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kE-TUPLE TOTAL DOMINATION AND MYCIELESKIAN GRAPHS
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ABSTRACT. Let k be a positive integer. A subset S of V(G) in a graph G-is a k-tuple total dominating
set of G if every vertex of G has at least k neighbors in 5. The k-tuple total domination number
Yxk,t(G) of G is the minimum cardinality of a k-tuple total dominating set of G. In this paper for a
given graph G with minimum degree at least k, we find some sharp lower and upper bounds on the
k-tuple total domination number of the m-Mycieleskian graph i, (G) of G in terms on k and yx+(G).
Specially we give the sharp bounds vxx+(G) + 1 and yxk,:(G) + k for vxr,¢(111(G)), and characterize
graphs with vyt (11(G)) = Yxk,t(G) + 1.

1. Introduction

In this paper, G = (V, E) is a simple graph with the vertex set V and the edge set E. The order
| V| of G is denoted by n = n(G). The open neighborhood and the closed neighborhood of a vertex
v € Vare Ng(v) =4du € V(G) | wv € E(G)} and Ng[v] = Ng(v) U {v}, respectively. Also the
degree of v is deg(v) =| Ng(v) |. The minimum and mazimum degree of G are denoted by 6 = 0(G)
and A = A(G), respectively. We write K,, and C), for the complete graph and the cycle of order n,
respectively, while G[S] and Ky, n,,....n, denote the subgraph induced on G by a vertex set S, and the
complete p-partite graph, respectively.

Let S C V and let k be a positive integer. For each k-element subset S’ C S the (S, k)-private
neighborhood pny(S’,S) of S’ is the set of all vertices v € V such that N(v)NS = S’. Further, the open
k-boundary OBy(S) of S is the set of all vertices v in G such that v € pny(5’,S) for some k-element
subset S” C S [4]. Obviously, OBy (S) = Ug pny(S’,5), where S’ is a k-element subset of S.
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As we will see, the generalized Mycieleskian graphs, which are also called cones over graphs [7], are
natural generalization of Mycieleski graphs. If V(G) = V0 = {0{,48,...,%} and E(G) = Ey, then
for any integer m > 1 the m-Mycieleskian p,(G) of G is the graph with vertex set VYU VU V2 U
~-UV™U{u}, where Vi = {vjZ | v? € VO is the i-th distinct copy of VO, for i = 1,2,...,m, and
edge set Ep U (U:i_ol{vévﬁl | ’U?U;-), € EO}) U{vf'u | of* € V™}. The 1-Mycieleskian p1(G) of G is
the well-studied Mycieleskian of G, and denoted simply by u(G) or M(G).

For positive integer k, the k-join of a graph G to a graph H of order at least k is the graph obtained
from the disjoint union of G and H by joining each vertex of G to at least k vertices of H. We denote
the k-join of G to H by G o, H.

Domination in graphs is now well-studied in graph theory and the literature on this subject has
been surveyed and detailed in the two books by Haynes, Hedetniemi, and Slater [2} 3].

In [4], Henning and Kazemi introduced the k-tuple total domination number of a graph. Let k be
a positive integer. A subset S of V is a k-tuple total dominating set of G, abbreviated kTDS, if for
every vertex v € V., | N(v) NS |> k, that is, S is a kKTDS of G if every vertex of V has at least k
neighbors in S. The k-tuple total domination number vy (G) of G is the minimum cardinality of a
kTDS of G. We remark that a 1-tuple total domination is the well-studied total domination number.
Thus, 4(G) = vx1,+(G). For a graph to have a k-tuple total dominating set, its minimum degree is at
least k. Since every (k + 1)-tuple total dominating set is also a k-tuple total dominating set, we note
that vk (G) < Yy (ht1),.(G) for all graphs with minimum degree at least k+1. A kTDS in a graph G
is a minimal kKTDS if no proper subset of it is a kTDS in G. A kTDS of cardinality v +(G) is called
a Yxkt(G)-set. A 2-tuple total dominating set is called a double total dominating set, abbreviated
DTDS, and the 2-tuple total domination number is called the double total domination number. The
redundancy involved in k-tuple total domination makes it useful in many applications. The references
[0, [6] give more information about the k-tuple total domination number of a graph.

In this paper, we study the k-tuple total domination number of the m-Mycieleskian graph of a
graph GG. We prove that for every positive integers m and k and every graph G with §(G) > k, if
m — 127 (mod 4), where 0 < r <3, and ' 27+ 1 (mod 2), then

(1+2[(m —1)/4))vxkt(G) + kr' if r=0,3,

'YXk,t(G) +1< 'Yxk,t(:“«m(G)) < { 2[(m — 1)/4-|'Y><k,t(G) + k! otherwise.

Hence x5 t(G) + 1 < vxp i (M(GQ)) < vxkt(G) + k. We also prove that the bounds vy .(G) 4+ 1 and
Vxk,t(G) + k are sharp and characterize graphs with vx (M (G)) = vxkt(G) + 1.

Through of this paper, k is a positive integer. The next results are useful for our investigations.

Proposition 1.1. (Henning, Kazemi [4] 2010) Let G be a graph of order n with §(G) > k > 1,
and let S be a kTDS in G. Then

1 k+1 < vxi(G) <n,

2. for every spanning subgraph H of G, vx+(G) < vxi(H),

3. for every vertex v of degree k, Ng(v) C S.
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Proposition 1.2. (Henning, Kazemi [4] 2010) Let G be a graph of order n with §(G) > k > 1,
and let S be a kTDS in G. Then S is a minimal kTDS of G if and only if for each vertex v € S, there
exists a k-element subset S, C S such that v € S, and |pn,(Sy,S)| > 1.

Proposition 1.3. (Henning, Kazemi [4] 2010) Let G be a graph with 6(G) > k > 1. Then,
Yxkt(G) =k +1 if and only if G = Ky or G = F o, Kiy1 for some graph F.

Proposition 1.4. (Henning, Kazemi [5] 2010) Let G be a graph of order n with 6(G) > k > 1.
Then 71(G) > [kn/A(G)].

2. m-mycieleskian graphs

In the next theorem we give a lower bound and an upper bound on the k-tuple domination number
of the m-Mycieleskian graph p,,(G) in terms k and the k-tuple domination number of G. First we

state the following lemma which has an easy proof that is left to the reader.

Lemma 2.1. Let G be a graph with 6(G) >k > 1. Let V(i (G)) = VU VIUV2U---uV™ U {u}.
If Ykt (e (G)) = Yxit(G), then for every vyxi(1m(G))-set S, uw & S, and so m = 1.

Theorem 2.2. Let m and k be two positive integers, ‘and let G be a graph with §(G) > k > 1. Then
(14 2[(m — 1)/4])vxkt(G) if m =0 (mod 4),
1+2[(m—1)/4 G)+k ifm=1(mod4),
2 (m— 1)/ 4]7x4(G) if m =22 (mod 4),
2 (= 1)/4]7xa(G) + if m =3 (mod 4)

Proof. Let V(i (G)) = VOUVEUV2U.--~UV™U {u}. Since G is an induced subgraph of ji,,(G),
Vbt (G) < Yot (P (GQ)). I ¥kt (i (G)) = Yxkt(G), then Lemma implies m = 1 and for every
Yxkt(M(G))-set S, u ¢ S. Since every vertex of V1 is adjacent to at least k vertices of SN VY, we

conclude that every vertex of V9 is adjacent to at least k vertices of S N V°. Hence
Pkt GY<[ SOV =[S | = [ SNV 30 () = k < e (G),

a contradiction. Therefore vy ¢(um(G)) > Yxrt(G) + 1.

Now we prove the other inequality. For an arbitrary vy« :(G)-set S, let S = {v’ | v € S} C V' be
the i-th distinct copy of S when 0 < i < m. Let also Sy be an arbitrary subset of V' of cardinality
k. We continue our proof in the following four cases.

Case 0. m =0 (mod 4).

The set S’ = S°U (UtL(anl_l)/4J (SH=L US4 U (S™~Lu S™) is a kKTDS of iy, (G) of cardinality

B +2[(m = 1)/4])yxrs(G) = (1 + 2[(m — 1)/4]) 75k (G).

Case 1. m =1 (mod 4).
The set S’ = S° U (UtL(znll_l)/4J (SH=L U S4)) U Sy is a kKTDS of i, (G) of cardinality

(1+2[(m = 1)/4]) v (G) + k = (14 2[(m = 1) /4]) 7t (G) + k.
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Case 2. m =2 (mod 4).
The set S" = (Utt(:nf_l)/4J (SH=3 U 84=2)) U (S™~1 U S™) is a KTDS of pm(G) of cardinality

(2+2[(m = 1)/4])vxkt(G) = 2[(m — 1) /4]yt (G).

Case 3. m = 3 (mod 4).
The set S’ = (th[(:wf_l)m(S‘“_3 U S%=2)) U Sy is a kKTDS of pu,,(G) of cardinality

2[(m — 1) /4]yt (G) + k.

Therefore we have proved

(14 2[(m = 1)/4)7xe(G) i m =20 (mod 4),
L) 20— 1)/ s (@) + ki1 (mod 4),
xk,t\Hm G > S |= ’
Pttt G TN o 1) 4ot it m % 2 (mod 1),
2[(m —1)/4]yxkt(G) + k if m = 3 (mod 4),
and this completes our proof. O

Corollary 2.3. Let m be a positive integer, and let G be a-graph without isolated vertex. Then

(1+2[0m— ANG)  ifm =0 (mod 4),
(I+2[(m—=1)/4])w(G)+1 ifm=1(mod4),
L= ENE oy =2 (mod 4,
2[(m —=1)/4]m(G) + 1 if m =3 (mod 4).

3. Mycieleskian graphs

Theorem implies the next two theorems when m = 1.
Theorem 3.1. If G is a_graph with no isolated vertices, then v(M(G)) = %(G) + 1.
Theorem 3.2. If G is a graph with 6(G) > k > 2, then vy +(G) + 1 < vxpt(M(G)) < vxkt(G) + k.
In the next theorem we give other lower bound for vy +(M(G)).
Theorem 3.3. If G is a graph with 6(G) > k > 2, then
Ykt (M(G)) > min{yxr1(G) + k, Vx(k-1)(G) + k + 1}

Proof. Let V(M(G)) = VP UV U {u} and let S be an arbitrary kTDS of M(G). Then | SNV |> k.
If u €S, then | SNVC > 74 4-1)4(G). Since SN V? must be a (k—1)TDS of V!. If u & S, then
| SN VY > vkt (G). Since SN VY must be a kTDS of V1. Therefore

Ykt (M(G)) = min{yxrt(G) + k, vx (k=1)£(G) + k + 1}

As an immediately result of Theorems [3.2] and we have the following two corollaries.
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Corollary 3.4. Let G be a graph with 6(G) > k > 2. If yxkt(G) = Yx(k—1),.(G) + 1, then

'VXk,t(M(G)) = "Yxk,t(G) + k.
Corollary 3.5. Ifn >k +1 >3, then vy (M (Ky)) = vxkt(Kp) + k =2k + 1.

Also the following two results show that the upper bound 7y +(G) + k in Theorem is sharp for
some of the complete multipartite graphs, the complete graph Kj.1 and the k-join F o Kjiq, for
every graph F.

Proposition 3.6. Let G = Ky, ., be a complete p-partite graph. If p >k +1 > 3, then

Yt (M(G)) = vxrt(G) + k.

Proof. We suppose that V(G) has partition X; U X5 U ... U X}, such that| X; |=n; for j =1,2,...,p.
Let V(M(G)) = VO UV U {u}, where V' = X{ U X5 U ..U X and X} = {o! | vj € X;}, for i = 0,1
and j = 1,2,...,p. Let also S be an arbitrary kTDS of M(G). Obviously | S NV |> k, and, without
less of generality, we may assume that | SN V! |= k. Let SN V! be a set which contains only one
vertex of every X}, for 1 < i < k. Thus each vertex of V0 — {v{ | vii€ SN V!} is adjacent to all
vertices in S N V!, Since each vertex of S N V! must be adjacent to at least k vertices of S, we have
| SN (VOU {u}) |> k. The assumptions & > 2 and | SAVY |> Kk — 1 imply SNV # (). We see that
there exists an unique index 1 < j < k such that each vertex of X jl is adjacent to k — 1 vertices of
SN (VPU{u}). Hence | SN (VO U {u}) |> k + 15 and so

Yk t(M(G)) = min {| S| : SisakTDS of M(G)}

> 2k+1
= fok,t(G) + k.
Now Theorem implies Yx +(M(G)) = vxkt(G) + k. O

Theorem 3.7. Let G be a graph of order n > k+1 with 6(G) > k > 2. If G is the k-join F o Kiy1,
for some graph F, then

Ykt (M(G)) = 1 (G) + k.
Proof. Let G be the k-join Foj K} 1, for some graph F'. Then Propositionimplies Vxkt(G) = k+1.
Since G is a spanning subgraph of K,,, and hence M(G) is a spanning subgraph of M (K,,), we have

7xk,t(M(G)) > 7xk,t(M(Kn))
= 7Xk,t(Kn)+k

= 2k+1
- f)/><k7t(G) + k
Now Theorem implies yu it (M(G)) = Yxkt(G) + k =2k + 1. O

Theorem [3.1] shows that v« (M(G)) = yxkt(G) + 1, where G is a graph with no isolated vertices
and k = 1. Here, we give an equivalent condition for vy (M (G)) = yxk(G) + 1, when k£ > 2. We
recall that a kTDS S is a minimal kTDS if and only if for each vertex v € S, there exists a k-element
subset S, C S such that v € S, and |png(Sy, S)| > 1.
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Theorem 3.8. Let G be a graph with 6(G) > k > 1. Then vy (M (G)) = vxk+(G) + 1 if and only if
k=1 ork>2and G has a yxi-set S with a k-subset S" C S such that S — S is a (k—1)TDS of G
and for every vertex v, | S, N S" |< 1.

Proof. Let V(M(G)) = VO U V' U {u}, where V' = {v} | 1 < j < n} fori = 0,1. If & = 1, then
Yk t(M(GQ)) = Yxkt(G) + 1, by Theorem Now let k > 2. Let S be a yxj+(G)-set which contains
a k-subset S’ C S with this conditions that S — S” is a (k — 1)TDS of G and for every vertex v,
| S, NS"|< 1. Since

D:{U?\Uj GS—S/}U{’U} | vj € "YU {u}

is a kKTDS of M(G) of cardinality vy +(G) + 1, Theorem [3.2| implies v +(M(G)) = vxi(G) + 1.

Conversely, let vy (M (G)) = vxk(G) + 1 and let k > 2. If u belongs to a vyxp-set of M(G), we
have no thing to prove. Thus we assume that u belongs to no yxx¢(M(G))-set D, and so | DNV |> k
and | DNV |> vy+(G). Therefore

Ykt (G) + 1= vxp t(M(Q)) =| D [> vt (G) k= vt (G) + 2,
a contradiction. O

The next proposition gives graphs that satisfy in the condition of Theorem First, we present
the definition of the Harary graph [§].

Given m < n, place n vertices 1, 2, ..., n around a circle, equally spaced. If m is even, form H,, ,
by making each vertex adjacent to the nearest m/2 vertices in each direction around the circle. If m
is odd and n is even, form H,, , by making each vertex adjacent to the nearest (m — 1)/2 vertices in
each direction and to the diametrically opposite vertex. In each case, Hy,  is m-regular. When m
and n are both odd, index the vertices by the integers modulo n. Construct H,,, from H,,_1, by
adding the edges i <> i+ (n =1)/2 for 0 <i < (n—1)/2.

Proposition 3.9. If Gs a cycle of order at least 3 or the Harary graph Hoy, ¢m1, where £ > 3 and
m > 1, then

Yx2,t(M(G)) = 1x2,4(G) + 1.

Proof. Let G = C,, be a cycle of order at least 3 with the vertex set V(C,) = V% = {v; | 1 <j <n}
and the edge set E(Cy,) = {(vj,vj+1) | 1 <j < n}. Let also V(M (G)) = VO U V! U {u}. Proposition
!(3) implies yx2,+(G) = n. Since S = (VO—{v?, 00} U{v} |, v} u} is a DTDS of M(G) of cardinality
vx2,t(Cn) +1 =n+ 1, Theorem implies yx2:(M(Cp)) = vx24(Cn) +1 =n+ 1.

Now let G' = Hyp g1 and let V(M(G)) = VO UV U {u}, where V' = {v! | 1 < j < fm + 1}
for i = 0,1, V® = V(G) and ¢ > 3. Since {v},,,, | 0 < j < [(fm+1)/m] —1 = £} is a DTDS of
G, we have vx2,: (G) = [(lm +1)/m| = £+ 1, by Proposition Since also S = {v9,,; [1<i<
¢ — 1} U{v], v, 1, u} is a DTDS of M(G) of cardinality £ + 2 = 7x2:(G) + 1, Theorem implies

'Y><2,t(M(G)) = 7><2,t(G) + 1. O

In the end of paper, the author states the following problem.
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Problem: For integers k,m > 1, characterize graphs G with §(G) > k satisfy vxpi(m(G)) =
,}/Xk,t(G) +1or

(1+2[(m —1)/4])vxkt(G) if m =0 (mod 4),

(i (G)) = (I4+2[(m —1)/4])vxkt(G) + k if m=1 (mod 4),
Tref 2 (m — 1)/4]17x4(G) if m =2 2 (mod 4),
2[(m —1)/4]yxkt(G) + k if m = 3 (mod 4).
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