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Abstract. Let k be a positive integer. A subset S of V (G) in a graph G is a k-tuple total dominating

set of G if every vertex of G has at least k neighbors in S. The k-tuple total domination number

γ×k,t(G) of G is the minimum cardinality of a k-tuple total dominating set of G. In this paper for a

given graph G with minimum degree at least k, we find some sharp lower and upper bounds on the

k-tuple total domination number of the m-Mycieleskian graph µm(G) of G in terms on k and γ×k,t(G).

Specially we give the sharp bounds γ×k,t(G) + 1 and γ×k,t(G) + k for γ×k,t(µ1(G)), and characterize

graphs with γ×k,t(µ1(G)) = γ×k,t(G) + 1.

1. Introduction

In this paper, G = (V,E) is a simple graph with the vertex set V and the edge set E. The order

| V | of G is denoted by n = n(G). The open neighborhood and the closed neighborhood of a vertex

v ∈ V are NG(v) = {u ∈ V (G) | uv ∈ E(G)} and NG[v] = NG(v) ∪ {v}, respectively. Also the

degree of v is degG(v) =| NG(v) |. The minimum and maximum degree of G are denoted by δ = δ(G)

and ∆ = ∆(G), respectively. We write Kn and Cn for the complete graph and the cycle of order n,

respectively, while G[S] and Kn1,n2,...,np denote the subgraph induced on G by a vertex set S, and the

complete p-partite graph, respectively.

Let S ⊆ V and let k be a positive integer. For each k-element subset S′ ⊆ S the (S, k)-private

neighborhood pnk(S′, S) of S′ is the set of all vertices v ∈ V such that N(v)∩S = S′. Further, the open

k-boundary OBk(S) of S is the set of all vertices v in G such that v ∈ pnk(S′, S) for some k-element

subset S′ ⊆ S [4]. Obviously, OBk(S) =
⋃

S′ pnk(S′, S), where S′ is a k-element subset of S.
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As we will see, the generalized Mycieleskian graphs, which are also called cones over graphs [7], are

natural generalization of Mycieleski graphs. If V (G) = V 0 = {v01, v02, . . . , v0n} and E(G) = E0, then

for any integer m ≥ 1 the m-Mycieleskian µm(G) of G is the graph with vertex set V 0 ∪ V 1 ∪ V 2 ∪
· · · ∪ V m ∪ {u}, where V i = {vij | v0j ∈ V 0} is the i-th distinct copy of V 0, for i = 1, 2, . . . ,m, and

edge set E0 ∪
(⋃m−1

i=0 {vijv
i+1
j′ | v

0
j v

0
j′ ∈ E0}

)
∪ {vmj u | vmj ∈ V m}. The 1-Mycieleskian µ1(G) of G is

the well-studied Mycieleskian of G, and denoted simply by µ(G) or M(G).

For positive integer k, the k-join of a graph G to a graph H of order at least k is the graph obtained

from the disjoint union of G and H by joining each vertex of G to at least k vertices of H. We denote

the k-join of G to H by G ◦k H.

Domination in graphs is now well-studied in graph theory and the literature on this subject has

been surveyed and detailed in the two books by Haynes, Hedetniemi, and Slater [2, 3].

In [4], Henning and Kazemi introduced the k-tuple total domination number of a graph. Let k be

a positive integer. A subset S of V is a k-tuple total dominating set of G, abbreviated kTDS, if for

every vertex v ∈ V , | N(v) ∩ S |≥ k, that is, S is a kTDS of G if every vertex of V has at least k

neighbors in S. The k-tuple total domination number γ×k,t(G) of G is the minimum cardinality of a

kTDS of G. We remark that a 1-tuple total domination is the well-studied total domination number.

Thus, γt(G) = γ×1,t(G). For a graph to have a k-tuple total dominating set, its minimum degree is at

least k. Since every (k + 1)-tuple total dominating set is also a k-tuple total dominating set, we note

that γ×k,t(G) ≤ γ×(k+1),t(G) for all graphs with minimum degree at least k+ 1. A kTDS in a graph G

is a minimal kTDS if no proper subset of it is a kTDS in G. A kTDS of cardinality γ×k,t(G) is called

a γ×k,t(G)-set. A 2-tuple total dominating set is called a double total dominating set, abbreviated

DTDS, and the 2-tuple total domination number is called the double total domination number. The

redundancy involved in k-tuple total domination makes it useful in many applications. The references

[5, 6] give more information about the k-tuple total domination number of a graph.

In this paper, we study the k-tuple total domination number of the m-Mycieleskian graph of a

graph G. We prove that for every positive integers m and k and every graph G with δ(G) ≥ k, if

m− 1 ∼= r (mod 4), where 0 ≤ r ≤ 3, and r′ ∼= r + 1 (mod 2), then

γ×k,t(G) + 1 ≤ γ×k,t(µm(G)) ≤

{
(1 + 2d(m− 1)/4e)γ×k,t(G) + kr′ if r = 0, 3,

2d(m− 1)/4eγ×k,t(G) + kr′ otherwise.

Hence γ×k,t(G) + 1 ≤ γ×k,t(M(G)) ≤ γ×k,t(G) + k. We also prove that the bounds γ×k,t(G) + 1 and

γ×k,t(G) + k are sharp and characterize graphs with γ×k,t(M(G)) = γ×k,t(G) + 1.

Through of this paper, k is a positive integer. The next results are useful for our investigations.

Proposition 1.1. (Henning, Kazemi [4] 2010) Let G be a graph of order n with δ(G) ≥ k ≥ 1,

and let S be a kTDS in G. Then

1. k + 1 ≤ γ×k,t(G) ≤ n,
2. for every spanning subgraph H of G, γ×k,t(G) ≤ γ×k,t(H),

3. for every vertex v of degree k, NG(v) ⊆ S.
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Proposition 1.2. (Henning, Kazemi [4] 2010) Let G be a graph of order n with δ(G) ≥ k ≥ 1,

and let S be a kTDS in G. Then S is a minimal kTDS of G if and only if for each vertex v ∈ S, there
exists a k-element subset Sv ⊆ S such that v ∈ Sv and |pnk(Sv, S)| ≥ 1.

Proposition 1.3. (Henning, Kazemi [4] 2010) Let G be a graph with δ(G) ≥ k ≥ 1. Then,

γ×k,t(G) = k + 1 if and only if G = Kk+1 or G = F ◦k Kk+1 for some graph F .

Proposition 1.4. (Henning, Kazemi [5] 2010) Let G be a graph of order n with δ(G) ≥ k ≥ 1.

Then γ×k,t(G) ≥ dkn/∆(G)e.

2. m-mycieleskian graphs

In the next theorem we give a lower bound and an upper bound on the k-tuple domination number

of the m-Mycieleskian graph µm(G) in terms k and the k-tuple domination number of G. First we

state the following lemma which has an easy proof that is left to the reader.

Lemma 2.1. Let G be a graph with δ(G) ≥ k ≥ 1. Let V (µm(G)) = V 0 ∪ V 1 ∪ V 2 ∪ · · · ∪ V m ∪ {u}.
If γ×k,t(µm(G)) = γ×k,t(G), then for every γ×k,t(µm(G))-set S, u /∈ S, and so m = 1.

Theorem 2.2. Let m and k be two positive integers, and let G be a graph with δ(G) ≥ k ≥ 1. Then

γ×k,t(G) + 1 ≤ γ×k,t(µm(G)) ≤


(1 + 2d(m− 1)/4e)γ×k,t(G) if m ∼= 0 (mod 4),

(1 + 2d(m− 1)/4e)γ×k,t(G) + k if m ∼= 1 (mod 4),

2d(m− 1)/4eγ×k,t(G) if m ∼= 2 (mod 4),

2d(m− 1)/4eγ×k,t(G) + k if m ∼= 3 (mod 4).

Proof. Let V (µm(G)) = V 0 ∪ V 1 ∪ V 2 ∪ · · · ∪ V m ∪ {u}. Since G is an induced subgraph of µm(G),

γ×k,t(G) ≤ γ×k,t(µm(G)). If γ×k,t(µm(G)) = γ×k,t(G), then Lemma 2.1 implies m = 1 and for every

γ×k,t(M(G))-set S, u 6∈ S. Since every vertex of V 1 is adjacent to at least k vertices of S ∩ V 0, we

conclude that every vertex of V 0 is adjacent to at least k vertices of S ∩ V 0. Hence

γ×k,t(G) ≤| S ∩ V 0 |=| S | − | S ∩ V 1 |≤ γ×k,t(G)− k < γ×k,t(G),

a contradiction. Therefore γ×k,t(µm(G)) ≥ γ×k,t(G) + 1.

Now we prove the other inequality. For an arbitrary γ×k,t(G)-set S, let Si = {vi | v ∈ S} ⊆ V i be

the i-th distinct copy of S when 0 ≤ i ≤ m. Let also Sk be an arbitrary subset of V m of cardinality

k. We continue our proof in the following four cases.

Case 0. m ∼= 0 (mod 4).

The set S′ = S0 ∪ (
⋃b(m−1)/4c

t=1 (S4t−1 ∪ S4t)) ∪ (Sm−1 ∪ Sm) is a kTDS of µm(G) of cardinality

(3 + 2b(m− 1)/4c)γ×k,t(G) = (1 + 2d(m− 1)/4e)γ×k,t(G).

Case 1. m ∼= 1 (mod 4).

The set S′ = S0 ∪ (
⋃b(m−1)/4c

t=1 (S4t−1 ∪ S4t)) ∪ Sk is a kTDS of µm(G) of cardinality

(1 + 2b(m− 1)/4c)γ×k,t(G) + k = (1 + 2d(m− 1)/4e)γ×k,t(G) + k.
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Case 2. m ∼= 2 (mod 4).

The set S′ = (
⋃b(m−1)/4c

t=1 (S4t−3 ∪ S4t−2)) ∪ (Sm−1 ∪ Sm) is a kTDS of µm(G) of cardinality

(2 + 2b(m− 1)/4c)γ×k,t(G) = 2d(m− 1)/4eγ×k,t(G).

Case 3. m ∼= 3 (mod 4).

The set S′ = (
⋃d(m−1)/4e

t=1 (S4t−3 ∪ S4t−2)) ∪ Sk is a kTDS of µm(G) of cardinality

2d(m− 1)/4eγ×k,t(G) + k.

Therefore we have proved

γ×k,t(µm(G)) ≤| S′ |=


(1 + 2d(m− 1)/4e)γ×k,t(G) if m ∼= 0 (mod 4),

(1 + 2d(m− 1)/4e)γ×k,t(G) + k if m ∼= 1 (mod 4),

2d(m− 1)/4eγ×k,t(G) if m ∼= 2 (mod 4),

2d(m− 1)/4eγ×k,t(G) + k if m ∼= 3 (mod 4),

and this completes our proof. �

Corollary 2.3. Let m be a positive integer, and let G be a graph without isolated vertex. Then

γt(G) + 1 ≤ γt(µm(G)) ≤


(1 + 2d(m− 1)/4e)γt(G) if m ∼= 0 (mod 4),

(1 + 2d(m− 1)/4e)γt(G) + 1 if m ∼= 1 (mod 4),

2d(m− 1)/4eγt(G) if m ∼= 2 (mod 4),

2d(m− 1)/4eγt(G) + 1 if m ∼= 3 (mod 4).

3. Mycieleskian graphs

Theorem 2.2 implies the next two theorems when m = 1.

Theorem 3.1. If G is a graph with no isolated vertices, then γt(M(G)) = γt(G) + 1.

Theorem 3.2. If G is a graph with δ(G) ≥ k ≥ 2, then γ×k,t(G) + 1 ≤ γ×k,t(M(G)) ≤ γ×k,t(G) + k.

In the next theorem we give other lower bound for γ×k,t(M(G)).

Theorem 3.3. If G is a graph with δ(G) ≥ k ≥ 2, then

γ×k,t(M(G)) ≥ min{γ×k,t(G) + k, γ×(k−1),t(G) + k + 1}.

Proof. Let V (M(G)) = V 0 ∪ V 1 ∪ {u} and let S be an arbitrary kTDS of M(G). Then | S ∩ V 1 |≥ k.

If u ∈ S, then | S ∩ V 0 |≥ γ×(k−1),t(G). Since S ∩ V 0 must be a (k−1)TDS of V 1. If u 6∈ S, then

| S ∩ V 0 |≥ γ×k,t(G). Since S ∩ V 0 must be a kTDS of V 1. Therefore

γ×k,t(M(G)) ≥ min{γ×k,t(G) + k, γ×(k−1),t(G) + k + 1}.

�

As an immediately result of Theorems 3.2 and 3.3 we have the following two corollaries.
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Corollary 3.4. Let G be a graph with δ(G) ≥ k ≥ 2. If γ×k,t(G) = γ×(k−1),t(G) + 1, then

γ×k,t(M(G)) = γ×k,t(G) + k.

Corollary 3.5. If n ≥ k + 1 ≥ 3, then γ×k,t(M(Kn)) = γ×k,t(Kn) + k = 2k + 1.

Also the following two results show that the upper bound γ×k,t(G) + k in Theorem 3.2 is sharp for

some of the complete multipartite graphs, the complete graph Kk+1 and the k-join F ◦k Kk+1, for

every graph F .

Proposition 3.6. Let G = Kn1,...np be a complete p-partite graph. If p ≥ k + 1 ≥ 3, then

γ×k,t(M(G)) = γ×k,t(G) + k.

Proof. We suppose that V (G) has partition X1 ∪X2 ∪ ... ∪Xp such that | Xj |= nj for j = 1, 2, ..., p.

Let V (M(G)) = V 0 ∪ V 1 ∪ {u}, where V i = Xi
1 ∪Xi

2 ∪ ... ∪Xi
p and Xi

j = {vij | vj ∈ Xj}, for i = 0, 1

and j = 1, 2, ..., p. Let also S be an arbitrary kTDS of M(G). Obviously | S ∩ V 1 |≥ k, and, without

less of generality, we may assume that | S ∩ V 1 |= k. Let S ∩ V 1 be a set which contains only one

vertex of every X1
i , for 1 ≤ i ≤ k. Thus each vertex of V 0 − {v0i | v1i ∈ S ∩ V 1} is adjacent to all

vertices in S ∩ V 1. Since each vertex of S ∩ V 1 must be adjacent to at least k vertices of S, we have

| S ∩ (V 0 ∪ {u}) |≥ k. The assumptions k ≥ 2 and | S ∩ V 0 |≥ k − 1 imply S ∩ V 0 6= ∅. We see that

there exists an unique index 1 ≤ j ≤ k such that each vertex of X1
j is adjacent to k − 1 vertices of

S ∩ (V 0 ∪ {u}). Hence | S ∩ (V 0 ∪ {u}) |≥ k + 1, and so

γ×k,t(M(G)) = min {| S | : S is a kTDS of M(G)}
≥ 2k + 1

= γ×k,t(G) + k.

Now Theorem 3.2 implies γ×k,t(M(G)) = γ×k,t(G) + k. �

Theorem 3.7. Let G be a graph of order n ≥ k+ 1 with δ(G) ≥ k ≥ 2. If G is the k-join F ◦kKk+1,

for some graph F , then

γ×k,t(M(G)) = γ×k,t(G) + k.

Proof. Let G be the k-join F ◦kKk+1, for some graph F . Then Proposition 1.3 implies γ×k,t(G) = k+1.

Since G is a spanning subgraph of Kn, and hence M(G) is a spanning subgraph of M(Kn), we have

γ×k,t(M(G)) ≥ γ×k,t(M(Kn))

= γ×k,t(Kn) + k

= 2k + 1

= γ×k,t(G) + k.

Now Theorem 3.2 implies γ×k,t(M(G)) = γ×k,t(G) + k = 2k + 1. �

Theorem 3.1 shows that γ×k,t(M(G)) = γ×k,t(G) + 1, where G is a graph with no isolated vertices

and k = 1. Here, we give an equivalent condition for γ×k,t(M(G)) = γ×k,t(G) + 1, when k ≥ 2. We

recall that a kTDS S is a minimal kTDS if and only if for each vertex v ∈ S, there exists a k-element

subset Sv ⊆ S such that v ∈ Sv and |pnk(Sv, S)| ≥ 1.
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Theorem 3.8. Let G be a graph with δ(G) ≥ k ≥ 1. Then γ×k,t(M(G)) = γ×k,t(G) + 1 if and only if

k = 1 or k ≥ 2 and G has a γ×k,t-set S with a k-subset S′ ⊆ S such that S − S′ is a (k− 1)TDS of G

and for every vertex v, | Sv ∩ S′ |≤ 1.

Proof. Let V (M(G)) = V 0 ∪ V 1 ∪ {u}, where V i = {vij | 1 ≤ j ≤ n} for i = 0, 1. If k = 1, then

γ×k,t(M(G)) = γ×k,t(G) + 1, by Theorem 3.1. Now let k ≥ 2. Let S be a γ×k,t(G)-set which contains

a k-subset S′ ⊆ S with this conditions that S − S′ is a (k − 1)TDS of G and for every vertex v,

| Sv ∩ S′ |≤ 1. Since

D = {v0j | vj ∈ S − S′} ∪ {v1j | vj ∈ S′} ∪ {u}

is a kTDS of M(G) of cardinality γ×k,t(G) + 1, Theorem 3.2 implies γ×k,t(M(G)) = γ×k,t(G) + 1.

Conversely, let γ×k,t(M(G)) = γ×k,t(G) + 1 and let k ≥ 2. If u belongs to a γ×k,t-set of M(G), we

have no thing to prove. Thus we assume that u belongs to no γ×k,t(M(G))-set D, and so | D∩V 1 |≥ k
and | D ∩ V 0 |≥ γ×k,t(G). Therefore

γ×k,t(G) + 1 = γ×k,t(M(G)) =| D |≥ γ×k,t(G) + k ≥ γ×k,t(G) + 2,

a contradiction. �

The next proposition gives graphs that satisfy in the condition of Theorem 3.8. First, we present

the definition of the Harary graph [8].

Given m ≤ n, place n vertices 1, 2, ..., n around a circle, equally spaced. If m is even, form Hm,n

by making each vertex adjacent to the nearest m/2 vertices in each direction around the circle. If m

is odd and n is even, form Hm,n by making each vertex adjacent to the nearest (m− 1)/2 vertices in

each direction and to the diametrically opposite vertex. In each case, Hm,n is m-regular. When m

and n are both odd, index the vertices by the integers modulo n. Construct Hm,n from Hm−1,n by

adding the edges i↔ i+ (n− 1)/2 for 0 ≤ i ≤ (n− 1)/2.

Proposition 3.9. If G is a cycle of order at least 3 or the Harary graph H2m,`m+1, where ` ≥ 3 and

m ≥ 1, then

γ×2,t(M(G)) = γ×2,t(G) + 1.

Proof. Let G = Cn be a cycle of order at least 3 with the vertex set V (Cn) = V 0 = {vj | 1 ≤ j ≤ n}
and the edge set E(Cn) = {(vj , vj+1) | 1 ≤ j ≤ n}. Let also V (M(G)) = V 0 ∪ V 1 ∪ {u}. Proposition

1.1(3) implies γ×2,t(G) = n. Since S = (V 0−{v01, v0n})∪{v1n−1, v1n, u} is a DTDS of M(G) of cardinality

γ×2,t(Cn) + 1 = n+ 1, Theorem 2.2 implies γ×2,t(M(Cn)) = γ×2,t(Cn) + 1 = n+ 1.

Now let G = H2m,`m+1 and let V (M(G)) = V 0 ∪ V 1 ∪ {u}, where V i = {vij | 1 ≤ j ≤ `m + 1}
for i = 0, 1, V 0 = V (G) and ` ≥ 3. Since {v0jm+1 | 0 ≤ j ≤ d(`m+ 1)/me − 1 = `} is a DTDS of

G, we have γ×2,t (G) = d(`m+ 1)/me = ` + 1, by Proposition 1.4. Since also S = {v0im+1 | 1 ≤ i ≤
` − 1} ∪ {v11, v1`m+1, u} is a DTDS of M(G) of cardinality ` + 2 = γ×2,t(G) + 1, Theorem 2.2 implies

γ×2,t(M(G)) = γ×2,t(G) + 1. �

In the end of paper, the author states the following problem.
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Problem: For integers k,m ≥ 1, characterize graphs G with δ(G) ≥ k satisfy γ×k,t(µm(G)) =

γ×k,t(G) + 1 or

γ×k,t(µm(G)) =


(1 + 2d(m− 1)/4e)γ×k,t(G) if m ∼= 0 (mod 4),

(1 + 2d(m− 1)/4e)γ×k,t(G) + k if m ∼= 1 (mod 4),

2d(m− 1)/4eγ×k,t(G) if m ∼= 2 (mod 4),

2d(m− 1)/4eγ×k,t(G) + k if m ∼= 3 (mod 4).
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