

Transactions on Combinatorics
ISSN (print): 2251-8657, ISSN (on-line): 2251-8665
Vol. 01 No.1 (2012), pp. 15-20.
© 2012 University of Isfahan

PRODUCT-CORDIAL INDEX AND FRIENDLY INDEX OF REGULAR GRAPHS

W. C. SHIU* AND H. KWONG

Communicated by Ivan Gutman

ABSTRACT. Let G = (V, E) be a connected simple graph. A labeling $f: V \to \mathbb{Z}_2$ induces two edge labelings $f^+, f^*: E \to \mathbb{Z}_2$ defined by $f^+(xy) = f(x)+f(y)$ and $f^*(xy) = f(x)f(y)$ for each $xy \in E$. For $i \in \mathbb{Z}_2$, let $v_f(i) = |f^{-1}(i)|, e_{f^+}(i) = |(f^+)^{-1}(i)|$ and $e_{f^*}(i) = |(f^*)^{-1}(i)|$. A labeling f is called friendly if $|v_f(1) - v_f(0)| \leq 1$. For a friendly labeling f of a graph G, the friendly index of G under f is defined by $i_f^+(G) = e_{f^+}(1) - e_{f^+}(0)$. The set $\{i_f^+(G) \mid f \text{ is a friendly labeling of}G\}$ is called the full friendly index set of G. Also, the product-cordial index of G under f is defined by $i_f^*(G) = e_{f^*}(1) - e_{f^*}(0)$. The set $\{i_f^*(G) \mid f \text{ is a friendly labeling of}G\}$ is called the full product-cordial index set of G. In this paper, we find a relation between the friendly index and the product-cordial index of a regular graph. As applications, we will determine the full product-cordial index sets of torus graphs which was asked by Kwong, Lee and Ng in 2010; and those of cycles.

1. Introduction

In this paper, all graphs are simple and connected. All undefined symbols and concepts may be looked up from [1]. Let G = (V, E) be a connected simple graph. A labeling $f : V \to \mathbb{Z}_2$ induces two edge labelings $f^+, f^* : E \to \mathbb{Z}_2$ defined by $f^+(xy) = f(x) + f(y)$ and $f^*(xy) = f(x)f(y)$ for each $xy \in E$. For $i \in \mathbb{Z}_2$, let $v_f(i) = |f^{-1}(i)|, e_{f^+}(i) = |(f^+)^{-1}(i)|$ and $e_{f^*}(i) = |(f^*)^{-1}(i)|$. A labeling f is called *friendly* if $|v_f(1) - v_f(0)| \leq 1$. For a friendly labeling f of a graph G, the *friendly index* of Gunder f is defined by $i_f^+(G) = e_{f^+}(1) - e_{f^+}(0)$. The set

 $FFI(G) = \{i_f^+(G) \mid \text{is a friendly labeling of } G\}$

MSC(2010): Primary: 05C78; Secondary: 05C25.

Keywords: Friendly labeling, friendly index set, product-cordial index, product-cordial index set, torus.

Received: 23 November 2011, Accepted: 01 February 2012.

^{*}Corresponding author.

is called the *full friendly index set* of G. Also the *product-cordial index* of G under f is defined by $i_f^*(G) = e_{f^*}(1) - e_{f^*}(0)$. The set

$$FPCI(G) = \{i_f^*(G) \mid f \text{ is a friendly labeling of } G\}$$

is called the *full product-cordial index set* of G. Throughout this paper, we will use the term 'labeling' to mean a vertex labeling whose values are taken from \mathbb{Z}_2 . Note that $i_f^+(G)$ and $i_f^*(G)$ can be extended to any labeling.

Friendly index set was initiated by Lee and Ng in 2004 [6]. More about friendly index sets of graphs can be found in [3, 4, 9]. Full friendly index set was first introduced by Shiu and Kwong [10] in 2007 (published in 2008). The friendly index sets or full friendly index sets of the graphs $P_m \times P_n$, $C_m \times C_n$ and $C_m \times P_n$ were found [8, 10, 11, 12, 13, 15]. Recently Gao determined the full friendly index set of $P_m \times P_n$, but he used the terms 'edge difference set' instead of 'full friendly index set' and 'direct product' instead of 'Cartesian product' in [2]. Friendly index is related to the Laplacian eigenvalues of a graph (interested readers please see [14]).

Product-cordial set PC(G) was introduced by Salehi in 2009 [7]. Since this is the multiplicative version of FI(G), it is also called a *product-cordial index set* and denoted by PCI(G) in [5].

2. Relationship between friendly index and product-cordial index

For a fixed labeling f, a vertex v is called a k-vertex if f(v) = k, and an edge is called an (i, j)-edge if it is incident with an *i*-vertex and a *j*-vertex. We define the number of (i, j)-edges by $E_f(i, j)$. Then

$$e_{f^{+}}(1) = E_{f}(1,0) = E_{f}(0,1),$$

$$e_{f^{+}}(0) = E_{f}(1,1) + E_{f}(0,0);$$

$$e_{f^{*}}(1) = E_{f}(1,1),$$

$$e_{f^{*}}(0) = E_{f}(0,0) + E_{f}(1,0).$$

Since $e_{f^+}(1) + e_{f^+}(0) = e_{f^*}(1) + e_{f^*}(0) = q$, the size of the graph G, we obtain

(2.1)
$$i_f^+(G) = 2e_{f^+}(1) - q = 2E_f(1,0) - q = q - 2e_{f^+}(0);$$

(2.2)
$$i_f^*(G) = 2e_{f^*}(1) - q = 2E_f(1,1) - q = q - 2e_{f^*}(0).$$

Lemma 2.1 ([12]). Let f be any labeling of a graph G with q edges. If the degree sum of 1-vertices is s, then $i_f^+(G) = 2s - 4E_f(1,1) - q$.

Combining Equation (2.2) and Lemma 2.1 we have

Corollary 2.2. Let f be any labeling of a graph G with q edges. If the degree sum of 1-vertices is s, then $2i_f^*(G) = 2s - 3q - i_f^+(G)$.

Corollary 2.3. Let f be a friendly labeling of G. If G is an r-regular graph of even order. Then $i_f^*(G) = -\frac{1}{2}(q + i_f^+(G)).$

Proof. Let p be the order of G. Then rp = 2q, and $s = (\frac{p}{2})r$. The result follows immediately from Corollary 2.2.

Corollary 2.4. Suppose G is an r-regular graph of odd order. Let f be a friendly labeling of G with $v_f(1) = v_f(0) + 1$. Then $i_f^*(G) = -\frac{1}{2}(q - r + i_f^+(G))$.

Proof. Let p be the order of G. Then rp = 2q, and $s = (\frac{p+1}{2})r$. To complete the proof, apply Corollary 2.2.

Similarly we have

Corollary 2.5. Suppose G is an r-regular graph of odd order. Let f be a friendly labeling of G with $v_f(1) = v_f(0) - 1$. Then $i_f^*(G) = -\frac{1}{2}(q + r + i_f^+(G))$.

3. Application to Torus

A problem proposed in [5] asked readers to determine the exact value of $PCI(C_m \times C_n)$. We could apply the results in Section 2 to solve this problem. From [12] we have the following results:

$$FFI(C_{2h+1} \times C_{2k+1}) = \{8hk + 4h + 4k + 6 - 4\ell \mid h + k + 2 \le \ell \le 4hk + 2h\}, \text{ for } 1 \le k \le h;$$

$$FFI(C_{2h+1} \times C_{2k}) = \{8hk + 4k - 4\ell \mid k \le \ell \le 4hk - 1\}, \text{ for } 2 \le k \le h;$$

$$FFI(C_{2h} \times C_{2k+1}) = \{8hk + 4h - 4\ell \mid h \le \ell \le 4hk + 2h - 2k - 1, \ell \ne 4hk + 2h - 2k - 2\},$$

$$for \ 1 \le k < h;$$

$$FFI(C_{2h} \times C_{2k}) = \{8hk - 4\ell \mid 0 \le \ell \le 4hk - 2k, \ell \ne 1, 2, 4hk - 2k - 1\}, \text{ for } 2 \le k \le h.$$

$$111(\mathbb{C}_{2h} \times \mathbb{C}_{2k}) = \{0nk \quad \exists i \mid 0 \leq i \leq \exists nk \quad 2n, i \neq 1, 2, \exists nk \quad 2n \quad 1\}, \text{ for } 2 \leq k \leq n.$$

Note that, in the proofs of those results, ℓ is equal to $E_f(1,1)$, providing that $v_f(1) \ge v_f(0)$ (see [12]).

Since the torus $C_m \times C_n$ is a 4-regular graph, $i_f^*(C_m \times C_n) = -\frac{1}{2}(2mn + i_f^+(C_m \times C_n))$ when mn is even. Thus

$$\begin{aligned} \text{FPCI}(C_{2h+1} \times C_{2k}) &= \{-8hk - 4k + 2\ell \mid k \le \ell \le 4hk - 1\}, \text{ for } 2 \le k \le h; \\ \text{FPCI}(C_{2h} \times C_{2k+1}) &= \{-8hk - 4h + 2\ell \mid h \le \ell \le 4hk + 2h - 2k - 1, \ell \ne 4hk + 2h - 2k - 2\}, \\ \text{ for } 1 \le k < h; \\ \text{FPCI}(C_{2h} \times C_{2k}) &= \{-8hk + 2\ell \mid 0 \le \ell \le 4hk - 2k, \ell \ne 1, 2, 4hk - 2k - 1\}, \text{ for } 2 \le k \le h. \end{aligned}$$

$$FPCI(G) = \{i_f^*(G) \mid v_f(1) = v_f(0) + 1\} \cup \{i_f^*(G) \mid v_f(1) = v_f(0) - 1\}$$

for G of odd order.

Now we consider the graph $C_{2h+1} \times C_{2k+1}$ for $1 \le k \le h$. By Corollary 2.4 and the above result we have

$$\{i_f^*(C_{2h+1} \times C_{2k+1}) \mid v_f(1) = v_f(0) + 1\} = \{-8hk - 4h - 4k - 2 + 2\ell \mid h+k+2 \le \ell \le 4hk + 2h\}.$$

Suppose f is a friendly labeling with $v_f(1) = v_f(0) - 1$. Let $\overline{f} = 1 - f$. Then $v_{\overline{f}}(1) = v_{\overline{f}}(0) + 1$, and $i_f^+(G) = i_{\overline{f}}^+(G)$. Hence $i_f^*(C_{2h+1} \times C_{2k+1}) = -(8hk + 4h + 4k + 6 - 2\ell)$ if $v_f(1) = v_f(0) - 1$, where

 $\ell = E_{\overline{f}}(1,1).$ Since $f\leftrightarrow\overline{f}$ is an one-to-one correspondence,

$$\{i_f^*(C_{2h+1} \times C_{2k+1}) \mid v_f(1) = v_f(0) - 1\} = \{-8hk - 4h - 4k - 6 + 2\ell \mid h+k+2 \le \ell \le 4hk + 2h\}.$$

Thus

$$FPCI(C_{2h+1} \times C_{2k+1}) = \{-8hk - 4h - 4k - 2 + 2\ell \mid h+k \le \ell \le 4hk + 2h\}.$$

Note that all product-cordial indices of torus are negative. Hence we have

Theorem 3.1. The product-cordial index sets of torus are:

$$\begin{split} &\text{PCI}(C_{2h+1} \times C_{2k}) = \{8hk + 4k - 2\ell \mid k \leq \ell \leq 4hk - 1\}, \text{ for } 2 \leq k \leq h; \\ &\text{PCI}(C_{2h} \times C_{2k+1}) = \{8hk + 4h - 2\ell \mid h \leq \ell \leq 4hk + 2h - 2k - 1, \ell \neq 4hk + 2h - 2k - 2\}, \\ &\text{for } 1 \leq k < h; \\ &\text{PCI}(C_{2h} \times C_{2k}) = \{8hk - 2\ell \mid 0 \leq \ell \leq 4hk - 2k, \ell \neq 1, 2, 4hk - 2k - 1\}, \text{ for } 2 \leq k \leq h; \\ &\text{PCI}(C_{2h+1} \times C_{2k+1}) = \{8hk + 4h + 4k + 2 - 2\ell \mid h + k \leq \ell \leq 4hk + 2h\}. \end{split}$$

4. Application to Cycles

In [10, Corollary 6], the authors showed that $FFI(C_n) \subseteq \{4j - n \mid 1 \le j \le \frac{n}{2}\}$ for $n \ge 3$. Note that, in this description, $2j = e_{f^+}(1)$ for some friendly labeling f. We now prove that equality holds.

Theorem 4.1. For $n \ge 3$, $FFI(C_n) = \{4j - n \mid 1 \le j \le \lfloor \frac{n}{2} \rfloor\}$. Moreover, the friendly labelings f used to obtain these friendly indices have the additional property that $v_f(1) \ge v_f(0)$.

Proof. Induct on n. It is easy to show that $FFI(C_3) = \{1\}$ and $FFI(C_4) = \{0, 4\}$, and that the friendly labelings satisfy the additional requirement. Now we assume that the theorem holds for all k with $3 \le k \le n$, where $n \ge 4$.

Let f be a friendly labeling of C_{n-1} such that $e_{f^+}(1) = 2j$ for $1 \le j \le \lfloor \frac{n-1}{2} \rfloor$. Since $j \ge 1$, there is a (0, 1)-edge $xy \in E(C_{n-1})$. By inserting two new vertices u and v on the edge xy, we subdivide it into a path xuvy so as to generate the cycle C_{n+1} . Define two labelings g and h on C_{n+1} according to

$$g(z) = \begin{cases} f(z) & \text{if } z \notin \{u, v\}; \\ f(x) & \text{if } z = u; \\ f(y) & \text{if } z = v, \end{cases} \qquad h(z) = \begin{cases} f(z) & \text{if } z \notin \{u, v\}; \\ f(y) & \text{if } z = u; \\ f(x) & \text{if } z = v. \end{cases}$$

Then $v_g(1) = v_h(1) = v_f(1) + 1$, $v_g(0) = v_h(0) = v_f(0) + 1$, $e_{g^+}(1) = 2j$, and $e_{h^+}(1) = 2j + 2$, thereby completing the induction.

Appying the results from Section 2, we obtain

Theorem 4.2. For $n \ge 2$, $FPCI(C_{2n}) = \{-2j \mid 1 \le j \le n\}$.

Proof. Suppose f is a friendly labeling with $i_f^+(C_{2n}) = 4j - 2n$ for $1 \le j \le n$. Then, because of Corollary 2.3, we have $i_f^*(C_{2n}) = -\frac{1}{2}(2n + 4j - 2n) = -2j$, which is what we want to prove. \Box

Product-cordial index and friendly index

Theorem 4.3. For $n \ge 1$, $FPCI(C_{2n+1}) = \{-2j - 1 \mid 0 \le j \le n\}$.

Proof. Suppose f is a friendly labeling with $v_f(1) = v_f(0) + 1$ and $i_f^+(C_{2n}) = 4j - 2n$ for $1 \le j \le n$. Then by Corollary 2.4 we have $i_f^*(C_{2n+1}) = -\frac{1}{2}(2n+1-2+4j-2n-1) = -2j+1$. Hence we have $\{i_f^*(C_{2n+1}) \mid v_f(1) = v_f(0) + 1\} = \{-2j+1 \mid 1 \le j \le n\}.$

Along the same line of discussion in Section 3, we also find

$$\{i_f^*(C_{2n+1}) \mid v_f(1) = v_f(0) - 1\} = \{-2j - 1 \mid 1 \le j \le n\}.$$

Hence $\text{FPCI}(C_{2n+1}) = \{-2j - 1 \mid 0 \le j \le n\}.$

Corollary 4.4. For $n \ge 1$, $PCI(C_{2n+1}) = \{2j + 1 \mid 0 \le j \le n\}$ and for $n \ge 2$, $PCI(C_{2n}) = \{2j \mid 1 \le j \le n\}$.

Acknowledgments

This work is partially supported by FRG, Hong Kong Baptist University.

References

- [1] J. A. Bondy and U. S. R. Murty, Graph Theory with Applications, Macmillan, 1976.
- [2] M. Gao, The edge difference sets of the direct product of two paths, MSc thesis, Fuzhou Unviersity, 2010.
- [3] H. Kwong and S-M. Lee, On friendly index sets of generalized books, J. Combin. Math. Combin. Comput., 66 (2008), 43–58.
- [4] H. Kwong, S-M. Lee and H. K. Ng, On friendly index sets of 2-regular graphs, Discrete Math., 308 (2008), 5522–5532.
- [5] H. Kwong, S-M. Lee and H. K. Ng, On product-cordial index sets of cylinders, Congr. Numer., 206 (2010), 139–150.
- [6] S-M. Lee and H. K. Ng, On friendly index sets of bipartite graphs, Ars Combin., 86 (2008), 257–271.
- [7] E. Salehi, PC-labeling of a graph and its PC-set, Bull. Inst. Combin. Appl., 58 (2010), 112–121.
- [8] E. Salehi and D. Bayot, The friendly index set of $P_m \times P_n$, Util. Math., 81 (2010), 121–130.
- [9] E. Salehi and S-M. Lee, On friendly index sets of trees, Congr. Numer., 178 (2006), 173–183.
- [10] W. C. Shiu and H. Kwong, Full friendly index sets of $P_2 \times P_n$, Discrete Math., **308** (2008), 3688-3693.
- [11] W. C. Shiu and M. H. Ling, Extreme friendly indices of $C_m \times C_n$, Congr. Numer., 188 (2007), 175-182.
- [12] W. C. Shiu and M.H. Ling, Full friendly index sets of Cartesian products of two cycles, Acta Math. Sin. (Engl. Ser.), 26 (2010), 1233–1244.
- [13] W. C. Shiu and F. S. Wong, Extreme friendly indices of $C_m \times P_n$, Congr. Numer., 197 (2009), 65–75.
- [14] W. C. Shiu and F. S. Wong, Full friendly index sets of cylinder graphs, Australas. J. Combin., 52 (2012), 141–162.
- [15] F. S. Wong, Full friendly index sets of the Cartesian product of cycles and paths, M. Phil. Thesis, Department of Mathematics, Hong Kong Baptist University, 2010.

Wai Chee Shiu

Department of Mathematics, Hong Kong Baptist University, 224 Waterloo Road, Kowloon Tong, Hong Kong, China Email: wcshiu@hkbu.edu.hk

Harris Kwong

Department of Mathematical Sciences, State University of New York at Fredonia, Fredonia, NY 14063, U.S.A. Email: kwong@fredonia.edu