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ON THE VALUES OF INDEPENDENCE AND DOMINATION POLYNOMIALS
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Abstract. Let G be a simple graph of order n. We consider the independence polynomial and the

domination polynomial of a graph G. The value of a graph polynomial at a specific point can give

sometimes a very surprising information about the structure of the graph. In this paper we investigate

independence and domination polynomial at −1 and 1.

1. Introduction

Let G = (V,E) be a simple graph. For any vertex v ∈ V , the open neighborhood of v is the set

N(v) = {u ∈ V |uv ∈ E} and the closed neighborhood is the set N [v] = N(v) ∪ {v}. For a set

S ⊆ V , the open neighborhood of S is N(S) =
⋃
v∈S N(v) and the closed neighborhood of S is

N [S] = N(S) ∪ S. The corona of two graphs G1 and G2, as defined by Frucht and Harary in [12], is

the graph G = G1 ◦G2 formed from one copy of G1 and |V (G1)| copies of G2, where the ith vertex of

G1 is adjacent to every vertex in the ith copy of G2. The corona G ◦K1, in particular, is the graph

constructed from a copy of G, where for each vertex v ∈ V (G), a new vertex v′ and a pendant edge

vv′ are added. The join of two graphs G1 and G2, denoted by G1 + G2 is a graph with vertex set

V (G1) ∪ V (G2) and edge set E(G1) ∪ E(G2) ∪ {uv|u ∈ V (G1) and v ∈ V (G2)}.
Graph polynomials are a well-developed area useful for analyzing properties of graphs. The value of

a graph polynomial at a specific point can give sometimes a very surprising information about the

structure of the graph. Balister, et al. in [9] proved that for any graph G, |q(G,−1)| is always a power
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of 2, where q(G, x) is interlace polynomial of a graph G. Stanley in [14] proved that (−1)nP (G,−1)

is the number of acyclic orientations of G, where P (G,λ) is the chromatic polynomial of G and

n = |V (G)|.

In this paper we study independence and domination polynomial of a graph at −1 and 1. For conve-

nience, the definition of the independence and domination polynomial of a graph will be given in the

next sections.

We denote the path of order n, the cycle of order n, and the wheel of order n, by Pn, Cn, and Wn,

respectively.

2. The independence polynomial of a graph at −1 and 1

An independent set of a graph G is a set of vertices where no two vertices are adjacent. The inde-

pendence number is the size of a maximum independent set in the graph and denoted by α(G). For

a graph G, let ik denote the number of independent sets of cardinality k in G (k = 0, 1, . . . , α). The

independence polynomial of G,

I(G, x) =

α∑
k=0

ikx
k,

is the generating polynomial for the independent sequence (i0, i1, i2, . . . , iα).

I(G; 1) = i0 + i1 + i2 + . . .+ iα equals the number of independent sets of G, and I(G;−1) = i0 − i1 +

i2− . . .+ (−1)αiα = f0(G)−f1(G), where f0(G) = i0 + i2 + i4 + . . . , f1(G) = i1 + i3 + i5 + . . . are equal

to the numbers of independent sets of even size and odd size of G, respectively. I(G;−1) is known as

the alternating number of independent sets.

We need the following theorem:

Theorem 2.1. ([13]) If w ∈ V (G) and uv ∈ E(G), then the following equalities hold:

(i) I(G;x) = I(G− w;x) + xI(G−N [w];x),

(ii) I(G;x) = I(G− uv;x)− x2I(G−N(u) ∪N(v);x).

A vertex v is pendant if its neighborhood contains only one vertex; an edge e = uv is pendant if one

of its endpoints is a pendant vertex.

Theorem 2.2. If u ∈ V (G) is a pendant vertex of G and v ∈ N(u), then

I(G;−1) = −I(G−N [v];−1).

Proof. Since u ∈ V (G) is a pendant vertex of G and v ∈ N(u), Theorem 2.1 assures that I(G;x) =

I(G − v;x) + xI(G − N [v];x) = (1 + x)I(G − {u, v};x) + xI(G − N [v];x). Therefore I(G;−1) =

−I(G−N [v];−1).
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Theorem 2.3. For n ≥ 1, the following hold:

(i) I(P3n−2,−1) = 0 and I(P3n−1,−1) = I(P3n,−1) = (−1)n;

(ii) I(C3n,−1) = 2(−1)n , I(C3n+1,−1) = (−1)n and I(C3n+2,−1) = (−1)n+1;

(iii) I(W3n+1,−1) = 2(−1)n − 1 and I(W3n,−1) = I(W3n+2,−1) = (−1)n − 1.

Proof.

(i) We prove by induction on n. For n = 1, since I(P1, x) = 1 + x, I(P2, x) = 1 + 2x and

I(P3, x) = 1 + 3x+ x2, we have I(P1,−1) = 0 and I(P2,−1) = I(P3,−1) = −1. Suppose that

the result is true for any k ≤ 3n. By Theorem 2.1(i), I(Pk+1, x) = I(Pk, x) + xI(Pk−1, x),

therefore

I(P3n+1,−1) = I(P3n,−1)− I(P3n−1,−1) = (−1)n − (−1)n = 0;

I(P3n+2,−1) = I(P3n+1,−1)− I(P3n,−1) = 0− (−1)n = (−1)n+1;

I(P3n+3,−1) = I(P3n+2,−1)− I(P3n+1,−1) = (−1)n+1 − 0 = (−1)n+1

(ii) Since I(C3, x) = 1 + 3x, I(C4, x) = 1 + 4x + 2x2, I(C5, x) = 1 + 5x + 5x2 and I(C6, x) =

1 + 6x + 9x2 + 2x3, we have I(C3,−1) = 2(−1), I(C4,−1) = −1 and I(C5,−1) = (−1)2.

By Theorem 2.1 and Part (i), I(Cn, x) = I(Pn−1, x) + xI(Pn−3, x). Therefore I(Cn,−1) =

I(Pn−1,−1) − I(Pn−3,−1). Now it is easy to see that I(C3k,−1) = 2(−1)k, I(C3k+1,−1) =

(−1)k and I(C3k+2,−1) = (−1)k+1.

(iii) By Theorem 2.1(i), I(Wn, x) = I(Cn−1, x) + x. Now by part (ii) we have the result.

In the following theorem we compute the number of independent sets of paths, cycles and wheels:

Theorem 2.4. (i) For any positive integer n,

I(Pn, 1) =

bn+1
2
c∏

s=1

(
1 + 4 cos2

sπ

n+ 2

)
.

(ii) For any integer n ≥ 3,

I(Cn, 1) =

bn
2
c∏

s=1

(
1 + 4 cos2

(s− 1
2)π

n

)
.

(iii) For any integer n ≥ 4,

I(Wn, 1) = 1 +

bn−1
2
c∏

s=1

(
1 + 4 cos2

(s− 1
2)π

n− 1

)
.

Proof. We know that (see [8]), I(Pn, x) =
∏bn+1

2
c

s=1

(
2x+ 1 + 2x cos 2sπ

n+2

)
, I(Cn, x) =

bn
2
c∏

s=1

(
2x+ 1 + 2x cos

(2s− 1)π

n

)
and I(Wn, x) = I(Cn−1, x) + x. By substituting x = 1, we have

the results.

www.SID.ir

www.sid.ir


Arc
hive

 of
 S

ID

52 S. Alikhani and M. H. Reyhani

We recall the following theorem:

Theorem 2.5. ([3, 11]) If G has t connected components G1, . . . , Gt, then I(G, x) =
∏t
i=1 I(Gi, x).

Theorem 2.6. For any tree T , I(T ;−1) ∈ {−1, 0, 1}, i.e., the number of independent sets of even

size varies by at most one from the number of independent sets of odd size.

Proof. By induction on n = |V (T )|. It is not hard to see that for any tree with order 1, 2, 3, 4, 5 we

have the result. Now suppose that |V (T )| = n + 1 ≥ 5, v is a pendant vertex of T , N(v) = {u} and

T1, T2, . . . , Tk are the trees of the forest T −N [u]. According to Theorem 2.1(ii), we have:

I(T ;x) = I(T − uv;x)− x2I(T −N(u) ∪N(v);x) =

(1 + x)I(T − v;x)− x2I(T −N [u];x) =

(1 + x)I(T − v;x)− x2I(T1;x)I(T2;x) . . . I(Tk;x)

Therefore I(T ;−1) = −I(T1;−1)I(T2;−1) . . . I(Tk;−1) ∈ {−1, 0, 1}, since every tree Ti has less than

n vertices, by the induction hypothesis, I(Ti;−1) ∈ {−1, 0, 1}.

Theorem 2.7. If F is a forest, then I(F ;−1) ∈ {−1, 0, 1}.

Proof. If T1, T2, . . . , Tk, k ≥ 1, are the connected components of F , then I(F ;x) =

I(T1;x)I(T2;x) . . . I(Tk;x), because F = T1 ∪ T2 ∪ . . . ∪ Tk. Now, the conclusions follow from Theo-

rem 2.6.

Theorem 2.8. ([3, 11]) I(G1 +G2;x) = I(G1;x) + I(G2;x)− 1.

Theorem 2.9. For any integer k there is some connected graph G such that I(G;−1) = k.

Proof. First suppose that k is a negative integer. It is easy to check that I(Ka,a,...,a, x) = n(1 +x)a−
(a− 1), and therefore I(Ka,a,...,a,−1) = 1− a i.e., for any negative integer k there is some connected

graph G such that I(G;−1) = k. Now suppose that k is a positive integer. Let Gi, 1 ≤ i ≤ k, be

k graphs with I(Gi;−1) = 2 for every i ∈ {1, 2, . . . , k} (for example we can put Gi = C6 for every

i ∈ {1, 2, . . . , k}) and H = G1 +G2 + . . .+Gk. Then

I(H,x) = I(G1, x) + I(G2, x) + . . .+ I(Gk, x)− (k − 1)

and consequently I(H,−1) = k + 1. The case of k = 0 follows from Theorem 2.6.
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3. The domination polynomial at −1 and 1

A set S ⊆ V is a dominating set if N [S] = V , or equivalently, every vertex in V \S is adjacent to

at least one vertex in S. An i-subset of V (G) is a subset of V (G) of cardinality i. Let D(G, i) be

the family of dominating sets of G which are i-subsets and let d(G, i) = |D(G, i)|. The polynomial

D(G, x) =

|V (G)|∑
i=1

d(G, i)xi is defined as domination polynomial of G ([1, 4, 5]). Every root of D(G, x)

is called a domination root of G. The set of all roots of D(G, x) is denoted by Z(D(G, x)). Let

A ⊆ B ⊆ V . Define DA,B(G, i) as follows

DA,B(G, i) = {S ∈ D(G, i) | S ∩B = A}.

Let dA,B(G, i) = |DA,B(G, i)| and define DA,B(G, x) =
∑|V |

i=1 dA,B(G, i)xi.

We shall consider the value of domination polynomial at −1 and 1.

Note that D(G; 1) = d(G, 1) + d(G, 2) + . . . + d(G,n) equals the number of dominating sets of G,

and D(G;−1) = −d(G, 1) + d(G, 2) − d(G, 3) + . . . + (−1)nd(G,n) = g0(G) − g1(G), where g0(G) =

d(G, 2) + d(G, 4) + d(G, 6) + . . . , g1(G) = d(G, 1) + d(G, 3) + d(G, 5) + . . . are equal to the numbers

of dominating sets of even size and odd size of G, respectively. We call D(G;−1) as the alternating

number of dominating sets.

The following theorem gives the value of domination polynomial of complete graphs, complete bipartite

graphs and stars at 1 and −1:

Theorem 3.1. (i) D(Kn,−1) = 1, D(Km,n,−1) ∈ {±1, 3} and D(K1,n,−1) ∈ {−1, 1}.
(ii) D(Kn, 1) = D(K1,n, 1) = 2n + 1 and D(Km,n, 1) = (2m − 1)(2n − 1) + 2.

Proof. The results follow easily from D(Kn, x) = (1 + x)n + 1 and D(Km,n, x) = ((1 + x)m − 1)((1 +

x)n − 1) + xm + xn (see [4]).

Theorem 3.2. Let G be a graph. If G has a vertex v of degree k such that N [v] is a clique, then

D(G, x) = xD(G−N [v], x) + (1 + x)
∑

∅6=A⊆N(v)

DA,N(v)(G− v, x).

where N2, . . . , N2k are all nonempty subsets of N(v). Moreover, D(G,−1) = −D(G−N [v],−1).

Proof. Suppose that N(v) = {v1, . . . , vk}. Let N1 = Ø, N2, . . . , N2k be all subsets of N(v). Let A be

a dominating set of G with cardinality i. We have the following cases:

1) v ∈ A and A∩N(v) = N1, then A−{v} is a dominating set of G−N [v] with cardinality i−1.

2) v ∈ A and there exists an index t, 2 ≤ t ≤ 2k such that A∩N(v) = Nt. Since N [v] is a clique,

A− {v} is a dominating set of G− v with cardinality i− 1 and (A− {v}) ∩N(v) = Nt.

3) v /∈ A. Therefore A∩N(v) 6= Ø and there exists an index l, 2 ≤ l ≤ 2k such that A∩N(v) = Nl.

Therefore A is a dominating set of G− v with cardinality i and A ∩N(v) = Nl.
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By considering the above cases we obtain that

d(G, i) = d(G−N [v], i− 1) +
2k∑
r=2

dNr,N(v)(G− v, i− 1) +
2k∑
r=2

dNr,N(v)(G− v, i).

Therefore we have

D(G, x) = xD(G−N [v], x) + (1 + x)
2k∑
r=2

DNr,N(v)(G− v, x).

Now, by putting x = −1 in the above equality the proof is complete.

As a consequence of the previous theorem we determine the exact value of the domination polynomial

of a forest at −1. We recall the following theorem:

Theorem 3.3. ([4]) If G has t connected components G1, . . . , Gt, then D(G, x) =
∏t
i=1D(Gi, x).

Theorem 3.4. Let F be a forest. Then D(F,−1) = (−1)α(F ).

Proof. By Theorem 3.3 it is sufficient to prove the theorem for trees. We prove this theorem by

induction on n, where n is the order of tree T . For n = 1, 2 there is nothing to prove. Now, Let

n ≥ 3. Let u0 be an arbitrary vertex of T . Assume that w is a vertex with maximum distance of u0.

Clearly d(w)=1. Let vw ∈ E(T ). Obviously, at most one of the neighbors of v has degree more than

one. Since n ≥ 3, then d(v) ≥ 2. Assume that d(v) = t and {u1, . . . , ut−1} ⊆ N(v) and d(ui)=1, for

i = 1, . . . , t− 1. Let H = T − {v, u1, . . . , ut−1}. Clearly, H is a tree and α(T ) = α(H) + t− 1. Now,

By Theorems 3.3 and 3.2 and induction hypothesis we have

D(T,−1) = −D(T −N [u1],−1) = −D(H,−1)(−1)t−2 = (−1)α(H)(−1)t−1.

Therefore D(T,−1) = (−1)α(T ) and the proof is complete.

By Theorem 3.4 we have the following corollary:

Corollary 3.5. For any forest F , D(F ;−1) ∈ {−1, 1}, i.e., the number of dominating sets of even

size varies by at most one from the number of dominating sets of odd size.

Lemma 3.6. ([2]) If n is a positive integer, then

D(Cn,−1) =


3 if n ≡ 0 (mod 4);

−1 otherwise.

Corollary 3.7. For any n ≥ 4, D(Wn,−1) ∈ {−1, 3}.
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Proof. Since for every n ≥ 4, D(Wn, x) = x(1 + x)n−1 + D(Cn−1, x) ([4]), the result follows from

Lemma 3.6.

SinceD(Pn, x) = x[D(Pn−1, x)+D(Pn−2, x)+D(Pn−3, x)] andD(Cn, x) = x[D(Cn−1, x)+D(Cn−2, x)+

D(Cn−3, x)] (see [6, 7]) we have the following theorem:

Theorem 3.8. (i) For every n ≥ 4, D(Pn, 1) = D(Pn−1, 1)+D(Pn−2, 1)+D(Pn−3, 1) with initial

values D(P1, 1) = 1, D(P2, 1) = 3 and D(P3, 1) = 5.

(ii) For every n ≥ 4, D(Cn, 1) = D(Cn−1, 1) + D(Cn−2, 1) + D(Cn−3, 1) with initial values

D(C1, 1) = 1, D(C2, 1) = 3 and D(C3, 1) = 7.

(iii) For any n ≥ 4, D(Wn, 1) = D(Cn−1, 1) + 2n−1.

Theorem 3.9. Let G be a unicycle graph. Then D(G,−1) ∈ {±1,±3}.

Proof. We prove the theorem by induction on n = |V (G)|. If n = 3, then G = K3 and there is

nothing to prove. Now, let n ≥ 4. If G = Cn, then by Lemma 3.6, D(G,−1) ∈ {−1, 3}. If G 6= Cn,

then there exists a vertex u such that d(u) = 1. Suppose that N(u) = {v}. Clearly, at most one of

the components of G − N [u] is a unicycle graph. Now, by Theorems 3.3, 3.2 and 3.4 and induction

hypothesis the proof is complete.

Theorem 3.10. ([10]) For every graph, the number of dominating sets is odd.

Theorem 3.11. Let G be a graph. Then D(G, r) is odd for every odd integer r. In particular D(G,−1)

is odd.

Proof. Suppose that r, s are two odd integers. Clearly, for every graph G, D(G, r) ≡ D(G, s) (mod 2).

Therefore D(G, r) ≡ D(G, 1) (mod 2). So by Theorem 3.10, we conclude D(G, r) is odd. Therefore

D(G,−1) is odd.

The following corollary is an immediate consequence of Theorem 3.11.

Corollary 3.12. Every integer domination root of a graph G is even.

We need the following theorem to prove another results:

Theorem 3.13. ([4]) Let G1 and G2 be graphs of orders n1 and n2, respectively. Then

D(G1 +G2, x) =
(

(1 + x)n1 − 1
)(

(1 + x)n2 − 1
)

+D(G1, x) +D(G2, x).

The following corollary is an immediate consequence of above theorem:
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Corollary 3.14. For any two graphs G1 and G2

D(G1 +G2,−1) = D(G1,−1) +D(G2,−1) + 1.

Theorem 3.15. For any odd integer n = 2k − 1 (k ∈ Z), there is some connected graph G such that

D(G;−1) = n.

Proof. Let Gi (1 ≤ i ≤ k) be k graphs with D(Gi,−1) = 1 for every i ∈ {1, 2, . . . , k} and H =

G1 +G2 + . . .+Gk. Then

D(H,x) = D(G1, x) + . . .+D(Gk, x) + (k − 1)

and consequently, D(H,−1) = k+ (k− 1) = 2k− 1 = n. So the result is true for positive odd integer.

Now we consider negative odd integer. Let Gi (1 ≤ i ≤ k) be k graphs with D(Gi,−1) = −3 for every

i ∈ {1, 2, . . . , k} and H = G1 +G2 + . . .+Gk. Then

D(H,x) = D(G1, x) + . . .+D(Gk, x) + (k − 1)

and consequently, D(H,−1) = −3k + (k − 1) = −2k − 1.

As an example for positive odd integer (in above theorem) we consider complete n-partite graphs. It

is easy to check that for the complete n-partite graph Km1,m2,...,mn we have

D(Km1,m2,...,mn , x) =

mn∑
i=m1

xi +
n∑
i=2

((1 + x)mi − 1)((1 + x)m1+...+mi−1 − 1).

Suppose that for every 1 ≤ i ≤ n the number mi is even. By above formula we have

D(Km1,m2,...,mn ,−1) =

mn∑
i=m1

(−1)i +

n∑
2

1

Since all of mi are even, we have D(Km1,...,mn ,−1) = 2n− 1.

Now we give an example for negative odd integer (in above theorem). Suppose that G is a unicycle

graph G with D(G,−1) = −3 (see Theorem 3.9). Consider H = G+G+ . . .+G︸ ︷︷ ︸
n−times

. It is easy to see

that D(H,−1) = −2k + 1.

In this paper we studied independence and domination polynomial at −1 and 1. There are many

graphs which have −2 as domination roots (as an example all graphs of the form H ◦ K1 have this

property, see [1]). We think that the study of the value of domination polynomial of a graph at −2 is

important, because we have the following conjecture:

Conjecture 3.16. If r is an integer domination root of a graph, then r = 0 or r = −2.
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