

Transactions on Combinatorics
ISSN (print): 2251-8657, ISSN (on-line): 2251-8665
Vol. 01 No.1 (2012), pp. 1-6.
© 2012 University of Isfahan



### NOTE ON EDGE DISTANCE-BALANCED GRAPHS

M. TAVAKOLI, H. YOUSEFI-AZARI AND A. R. ASHRAFI \*

Communicated by Ivan Gutman

ABSTRACT. Edge distance-balanced graphs are graphs in which for every edge e = uv the number of edges closer to vertex u than to vertex v is equal to the number of edges closer to v than to u. In this paper, we study this property under some graph operations.

## 1. Introduction

Let a and b be two adjacent vertices of the graph G, and e = ab the edge connecting them. For an edge e = ab of a graph G, let  $n_a^G(e)$  be the number of vertices closer to a than to b. In other words,  $n_a^G(e) = |\{u \in V(G) | d(u, a) < d(u, b)\}|$ . In addition, let  $n_0^G(e)$  be the number of vertices with equal distances to a and b, i. e.,  $n_0^G(ab) = |\{u \in V(G) | d(u, a) = d(u, b)\}|$ .

A graph G is said to be distance-balanced, if  $n_a^G(e) = n_b^G(e)$ , for each edge  $e = ab \in E(G)$ , see [1, 5] for details. These graphs were, at least implicitly, first studied by Handa [4] who is considered distance-balanced partial cubes. The term itself, however, is due to Jerebič et al. [7] who is studied distance-balanced graphs in the framework of various kinds of graph products. Let G be a graph,  $e = uv \in E(G), m_u^G(e)$  denotes the number of edges lying closer to the vertex u than the vertex v, and  $m_v^G(e)$  is defined analogously. Here is our key definition. We call a graph G to be edge distancebalanced, if  $m_a^G(e) = m_b^G(e)$  holds for each edge  $e = ab \in E(G)$ . As examples of edge distance-balanced graphs, we mention the complete graph  $K_n$  on  $n \ge 2$  vertices and the complete bipartite graph  $K_{n,n}$ on 2n vertices.

Let G and H be two graphs. The corona product GoH is obtained by taking one copy of G and |V(G)| copies of H; and by joining each vertex of the  $i^{th}$  copy of H to the  $i^{th}$  vertex of G,

MSC(2010): Primary: 05C15; Secondary: 20C20.

Keywords: Edge distance-balanced, vertex distance-balanced, graph operation.

Received: 03 August 2011, Accepted: 17 September 2011.

<sup>\*</sup>Corresponding author.

 $i = 1, 2, \dots, |V(G)|$ , see [10, 13]. The Cartesian product  $G \times H$  of the graphs G and H has the vertex set  $V(G \times H) = V(G) \times V(H)$  and (a, x)(b, y) is an edge of  $G \times H$  if a = b and  $xy \in E(H)$ , or  $ab \in E(G)$  and x = y.

The cluster  $G\{H\}$  is obtained by taking one copy of G and |V(G)| copies of a rooted graph H, and by identifying the root of the  $i^{th}$  copy of H with the  $i^{th}$  vertex of G, i = 1, 2, ..., |V(G)| [13]. The lexicographic product G = G[H] of graphs G and H with disjoint vertex sets V(G) and V(H) and edge sets E(G) and E(H) is the graph with vertex set  $V(G) \times V(H)$  and  $u = (u_1, v_1)$  is adjacent with  $v = (u_2, v_2)$  whenever  $(u_1$  is adjacent to  $u_2)$  or  $(u_1 = u_2$  and  $v_1$  is adjacent to  $v_2)$ , see [6, p. 22]. Suppose G is a simple connected graph. Following Yan et al. [12], we define the graphs S(G) and R(G) as follows:

(a) S(G) is the graph obtained by inserting an additional vertex in each edge of G. Equivalently, each edge of G is replaced by a path of length 2.

(b) R(G) is obtained from G by adding a new vertex corresponding to each edge of G, then joining each new vertex to the end vertices of the corresponding edge.

A regular graph is a graph where each vertex has the same number of neighbors. A regular graph with vertices of degree k is called a k-regular graph or regular graph of degree k. A triangle-free graph is a graph containing no graph cycles of length three. Our other notations are standard and taken mainly form [2, 8, 9, 11].

# 2. Main Results

In this section we study the conditions under which the standard graph products produce an edge distance-balanced graph.

**Theorem 2.1.** Let G and H be edge and vertex distance-balanced graphs. Then  $G \times H$  is edge distance-balanced graphs.

**Proof.** Consider the following partition of  $E(G \times H)$ :

$$\begin{array}{lll} A &=& \{(a,x)(b,y) \in E(G \times H) | ab \in E(G), x = y\} \\ B &=& \{(a,x)(b,y) \in E(G \times H) | a = b, xy \in E(H)\}. \end{array}$$

We assume that G and H are edge and vertex distance-balanced graphs, and  $e \in A$ . Notice that

$$\begin{array}{lcl} m^{(G\times H)}_{(a,x)}(e) & = & m^G_a(ab)|V(H)| + n^G_a(ab)|E(H)|, \\ m^{(G\times H)}_{(b,y)}(e) & = & m^G_b(ab)|V(H)| + n^G_b(ab)|E(H)|. \end{array}$$

Since G is edge and vertex distance-balanced, thus we have  $n_a^G(ab) = n_b^G(ab)$  and  $m_a^G(ab) = m_b^G(ab)$ . Therefore, in this case we have  $m_{(a,x)}^{(G \times H)}(e) = m_{(b,y)}^{(G \times H)}(e)$ . In a similar way we can see that, for every edge e of B, we have  $m_{(a,x)}^{(G \times H)}(e) = m_{(b,y)}^{(G \times H)}(e)$ . Then  $G \times H$  is edge distance-balanced graphs.  $\Box$ 

A graph G is called nontrivial if |V(G)| > 1.

www.SID.ir

**Theorem 2.2.** The corona product of two arbitrary, nontrivial and connected graphs is not edge distance-balanced.

**Proof.** Let G and H be nontrivial connected graphs. Assume that  $uv = e \in E(GoH)$  such that  $u \in V(G)$  and  $v \in V(H_i)$ , where  $H_i$ ,  $1 \le i \le |V(G)|$  is the  $i^{th}$  copy of H. Thus,

$$m_u^{GoH}(e) = (|V(G)| - 1)|E(H)| + |E(G)| + |V(G)||V(H)| - 1$$
$$+ |\{f \in E(H)|d_H(v, f) \ge 2\}|$$

and  $m_v^{GoH}(e) = deg_H(v)$ . Therefore,  $m_u^{GoH}(e) \neq m_v^{GoH}(e)$  and so GoH is not edge distance-balanced.

**Theorem 2.3.** The cluster of two arbitrary, nontrivial and connected graphs is not edge distancebalanced.

**Proof.** Let G and H be nontrivial connected graphs. Assume that  $e = uv \in E(G\{H\})$  such that u is the root of the  $i^{th}$  copy of H and  $u \neq v \in V(H_i)$ . Thus,

$$m_u^{G\{H\}}(e) = |E(H)|(|V(G)| - 1) + |E(G)| + m_u^H(e)$$

and  $m_v^{G\{H\}}(e) = m_v^H(e)$ . Therefore,  $m_u^{G\{H\}}(e) \neq m_v^{G\{H\}}(e)$  and so  $G\{H\}$  is not edge distancebalanced.

**Theorem 2.4.** Let G and H be connected graphs. Then G[H] is edge distance-balanced if G is nontrivial, edge and vertex distance-balanced and H is triangle-free and regular.

**Proof.** Suppose that G is nontrivial, edge and vertex distance-balanced and H is triangle-free and regular. Consider the following partition of E(G[H]).

$$A = \{(a, x)(b, y) \in E(G[H]) | ab \in E(G) and x, y \in V(H) \},\$$
  
$$B = \{(a, x)(b, y) \in E(G[H]) | a = b \in V(G), xy \in E(H) \}.$$

Let  $e = (a, x)(b, y) \in A$ . According to the definition of the lexicographic product, it is clear that

$$\begin{split} m_{(a,x)}^{G[H]}(e) &= (m_a^G(ab) - m_b^G(ab))|V(H)|^2 \\ &+ (n_a^G(ab) - n_b^G(ab))|E(H)| \\ &+ |\{f \in E(H) \mid d_H(y,f) \ge 2\}| \\ &- |\{f \in E(H) \mid d_H(x,f) \ge 2\}|. \end{split}$$

Since G is edge and vertex distance-balanced, then  $m_a^G(ab) = m_b^G(ab)$  and  $n_a^G(ab) = n_b^G(ab)$ and since H is triangle-free and regular one can see that  $|\{f \in E(H) \mid d_H(y, f) \ge 2\}| = |\{f \in E(H) \mid d_H(x, f) \ge 2\}|$ . It follows that  $m_{(a,x)}^{G[H]}(e) = m_{(b,y)}^{G[H]}(e)$ . We now assume that  $e = (a, x)(b, y) \in B$ . It follows from the edge structure of G[H] that  $m_{(a,x)}^{G[H]}(e) = m_{(b,y)}^{G[H]}(e)$ , if H is triangle-free and regular. Therefore, for each  $e = (a, x)(b, y) \in E(G[H])$ , we have  $m_{(a,x)}^{G[H]}(e) = m_{(b,y)}^{G[H]}(e)$  and thus G[H] is edge distance-balanced.

www.SID.ir

**Theorem 2.5.** Let G be a nontrivial connected graph. Then R(G) is edge distance-balanced if and only if G is a path with |V(G)| = 2.

**Proof.** Let G be a path with |V(G)| = 2. Then it is clear that R(G) is edge distance-balanced. Conversely, we assume that R(G) is an edge distance-balanced graph, where G be a graph with |V(G)| > 2. Then, there is at least an edge uv = e of G such that u is the end vertex of e with  $deg_G(u) > 1$  or v is the end vertex of e with  $deg_G(v) > 1$ . Without loss of generality, we my assume that u is the end vertex of e with  $deg_G(u) > 1$ . Also, we assume that x is a new vertex corresponding to edge e of G. Then,  $m_x^{R(G)}(xu) = 1$  and  $m_u^{R(G)}(xu) > 1$ . Thus  $m_x^{R(G)}(xu) \neq m_u^{R(G)}(xu)$ . Therefore R(G), |V(G)| > 2, is not an edge distance-balanced graph and hence G is a path with |V(G)| = 2.  $\Box$ 

**Theorem 2.6.** Let G be a nontrivial connected graph with a pendant. Then S(G) is not edge distance-balanced.

**Proof.** Suppose x is a pendent vertex and u is the new vertex such that u and x are adjacent in S(G). Then  $m_x^{S(G)}(ux) = 0$  and  $m_u^{S(G)}(ux) \ge 1$ , proving the result.

Suppose G and H are graphs with disjoint vertex sets. Following Doslic [3], for given vertices  $y \in V(G)$  and  $z \in V(H)$  a splice of G and H by vertices y and z,  $(G \cdot H)(y; z)$ , is defined by identifying the vertices y and z in the union of G and H. Similarly, a link of G and H by vertices y and z is defined as the graph  $(G \sim H)(y; z)$  obtained by joining y and z by an edge in the union of these graphs.

**Theorem 2.7.** Suppose G and H are rooted graphs with respect to the rooted vertices of a and b, respectively. The graph  $(G \cdot H)(a; b)$  is edge distance-balanced if and only if for each  $e = uv \in E(G)$  and  $f = xy \in E(H)$  the following conditions are satisfied:

(2.1) 
$$m_{u}^{G}(e) - m_{v}^{G}(e) = \begin{cases} |E(H)| & \text{if } d(v,a) < d(u,a) \\ 0 & \text{if } d(v,a) = d(u,a) \end{cases},$$
(2.2) 
$$m_{x}^{H}(f) - m_{y}^{H}(f) = \begin{cases} |E(G)| & \text{if } d(y,b) < d(x,b) \\ 0 & \text{if } d(y,b) = d(x,b) \end{cases}.$$

**Proof.** In the graph  $(G \cdot H)(a; b)$ , we put r = a = b. We partition edges of  $(G \cdot H)(a; b)$  into the following two subsets:

$$A = \{e = uv \in E(G.H) | d(v, r) < d(u, r)\},\$$
  
$$B = \{e = uv \in E(G.H) | d(v, r) = d(u, r)\}.$$

We first assume that  $(G \cdot H)(a; b)$  is edge distance-balanced. Suppose e = uv is an arbitrary edge of G. Then  $e \in A$  or  $e \in B$  and not both. If  $e \in A$  then by the hypothesis  $m_u^{G \cdot H}(e) = m_v^{G \cdot H}(e)$ . On the other hand by the definition of splice,  $m_v^{G \cdot H}(e) = m_v^G(e) + |E(H)|$  and  $m_u^{G \cdot H}(e) = m_u^G(e)$ . Thus,  $m_u^G(e) = m_v^G(e) + |E(H)|$  and so  $m_u^G(e) - m_v^G(e) = |E(H)|$ . Next we assume that  $e \in B$ . Again by the hypothesis  $m_u^{G \cdot H}(e) = m_v^{G \cdot H}(e)$  and by definition of splice we have,  $m_v^{G \cdot H}(e) = m_v^G(e)$  and Edge Distance-Balanced Graphs

 $m_u^{G.H}(e) = m_u^G(e)$ . This implies that  $m_u^G(e) = m_v^G(e)$ . Therefore, the equation (1) is satisfied. In a similar way we can see that, for every edge e of H the equation (2) is satisfied.

Conversely, suppose that Eqs. (1,2) are satisfied and  $e = uv \in A$  is arbitrary. Then  $e \in E(G)$  or  $e \in E(H)$  and not both. If  $e \in E(G)$  then  $m_u^{G.H}(e) = m_u^G(e)$  and  $m_v^{G.H}(e) = m_v^G(e) + |E(H)|$ . This implies that  $m_u^{G.H}(e) - m_v^{G.H}(e) = m_u^G(e) - (m_v^G(e) + |E(H)|)$ . Since  $m_u^G(e) - m_v^G(e) = |E(H)|$ ,  $m_u^{G.H}(e) - m_v^{G.H}(e) = 0$ , as desired. Suppose that  $e \in E(H)$ . Then  $m_u^{G.H}(e) = m_u^H(e)$  and  $m_v^{G.H}(e) = m_v^H(e) + |E(G)|$ , so  $m_u^{G.H}(e) - m_v^{G.H}(e) = m_u^H(e) - (m_v^H(e) + |E(G)|)$ . But by the hypothesis,  $m_u^H(e) - m_v^H(e) = |E(G)|$ , so  $m_u^{G.H}(e) - m_v^{G.H}(e) = 0$ . We now assume that  $e \in B$  is arbitrary. If  $e \in E(G)$  then by  $m_u^{G.H}(e) = m_u^G(e)$  and  $m_v^{G.H}(e) = m_v^G(e)$  we have  $m_u^{G.H}(e) - m_v^G(e) = 0$ . If  $e \in E(H)$  then by  $m_u^{G.H}(e) = m_u^H(e)$  and  $m_v^{G.H}(e) = m_v^H(e)$  and  $m_v^{G.H}(e) = m_v^H(e) - m_v^{G.H}(e) = m_v^G(e)$  and for every edge  $e = uv \in E(G \cdot H)$ ,  $m_u^{G.H}(e) = m_v^{G.H}(e) = m_v^{G.H}(e)$ . This completes the proof.

**Corollary 2.8.** Suppose  $G_1, G_2, \ldots, G_n$  are connected rooted graphs with root vertices  $r_1, \ldots, r_n$ , respectively. Then

$$(G_1 \cdot G_2 \cdot \cdots \cdot G_n)(r_1; r_2; \cdots; r_n)$$

is edge distance-balanced if and only if for each  $i, 1 \le i \le n$ , and for each  $e = uv \in E(G_i)$  the following system of equations are satisfied:

$$m_u^{G_i}(e) - m_v^{G_i}(e) = \begin{cases} \sum_{j=1, j \neq i}^n |E(G_j)| & \text{if } d(v, r_i) < d(u, r_i) \\ 0 & \text{if } d(v, r_i) = d(u, r_i) \end{cases}.$$

$$n.$$

**Proof.** Induct on *n*.

**Theorem 2.9.** Suppose G and H are rooted graphs with respect to the rooted vertices of a and b, respectively. The graph  $(G \sim H)(a; b)$  is edge distance-balanced if and only if |E(G)| = |E(H)| and for each  $e = uv \in E(G)$  and  $f = xy \in E(H)$  the following conditions are satisfied:

$$\begin{split} m_u^G(e) - m_v^G(e) &= \begin{cases} |E(H)| + 1 & \text{if } d(v, a) < d(u, a) \\ 0 & \text{if } d(v, a) = d(u, a) \end{cases} \\ m_x^H(f) - m_y^H(f) &= \begin{cases} |E(G)| + 1 & \text{if } d(y, b) < d(x, b) \\ 0 & \text{if } d(y, b) = d(x, b) \end{cases}. \end{split}$$

**Proof.** The proof is similar to Theorem 2.7 and so omitted.

**Corollary 2.10.** Suppose  $G_1, G_2, \ldots, G_n$  are connected rooted graphs with root vertices  $r_1, \ldots, r_n$ , respectively. Then  $(G_1 \sim G_2 \sim \cdots \sim G_n)(r_1; r_2; \cdots; r_n)$  is edge distance-balanced if and only if for each  $i, 1 \leq i \leq n, |E(G_i)| = |E(G_1)|$  and for each  $e = uv \in E(G_i)$  the following system of equations are satisfied:

$$m_u^{G_i}(e) - m_v^{G_i}(e) = \begin{cases} \sum_{j=1, j \neq i}^n |E(G_j)| + \binom{n}{2} & \text{if } d(v, r_i) < d(u, r_i) \\ 0 & \text{if } d(v, r_i) = d(u, r_i) \end{cases}.$$

**Proof.** Induct on *n*.

uww.SID.ir

#### Acknowledgments

We are grateful to the referee for some helpful remarks.

#### References

- [1] M. Aouchiche and P. Hansen, on a conjecture about the Szeged index, European J. Combin. 31 (2010) 1662-1666.
- [2] A. T. Balaban, P. V. Khadikar and S. Aziz, Comparison of topological indices based on iterated 'sum' versus 'product' operations, Iran. J. Math. Chem. 1 (2010) 43-60.
- [3] T. Doslic, Vertex-Weighted Wiener polynomials for composite graphs, Ars Math. Contemp. 1 (2008), 66-80.
- [4] K. Handa, Bipartite graphs with balanced (a,b)-partitions, Ars Combin. 51 (1999) 113-119.
- [5] A. Ilić, S. Klavžar and M. Milanović, on distance-balanced graphs, European J. Combin. 31 (2010) 733-737.
- [6] W. Imrich, S. Klavžar, Product Graphs: Structure and Recognition, Wiley, New York, USA, 2000.
- [7] J. Jerebič, S. Klavžar, D. F. Rall, Distance-balanced graphs, Ann. Combin. 12 (2008) 71-79.
- [8] M. H. Khalifeh, H. Yousefi-Azari, A. R. Ashrafi, The hyper-Wiener index of graph operations, Comput. Math. Appl. 56 (2008) 1402-1407.
- [9] M. K. Khalifeh, H. Yousefi-Azari, A. R. Ashrafi and S. G. Wagner, Some new results on distance-based graph invariants, European J. Combin. 30 (2009) 1149-1163.
- [10] D. Stevanović, Hosoya polynomial of composite graphs, Discrete Math. 235 (2001) 237-244.
- M. Tavakoli and H. Yousefi-Azari, Computing PI and hyper-Wiener indices of corona product of some graphs, Iran. J. Math. Chem. 1 (2010) 131-135.
- [12] W. Yan, B.-Y Yang, Y.-N Yeh, The behavior of Wiener indices and polynomials of graphs under five graph decorations, Appl. Math. Lett. 20 (2007) 290-295.
- [13] Y. N. Yeh and I. Gutman, On the sum of all distances in composite graphs, Discrete Math. 135 (1994) 359-365.

#### M. Tavakoli

School of Mathematics, Statistics and Computer Science, University of Tehran, Tehran, I. R. Iran

#### H. Yousefi-Azari

School of Mathematics, Statistics and Computer Science, University of Tehran, Tehran, I. R. Iran

#### Ali Reza Ashrafi

Department of Mathematics, Faculty of Mathematics, Statistics and Computer Science, University of Kashan, Kashan 87317-51167, I. R. Iran

Email: ashrafi@kashanu.ac.ir