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ON THE TOTAL DOMATIC NUMBER OF REGULAR GRAPHS
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ABSTRACT. A set S of vertices of a graph G = (V, E) without isolated vertex is a total dominating
set if every vertex of V(G) is adjacent to some vertex in S. The total domatic number of a graph G
is the maximum number of total dominating sets into which the vertex set of G can be partitioned.
We show that the total domatic number of a random r-regular graph is almost surely at most r — 1,
and that for 3-regular random graphs, the total domatic number is almost surely equal to 2. We also
give a lower bound on the total domatic number of a graph in terms of order, minimum degree and
maximum degree. As a corollary, we obtain the result that the total domatic number of an r-regular

graph is at least r/(31n(r)).

1. Introduction

Let G = (V(G), E(G)) = (V, E) be a simple graph of order n with minimum degree 6(G) > 1. The
neighborhood of a vertex u is denoted by Ng(u) and its degree |Ng(u)| by dg(u) (briefly N(u) and
d(u) when no ambiguity on the graph is possible). The minimum and mazimum degree of a graph
G are denoted by § = §(G) and A = A(G), respectively. The open neighborhood of a set S C V
is the set N(S) = UyesN(v), and the closed neighborhood of S is the set N[S] = N(S)uUS. A
matching is a set of edges with no shared endvertices. A perfect matching M of G is a matching with
V(M) = V(G). The maximum number of edges of a matching in G is denoted by o/(G) (¢ for short).
If C = (v1,v2,...,v,) is a cycle and v;, vy, are distinct vertices of C, then the segment [v;, vi] of C' is
defined as the set {v;, viy1,vito,..., v}, where the subscripts are taken modulo n. If f(n) and g(n)

are real valued functions of an integer variable n, then we write f(n) = O(g(n)) (or f(n) = Q(g(n)))
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if there exist constants C' > 0 and ng such that f(n) < Cg(n) (or f(n) > Cg(n)) for n > ng. We also
write f(n) ~ g(n) if lim, o f(n)/g(n) = 1. We use [9] for terminology and notation which are not
defined here.

A set S of vertices of a graph G with minimum degree §(G) > 0 is a total dominating set if
N(S) = V(G). The minimum cardinality of a total dominating set, denoted by ~;(G), is called the
total domination number of G. A v;(G)-set is a total dominating set of G of cardinality v(G).

A partition of V(G), all of whose classes are total dominating sets in G, is called a total domatic
partition of G. The maximum number of classes of a total domatic partition of G is called the total
domatic number of G and is denoted by d¢(G). The total domatic number was introduced by Cockayne,
Dawes and Hedetniemi in [5] and has been studied by several authors (see for example, [2], 4] 1], 12]).
More information on the total domination number and the total domatic number can be found in the
monographs [7, 8] by Haynes, Hedetniemi and Slater.

We use the following standard model G, ; to generate r-regular graphs on n vertices uniformly: to
construct a random r-regular graph on the vertex set {vi,va,:.., vy}, take a random matching on
the vertex set {v11,v1.2,...,V1,,21,...,02y,...,0pn,} and collapse each set {v;1,v;2,...,v;,} into a
single vertex v;. If the resulting graph contains any loops or multiple edges, discard it. All r-regular
graphs are generated uniformly with this method. Wormald [10] has shown that 3-regular graphs are
almost surely Hamiltonian, and that the model G,, , and H,, G, ,—2 are contiguous, meaning roughly
that events that are almost sure in one model are‘almost sure in the other. Thus if an event is almost
surely true in a random graph constructed from a random Hamilton cycle plus a random matching,
then it is almost surely true in a random 3-regular graph. For more details the reader is referred to
[10].

We make use of the following results.

Theorem A. ([10]) If G is a 3-regular random graph, then a.a. G consists of a Hamilton cycle plus

a random matching.

Theorem B. ([5]) For every graph G of order n without isolated vertices,

d;(G) < min {(5(G), %ZLG) } .

2. A lower bound on the total domatic number

In this section we will show that the total domatic number of a random 3-regular graph is at least
2.

Definition 2.1. Let G be a 3-regular graph obtained from a cycle C' = (vi,ve, -+ ,v,) by adding a
perfect matching M. An edge v;v; 41 of C (the indices are taken modulo n) is a 4-edge if v; and v;11
have matching partners v; and vy, respectively, such that the cycle segments [v;,v;] and [vi41,vy] are

disjoint and have cardinality 0 (mod 4).

Lemma 2.2. Let G = C UM as above. If C has a 4-edge then d;(G) > 2.
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Proof. Let vjvi41 be a 4-edge of C, and let vj, v} be their matching partners, respectively. Without
loss of generality, we may assume that i = 1. If n = 0 (mod 4), then obviously S1 = {v4i+1,v4i42 | 0 <
i <% —1} and Sy = V(G) — Sp are two disjoint total dominating sets and hence di(G) > 2.

Now let n = 2 (mod 4). Then n = 4s + 2 for some positive integer s. If n = 6, then the result
is immediate. Assume that n > 10. Then £ = 1 (mod 4) and j = 0 (mod 4). Let k = 44+ 1,
i = 4r and define S = {v4i41,v4i42 | 0 < @ < % — 1} U {vgiqs, v | r < i < s}ifj=k+3, or
S1 = {v4it1,V4i42 | 0 < i < % — 1} U{vgiqs,vas | 7 <i < s} U{vgi,v4541 | €+1 <i<r—1} when
j > k+3and Sy = V(G) — S;. Obviously, S; and S, are two disjoint total dominating sets. Thus
di(G) > 2 and the proof is complete. O

The proof of the following lemma is essentially similar to the proof of Lemma 2 of [6].

Lemma 2.3. Let G be a graph obtained from a cycle C = (v1,ve,- -+, vy,) of even order by adding a
random matching M. Then G has a 4-edge a.a.

Proof. Define random variables X; for i =1,2,--- ,n by

{ 1 if vivigr € E(C)isa4d — edge
X; =

0 otherwise.

and let X = Z?:l X;. Then each X, has expectation

B(X) = P(Xi=1) = J&%4 1) = =+ O(1/n),
and variance
var(X;) = BE(X?) — E(X;)? = BE(X;) — B(X;)? = % +0(1/n).

The covariance of X; and X for ¢ < j equals

cov(X;, Xj) = E(X;X;) — E(X;)E(X;)
1/1024 — (1/32)2 +O(1/n) if i<j—1
= 8(5057) — (1/32)2 4+ 0(1/n) if i=j—1andn=2 (mod 4)
0—(1/32)2 4+ O(1/n) if i=j—1andn=0,1,3 (mod 4)

 Joam i i<j-1
-l o i i=j—1.

Note that X;X;y; = 1 implies that n = 2 (mod 4). To see this, let vx be the matching partner of
vit1. If X; X141 = 1, then vv;41 and v;41v;42 are 4-edges and thus n + 2 = |[viy1, vi]| + |[vk, vit1]| =
04+ 0=0 (mod 4), ie,n=2(mod4).

Hence the random variable X has expectation

E(X) = Zn: E(X;) = n/32+0(1) = O(n)
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and variance

var(X) = > var(X) + 230, ;4 cov(Xy, Xj) + 2300 cov(Xi, Xit1)

= %n +23;10(1/n) + 25" ,0(1)

= O(n)
By Chebyschev’s inequality, we have
var(X) O(n)
X=0< = = 0(1/n).
PP =0 = T2 = ogmyy ~ O

Hence X > 0 a.a., i.e., G has a 4-edge. Il

An immediate consequence of Theorem [A] and Lemmas [2.2] and [2.3] now follows.

Theorem 2.4. If G is a random 3-regular graph, then d;(G) > 2 aa.

3. An upper bound for the total domatic number
The proof of the following theorem is essentially similar to the proof of Theorem 2 of [6].
Theorem 3.1. Let r > 3 and let G be a random r-regular graph. Then d;(G) <r — 1.

Proof. Suppose to the contrary that G is an r-regular graph with d;(G) > r — 1. It follows from
Theorem [B| that d;(G) = r. Let Vi, Vs, -+, V, be a total domatic partition for G. Then each vertex
has a neighbor in every V;. Since every vertex has precisely r neighbors, we deduce that every vertex
in V; has precisely one neighbor in V; for each j. Hence,

INw)NV;=1 forallve V(G)andie {1,2,...,r}.

For i # j we deduce that

(3.1) Eij :={uv e E(G)|u € V;,v € V;} is a perfect V; — V; matching
and so

n
(32) Vil = Vol =---=Vi] = .

It follows from the above argument that every r-regular graph with d; = r on the vertex set V(G)
can be obtained by first partitioning V(G) into r sets, all of equal cardinality, and then adding a
perfect matching between the vertices of every partition, implying that n/r is even, and finally adding
a perfect matching between all pairs of partition sets. Suppose n is a multiple of r. Since the sets are

not distinguishable, the first step can be done in

T
n/r,n/r,---n/r r!

ways, the second step can be done in

(- =gy =
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ways, and the last step can be done in
N, (r

AT Y

()
ways, since there are (4) different pairs of sets V;, Vj}, and between each pair a matching can be added
in (%)! ways. Hence, an upper bound on the number of labeled r-regular graphs of order n with d; = r,

is

n Loyne GRS
( n/r,n/r-,n/r )T!((T)!) 202 ((ge))”

n! n, . =1

= (P
()Yt 27/2( (3
and hence, by Stirling’s formula (n! ~ (2)"v/2mn(1 + - + O(2))) the upper-bound is, for large n

and constant r,

(B)"V2rn(1+ 5, + O(e)) e (%) 7

r(r—1)

[v?2 1+ 2 +0(% : : :
Denote this last expression by DOMT(r,n). The total number of r-regular graphs, as given in [3]
is asymptotic to
e )t Ao (l 4 5+ O(5h)
(rm/2) 2Py 2P ()Rl + 1 + O(s)
Denote this last expression by TOTAL(r,n). Then the proportion of r-regular graphs with d, = r,
DOMT(r,n)/TOTAL(r,n), is at most

e

r! (r=1)(r=2)
(L rom =)
Since Tf—_'l is less than 1, so the limit DOMT(r, n)/TOTAL(r, n) tends to 0, as desired. This completes
the proof. O

4. Total domatic number and minimum degree

If G is a graph of order n, then Zelinka [12] gave the following lower bound on the total domatic

number
n

n—0(G)+ 1J'
The proof of the following theorem is essentially similar to the proof of Theorem 3 of [6] and we leave

di(G) = |

it to the reader.

Theorem 4.1. Let GG be a graph of order n with minimum degree § and maximum degree A, and let

k be a nonnegative integer. If

e(A? + 1)k(1 — %)5 <1,

then di(G) > k.

For the special case of a regular graph, we obtain a significant improvement of Zelinka’s bound.
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Corollary 4.2. Let G be an r-regular graph with » > 3. Then

r

3lnr’

di(G) >

Proof. With A =4 =r and k = 57— we have

e(A% + 1)k(1 — %)5 = e(r?+1)k(1 - %)”

< 6(7“2—}—1)31;7,6731:”"
_e(r?41)
—  3r2lnr
< 1
Now it follows from Theorem {4.1| that d;(G) > Slr:(r)' O

A question that arises naturally is whether the bound in Corollary [£.2}is best possible. For a positive
integer r, let f(r) be the minimum total domatic number of all r-regular graphs. By Corollary we

have f(r) > 3%(74) On the other hand, it follows from [1] that there exist r-regular graphs of order n

with total domination number (1 + 0(1))%. According to Theorem [B| the total domatic number

of those graphs is at most n/v(G) = (1 + 0(1))%7,—). This proves f(r) = Q(%), and the order of

magnitude of the bound in Corollary is best possible.
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