V (G×H) = V (G)× V (H) and (a, x)(b, y) is an edge of G×H if a = b and xy ∈ E(H), or

ab ∈ E(G) and x = y.

The cluster G{H} is obtained by taking one copy of G and |V (G)| copies of a rooted graph H, and

by identifying the root of the ith copy of H with the ith vertex of G, i = 1, 2, ..., |V (G)| [13]. The

lexicographic product G = G[H] of graphs G and H with disjoint vertex sets V (G) and V (H) and

edge sets E(G) and E(H) is the graph with vertex set V (G) × V (H) and u = (u1, v1) is adjacent

with v = (u2, v2) whenever (u1 is adjacent to u2) or (u1 = u2 and v1 is adjacent to v2), see [6, p. 22].

Suppose G is a simple connected graph. Following Yan et al. [12], we define the graphs S(G) and

R(G) as follows:

(a) S(G) is the graph obtained by inserting an additional vertex in each edge of G. Equivalently,

each edge of G is replaced by a path of length 2.

(b) R(G) is obtained from G by adding a new vertex corresponding to each edge of G, then joining

each new vertex to the end vertices of the corresponding edge.

A regular graph is a graph where each vertex has the same number of neighbors. A regular graph

with vertices of degree k is called a k−regular graph or regular graph of degree k. A triangle-free

graph is a graph containing no graph cycles of length three. Our other notations are standard and

taken mainly form [2, 8, 9, 11].

2. Main Results

In this section we study the conditions under which the standard graph products produce an edge

distance-balanced graph.

Theorem 2.1. Let G and H be edge and vertex distance-balanced graphs. Then G × H is edge

distance-balanced graphs.

Proof. Consider the following partition of E(G×H):

A = {(a, x)(b, y) ∈ E(G×H)|ab ∈ E(G), x = y}

B = {(a, x)(b, y) ∈ E(G×H)|a = b, xy ∈ E(H)}.

We assume that G and H are edge and vertex distance-balanced graphs, and e ∈ A. Notice that

m
(G×H)
(a,x) (e) = mG

a (ab)|V (H)|+ nG
a (ab)|E(H)|,

m
(G×H)
(b,y) (e) = mG

b (ab)|V (H)|+ nG
b (ab)|E(H)|.

Since G is edge and vertex distance-balanced, thus we have nG
a (ab) = nG

b (ab) and mG
a (ab) = mG

b (ab).

Therefore, in this case we have m
(G×H)
(a,x) (e) = m

(G×H)
(b,y) (e). In a similar way we can see that, for every

edge e of B, we have m
(G×H)
(a,x) (e) = m

(G×H)
(b,y) (e). Then G×H is edge distance-balanced graphs. �

A graph G is called nontrivial if |V (G)| > 1.
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Theorem 2.2. The corona product of two arbitrary, nontrivial and connected graphs is not edge

distance-balanced.

Proof. Let G and H be nontrivial connected graphs. Assume that uv = e ∈ E(GoH) such that

u ∈ V (G) and v ∈ V (Hi), where Hi, 1 ≤ i ≤ |V (G)| is the ith copy of H. Thus,

mGoH
u (e) = (|V (G)| − 1)|E(H)|+ |E(G)|+ |V (G)||V (H)| − 1

+ |{f ∈ E(H)|dH(v, f) > 2}|

and mGoH
v (e) = degH(v). Therefore, mGoH

u (e) 6= mGoH
v (e) and so GoH is not edge distance-balanced.

�

Theorem 2.3. The cluster of two arbitrary, nontrivial and connected graphs is not edge distance-

balanced.

Proof. Let G and H be nontrivial connected graphs. Assume that e = uv ∈ E(G{H}) such that u is

the root of the ith copy of H and u 6= v ∈ V (Hi). Thus,

mG{H}
u (e) = |E(H)|(|V (G)| − 1) + |E(G)|+ mH

u (e)

and m
G{H}
v (e) = mH

v (e). Therefore, m
G{H}
u (e) 6= m

G{H}
v (e) and so G{H} is not edge distance-

balanced. �

Theorem 2.4. Let G and H be connected graphs. Then G[H] is edge distance-balanced if G is

nontrivial, edge and vertex distance-balanced and H is triangle-free and regular.

Proof. Suppose that G is nontrivial, edge and vertex distance-balanced and H is triangle-free and

regular. Consider the following partition of E(G[H]).

A = {(a, x)(b, y) ∈ E(G[H])|ab ∈ E(G)and x, y ∈ V (H)},

B = {(a, x)(b, y) ∈ E(G[H])|a = b ∈ V (G), xy ∈ E(H)}.

Let e = (a, x)(b, y) ∈ A. According to the definition of the lexicographic product, it is clear that

m
G[H]
(a,x)(e)−m

G[H]
(b,y) (e) = (mG

a (ab)−mG
b (ab))|V (H)|2

+ (nG
a (ab)− nG

b (ab))|E(H)|

+ |{f ∈ E(H) | dH(y, f) > 2}|

− |{f ∈ E(H) | dH(x, f) > 2}|.

Since G is edge and vertex distance-balanced, then mG
a (ab) = mG

b (ab) and nG
a (ab) = nG

b (ab)

and since H is triangle-free and regular one can see that |{f ∈ E(H) | dH(y, f) > 2}| = |{f ∈
E(H) | dH(x, f) > 2}|. It follows that m

G[H]
(a,x)(e) = m

G[H]
(b,y) (e). We now assume that e = (a, x)(b, y) ∈ B.

It follows from the edge structure of G[H] that m
G[H]
(a,x)(e) = m

G[H]
(b,y) (e), if H is triangle-free and regular.

Therefore, for each e = (a, x)(b, y) ∈ E(G[H]), we have m
G[H]
(a,x)(e) = m

G[H]
(b,y) (e) and thus G[H] is edge

distance-balanced. �
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Theorem 2.5. Let G be a nontrivial connected graph. Then R(G) is edge distance-balanced if and

only if G is a path with |V (G)| = 2.

Proof. Let G be a path with |V (G)| = 2. Then it is clear that R(G) is edge distance-balanced.

Conversely, we assume that R(G) is an edge distance-balanced graph, where G be a graph with

|V (G)| > 2. Then, there is at least an edge uv = e of G such that u is the end vertex of e with

degG(u) > 1 or v is the end vertex of e with degG(v) > 1. Without loss of generality, we my assume

that u is the end vertex of e with degG(u) > 1. Also, we assume that x is a new vertex corresponding

to edge e of G. Then, m
R(G)
x (xu) = 1 and m

R(G)
u (xu) > 1. Thus m

R(G)
x (xu) 6= m

R(G)
u (xu). Therefore

R(G), |V (G)| > 2, is not an edge distance-balanced graph and hence G is a path with |V (G)| = 2. �

Theorem 2.6. Let G be a nontrivial connected graph with a pendant. Then S(G) is not edge

distance-balanced.

Proof. Suppose x is a pendent vertex and u is the new vertex such that u and x are adjacent in S(G).

Then m
S(G)
x (ux) = 0 and m

S(G)
u (ux) ≥ 1, proving the result. �

Suppose G and H are graphs with disjoint vertex sets. Following Doslic [3], for given vertices

y ∈ V (G) and z ∈ V (H) a splice of G and H by vertices y and z, (G · H)(y; z), is defined by

identifying the vertices y and z in the union of G and H. Similarly, a link of G and H by vertices y

and z is defined as the graph (G ∼ H)(y; z) obtained by joining y and z by an edge in the union of

these graphs.

Theorem 2.7. Suppose G and H are rooted graphs with respect to the rooted vertices of a and b,

respectively. The graph (G ·H)(a; b) is edge distance-balanced if and only if for each e = uv ∈ E(G)

and f = xy ∈ E(H) the following conditions are satisfied:

mG
u (e)−mG

v (e) =

|E(H)| if d(v, a) < d(u, a)

0 if d(v, a) = d(u, a)
,(2.1)

mH
x (f)−mH

y (f) =

|E(G)| if d(y, b) < d(x, b)

0 if d(y, b) = d(x, b)
.(2.2)

Proof. In the graph (G · H)(a; b), we put r = a = b. We partition edges of (G · H)(a; b) into the

following two subsets:

A = {e = uv ∈ E(G.H)|d(v, r) < d(u, r)},

B = {e = uv ∈ E(G.H)|d(v, r) = d(u, r)}.

We first assume that (G ·H)(a; b) is edge distance-balanced. Suppose e = uv is an arbitrary edge

of G. Then e ∈ A or e ∈ B and not both. If e ∈ A then by the hypothesis mG·H
u (e) = mG·H

v (e). On

the other hand by the definition of splice, mG·H
v (e) = mG

v (e) + |E(H)| and mG.H
u (e) = mG

u (e). Thus,

mG
u (e) = mG

v (e) + |E(H)| and so mG
u (e) − mG

v (e) = |E(H)|. Next we assume that e ∈ B. Again

by the hypothesis mG·H
u (e) = mG·H

v (e) and by definition of splice we have, mG·H
v (e) = mG

v (e) and
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mG.H
u (e) = mG

u (e). This implies that mG
u (e) = mG

v (e). Therefore, the equation (1) is satisfied. In a

similar way we can see that, for every edge e of H the equation (2) is satisfied.

Conversely, suppose that Eqs. (1,2) are satisfied and e = uv ∈ A is arbitrary. Then e ∈ E(G)

or e ∈ E(H) and not both. If e ∈ E(G) then mG.H
u (e) = mG

u (e) and mG.H
v (e) = mG

v (e) + |E(H)|.
This implies that mG.H

u (e)−mG.H
v (e) = mG

u (e)− (mG
v (e) + |E(H)|). Since mG

u (e)−mG
v (e) = |E(H)|,

mG.H
u (e)−mG.H

v (e) = 0, as desired. Suppose that e ∈ E(H). Then mG.H
u (e) = mH

u (e) and mG.H
v (e) =

mH
v (e)+ |E(G)|, so mG.H

u (e)−mG.H
v (e) = mH

u (e)−(mH
v (e)+ |E(G)|). But by the hypothesis, mH

u (e)−
mH

v (e) = |E(G)|, so mG.H
u (e) −mG.H

v (e) = 0. We now assume that e ∈ B is arbitrary. If e ∈ E(G)

then by mG.H
u (e) = mG

u (e) and mG.H
v (e) = mG

v (e) we have mG.H
u (e)−mG.H

v (e) = mG
u (e)−mG

v (e) = 0.

If e ∈ E(H) then by mG.H
u (e) = mH

u (e) and mG.H
v (e) = mH

v (e) we have mG.H
u (e) − mG.H

v (e) =

mH
u (e) −mH

v (e) = 0. Therefore, for every edge e = uv ∈ B, mG.H
u (e) = mG.H

v (e) and for every edge

e = uv ∈ E(G ·H), mG.H
u (e) = mG.H

v (e). This completes the proof. �

Corollary 2.8. Suppose G1, G2, . . . , Gn are connected rooted graphs with root vertices r1, . . . , rn,

respectively. Then

(G1 ·G2 · · · · ·Gn)(r1; r2; · · · ; rn)

is edge distance-balanced if and only if for each i, 1 ≤ i ≤ n, and for each e = uv ∈ E(Gi) the following

system of equations are satisfied:

mGi
u (e)−mGi

v (e) =


∑n

j=1,j 6=i |E(Gj)| if d(v, ri) < d(u, ri)

0 if d(v, ri) = d(u, ri)
.

Proof. Induct on n. �

Theorem 2.9. Suppose G and H are rooted graphs with respect to the rooted vertices of a and b,

respectively. The graph (G ∼ H)(a; b) is edge distance-balanced if and only if |E(G)| = |E(H)| and

for each e = uv ∈ E(G) and f = xy ∈ E(H) the following conditions are satisfied:

mG
u (e)−mG

v (e) =

|E(H)|+ 1 if d(v, a) < d(u, a)

0 if d(v, a) = d(u, a)
,

mH
x (f)−mH

y (f) =

|E(G)|+ 1 if d(y, b) < d(x, b)

0 if d(y, b) = d(x, b)
.

Proof. The proof is similar to Theorem 2.7 and so omitted. �

Corollary 2.10. Suppose G1, G2, . . . , Gn are connected rooted graphs with root vertices r1, . . . , rn,

respectively. Then (G1 ∼ G2 ∼ · · · ∼ Gn)(r1; r2; · · · ; rn) is edge distance-balanced if and only if for

each i, 1 ≤ i ≤ n, |E(Gi)| = |E(G1)| and for each e = uv ∈ E(Gi) the following system of equations

are satisfied:

mGi
u (e)−mGi

v (e) =


∑n

j=1,j 6=i |E(Gj)|+
(
n
2

)
if d(v, ri) < d(u, ri)

0 if d(v, ri) = d(u, ri)
.

Proof. Induct on n. �
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