

Transactions on Combinatorics

ISSN (print): 2251-8657, ISSN (on-line): 2251-8665 Vol. 01 No. 2 (2012), pp. 41-48. © 2012 University of Isfahan

SOME RESULTS ON CHARACTERIZATION OF FINITE GROUPS BY NON-COMMUTING GRAPH

M. R. DARAFSHEH AND P. YOUSEFZADEH*

Communicated by Alireza Abdollahi

ABSTRACT. The non commuting graph $\nabla(G)$ of a non-abelian finite group G is defined as follows: its vertex set is G-Z(G) and two distinct vertices x and y are joined by an edge if and only if the commutator of x and y is not the identity. In this paper we prove some new results about this graph. In particular we will give a new proof of Theorem 3.24 of [A. Abdollahi, S. Akbari, H. R, Maimani, Non-commuting graph of a group, J. Algebra, 298 (2006) 468-492.]. We also prove that if G_1, G_2, \ldots, G_n are finite groups such that $Z(G_i) = 1$ for $i = 1, 2, \ldots, n$ and they are characterizable by non-commuting graph, then $G_1 \times G_2 \times \cdots \times G_n$ is characterizable by non-commuting graph.

1. Introduction

Let G be a finite group. The non-commuting graph $\nabla(G)$ of G is defined as follows: the set of vertices of $\nabla(G)$ is G - Z(G), where Z(G) is the center of G and two vertices x and y are connected whenever $[x,y] \neq 1$, where [x,y] is the commutator of x and y. In [1] the authors put forward a conjecture as follows:

Conjecture 1. Let G be a finite non-abelian nilpotent group and H be a group such that $\nabla(G) \cong \nabla(H)$. Then H is nilpotent.

In this paper we prove this conjecture in the case of |G| = |H|. In fact this is proved in [1], but our proof is different. We say G is factorizable if G is isomorphic to a direct product of its proper subgroups. We will show that if G and H are two centerless groups and $\nabla(G) \cong \nabla(H)$, then G is factorizable if and only if H is factorizable. Moreover if $G \cong G_1 \times G_2 \times \cdots \times G_n$, then there are

MSC(2010): Primary: 05C25; Secondary: 20D60.

Keywords: non commuting graph, nilpotent groups, finite groups.

Received: 4 June 2012, Accepted: 16 June 2012.

*Corresponding author.

subgroups of H say H_1, H_2, \ldots, H_n such that $H \cong H_1 \times H_2 \times \cdots \times H_n$. G is called characterizable by non-commuting graph if, when H is an arbitrary group with $\nabla(G) \cong \nabla(H)$, then $G \cong H$. We prove that if G_1, G_2, \ldots, G_n are finite groups such that $Z(G_i) = 1$ for $i = 1, 2, \ldots, n$ and G_i is characterizable by non-commuting graph, then $G_1 \times G_2 \times \cdots \times G_n$ is characterizable by non-commuting graph. In [3] Ron Solomon and Andrew Woldar proved that all finite non-abelian simple groups are characterizable by non-commuting graph.

2. Preliminaries

Lemma 2.1. Let G and H be two finite non-abelian groups. If $\nabla(G) \cong \nabla(H)$, then $\nabla(C_G(A)) \cong \nabla(C_H(\varphi(A)))$ for all $\emptyset \neq A \subseteq G - Z(G)$, where φ is the isomorphism from $\nabla(G)$ to $\nabla(H)$ and $C_G(A)$ is non-abelian.

Proof. It is sufficient to show that $\varphi \mid_{V(C_G(A))}: V(C_G(A)) \longrightarrow V(C_H(\varphi(A)))$ is onto, where $\varphi \mid_{V(C_G(A))}$ is the restriction of φ to $V(C_G(A))$ and

$$V(C_G(A)) := C_G(A) - Z(C_G(A)),$$

$$V(C_H(\varphi(A))) := C_H(\varphi(A)) - Z(C_H(\varphi(A)))$$

Assume that d is an element of $V(C_H(\varphi(A)))$. Then $d \in H - Z(H)$ and so there exists an element c of G - Z(G) such that $\varphi(c) = d$. From $d = \varphi(c) \in C_H(\varphi(A))$, it follows that $[\varphi(c), \varphi(g)] = 1$ for all $g \in A$ and since φ is an isomorphism from $\nabla(G)$ to $\nabla(H)$, [c,g] = 1 for all $g \in A$. Therefore $c \in C_G(A)$. But $d \notin Z(C_H(\varphi(A)))$, so for an element $x \in C_H(\varphi(A))$ we have $[x,d] \neq 1$. Hence x is an element of H that does not commute with $d \in H$. This implies that $x \in H - Z(H)$. Thus there exists $x' \in G - Z(G)$, such that $\varphi(x') = x$. It is easy to see that $[x',c] \neq 1$ and therefore $c \notin Z(C_G(A))$. Therefore $c \in C_G(A) - Z(C_G(A)) = V(C_G(A))$. Hence $\varphi(c) = d$.

We denote by I_G the set of all bijections $\phi: G \longrightarrow G$ such that [x, y] = 1 if and only if $[\phi(x), \phi(y)] = 1$ for all $x, y \in G$. It is easy to see that I_G is a subgroup of S_G , where S_G is the symmetric group on G.

Lemma 2.2. Let G be a finite non-abelian group. Then $Aut(G) \leq I_G$, where Aut(G) is the automorphism group of G.

Proof. Suppose that $\psi \in Aut(G)$. If $x, y \in G$ are two arbitrary elements of G, then [x, y] = 1 if and only if $([x, y])\psi = 1$ and $[x\psi, y\psi] = 1$ and the proof is complete.

Lemma 2.3. Let G and H be two finite non-abelian groups with $\nabla(G) \cong \nabla(H)$ and |G| = |H|. Then $I_G \cong I_H$.

Proof. Since $\nabla(G) \cong \nabla(H)$, |G - Z(G)| = |H - Z(H)|. But |G| = |H| and so |Z(G)| = |Z(H)|. Thus there is a bijection α from Z(G) to Z(H). Moreover since $\nabla(G) \cong \nabla(H)$, there is a graph isomorphism

 φ from G - Z(G) to H - Z(H). We define $\psi : I_G \longrightarrow I_H$ by

$$\psi(\phi)(x) = \varphi \circ \phi \mid_{G - Z(G)} \circ \varphi^{-1}(x)$$

if $x \notin Z(H)$ and

$$\psi(\phi)(x) = \alpha \circ \phi \mid_{Z(G)} \circ \alpha^{-1}(x)$$

if $x \in Z(H)$, for all $\phi \in I_G$, where \circ denote the composition of functions. Routine checking shows that ψ is an isomorphism from I_G to I_H and so $I_G \cong I_H$.

3. Results and Properties

Proposition 3.1. Let G be a finite non-abelian nilpotent group and H be a group such that $\nabla(G) \cong \nabla(H)$ and |G| = |H|. Then H is nilpotent.

Proof. We use induction on |G| = n. Clearly if |G| = 1, then the assertion holds. Suppose the result is valid for all groups K, with |K| < n. We will prove Proposition 3.1 when |G| = n. Since G is nilpotent, we can write $G \cong P_1 \times P_2 \times \cdots \times P_k$, where P_i is the p_i -Sylow subgroup of G say of order $p_i^{\alpha_i}$ for i = 1, 2, ..., k.

If G is a p-group for some prime number p, then since |G| = |H|, H is a p-group too and so H is nilpotent. If $G = P \times A$, where P is a p-group and A is an abelian group, then $\frac{G}{Z(G)}$ is a p-group and since |G| = |H| and |Z(G)| = |Z(H)|, we conclude that $\frac{H}{Z(H)}$ is a p-group and so H is nilpotent in this case.

Let φ be an isomorphism from $\nabla(G)$ to $\nabla(H)$. We extend φ to H by defining $\varphi(z) = \psi(z)$, where ψ is an arbitrary bijective map from Z(G) to Z(H).

By above argument we may assume that k > 1 and G is not product of a p-group and an abelian group.

If $C_G(P_i) = G$, for all i = 1, 2, ..., k, then $P_i \leq Z(G)$ for i = 1, 2, ..., k and so G = Z(G), a contradiction. Hence there is a Sylow-subgroup P_i of G such that $C_G(P_i) \neq G$. But $C_G(P_i)$ is nilpotent and $\nabla(C_G(P_i)) \cong \nabla(C_H(\varphi(P_i)))$ by Lemma 2.1, where φ is an isomorphism from $\nabla(G)$ to $\nabla(H)$ and so $C_H(\varphi(P_i))$ is nilpotent by inductive hypothesis. Without loss of generality we assume that

$$G = P_1 \times P_2 \times \dots \times P_k, k > 1$$

Let

$$K = C_G(P_1 \times \cdots \times P_{i-1} \times P_{i+1} \times \cdots \times P_k)$$

Thus

$$K = Z(P_1) \times \cdots \times Z(P_{i-1}) \times P_i \times Z(P_{i+1}) \times \cdots \times Z(P_k)$$

Therefore $\frac{K}{Z(G)}$ is a p_i -group and so

$$\frac{C_H(\varphi(P_1 \times \cdots \times P_{i-1} \times P_{i+1} \times \cdots \times P_k))}{Z(H)}$$

is a p_i -group too, because $|K| = |C_H(\varphi(P_1 \times \cdots \times P_{i-1} \times P_{i+1} \times \cdots \times P_k))|$. On the other hand

$$Z(G) = Z(C_G(P_1 \times \cdots \times P_{i-1} \times P_{i+1} \times \cdots \times P_k))$$

This implies that

$$Z(H) = Z(C_H(\varphi(P_1 \times \cdots \times P_{i-1} \times P_{i+1} \times \cdots \times P_k))),$$

because φ is an isomorphism from $\nabla(G)$ to $\nabla(H)$. Thus

$$\frac{C_H(\varphi(P_1 \times \cdots \times P_{i-1} \times P_{i+1} \times \cdots \times P_k))}{Z(C_H(\varphi(P_1 \times \cdots \times P_{i-1} \times P_{i+1} \times \cdots P_k)))}$$

is a nilpotent group and so $C_H(\varphi(P_1 \times \cdots \times P_{i-1} \times P_{i+1} \times \cdots \times P_k))$ is nilpotent. Moreover since

$$C_G(P_i) = P_1 \times \cdots \times P_{i-1} \times Z(P_i) \times P_{i+1} \times \cdots \times P_k$$

we have $p_1^{\alpha_1} \cdots p_{i-1}^{\alpha_{i-1}} p_{i+1}^{\alpha_{i+1}} \cdots p_k^{\alpha_k} || C_G(P_i)|$. Now if

$$p_1^{\alpha_1} \cdots p_{i-1}^{\alpha_{i-1}} p_{i+1}^{\alpha_{i+1}} \cdots p_k^{\alpha_k} || C_G(A) ||$$

for an arbitrary subset A of G, then we have

$$P_1 \times \cdots \times P_{i-1} \times P_{i+1} \times \cdots \times P_k \le C_G(A)$$

and since $Z(G) \leq C_G(A)$, we conclude that

$$G) \leq C_G(A)$$
, we conclude that $P_1 \times \cdots \times P_{i-1} \times Z(P_i) \times P_{i+1} \times \cdots \times P_k = C_G(P_i) \leq C_G(A)$

Therefore if $|C_G(A)| = |C_G(P_i)|$, then $C_G(A) = C_G(P_i)$ for all $A \subseteq G$. We know that

$$|C_H(\varphi(P_i))| = |C_H(h^{-1}\varphi(P_i)h)| = |h^{-1}C_H(\varphi(P_i))h|$$

for all $h \in H$. Thus

$$|C_G(P_i)| = |C_G(\varphi^{-1}(h^{-1}\varphi(P_i)h))|.$$

 $C_G(P_i) = C_G(\varphi^{-1}(h^{-1}\varphi(P_i)h)),$

Hence

$$C_G(P_i) = C_G(\varphi^{-1}(h^{-1}\varphi(P_i)h))$$

which implies that

$$C_H(\varphi(P_i)) = C_H(h^{-1}\varphi(P_i)h) = h^{-1}C_H(\varphi(P_i))h,$$

where h is an arbitrary element of H. Therefore $C_H(\varphi(P_i)) \leq H$. By a similar argument we can see that

$$C_H(\varphi(P_1 \times \cdots \times P_{i-1} \times P_{i+1} \times \cdots \times P_k)) \leq H.$$

Obviously

$$|C_G(P_i)C_G(P_1 \times \dots \times P_{i-1} \times P_{i+1} \times \dots \times P_k)| = \frac{|C_G(P_i)||C_G(P_1 \times \dots \times P_{i-1} \times P_{i+1} \times \dots \times P_k)|}{|C_G(P_i) \cap C_G(P_1 \times \dots \times P_{i-1} \times P_{i+1} \times \dots \times P_k)|} = |G|.$$

Thus

$$\frac{|C_H(\varphi(P_i))||C_H(\varphi(P_1 \times \dots \times P_{i-1} \times P_{i+1} \times \dots \times P_k))|}{|C_H(\varphi(P_i)) \cap C_H(\varphi(P_1 \times \dots \times P_{i-1} \times P_{i+1} \times \dots P_k))|} = |H|$$

and so

$$C_H(\varphi(P_i))C_H(\varphi(P_1 \times \cdots \times P_{i-1} \times P_{i+1} \times \cdots \times P_k)) = H$$

and since

$$C_H(\varphi(P_i))$$
 and $C_H(\varphi(P_1 \times \cdots \times P_{i-1} \times P_{i+1} \times \cdots \times P_k))$

are nilpotent normal subgroups of H, we conclude that H is nilpotent.

Proposition 3.2. Let G and H be two finite non-abelian groups. If $\nabla(G) \cong \nabla(H)$ and |Z(G)| =|Z(H)| = 1, then G is factorizable if and only if H is factorizable. Moreover if $G \cong G_1 \times G_2 \times \cdots \times G_n$, then there are subgroups H_1, H_2, \ldots, H_n of H such that $H \cong H_1 \times H_2 \times \cdots \times H_n$ and $\nabla(G_i) \cong \nabla(H_i)$ for i = 1, 2, ..., n.

Proof. Without loss of generality assume that $G = G_1 \times G_2 \times \cdots \times G_n$. Put

$$M_i = 1 \times \cdots \times G_i \times \cdots \times 1,$$

$$C_G(M_i) = G_1 \times \cdots \times G_{i-1} \times G_{i+1} \times \cdots \times G_n,$$

for
$$1 \le i \le n$$
. This implies that
$$C_G(M_i) = G_1 \times \cdots \times G_{i-1} \times G_{i+1} \times \cdots \times G_n,$$
 for $1 \le i \le n$. Thus
$$|C_G(M_i)||M_i| = |G|,$$

$$C_G(C_G(M_i)) = M_i,$$

$$M_i \cap C_G(M_i) = 1,$$

for $1 \le i \le n$. On the other hand

$$C_G(M_1) \cap \ldots \cap C_G(M_{i-1}) \cap C_G(M_{i+1}) \cap \ldots \cap C_G(M_n) = M_i$$

for $1 \le i \le n$. Therefore we have

$$C_G\big(C_G(M_1)\cap\ldots\cap C_G(M_{i-1})\cap C_G(M_{i+1})\cap\ldots\cap C_G(M_n)\big)\cap C_G\big(C_G(M_i)\big)=1,$$

for $1 \leq i \leq n$. Since $\nabla(G) \cong \nabla(H)$, there is an isomorphism, φ from $\nabla(G)$ to $\nabla(H)$. Hence

$$|C_H(\varphi(M_i))||\varphi(M_i)| = |H|,$$

$$C_H(C_H(\varphi(M_i))) = \varphi(M_i)$$

and

$$\varphi(M_i) \cap C_H(\varphi(M_i)) = 1,$$

$$C_H(C_H(\varphi(M_1)) \cap \ldots \cap C_H(\varphi(M_{i-1})) \cap C_H(\varphi(M_{i+1})) \cap \ldots \cap C_H(\varphi(M_n))) \cap C_H(C_H(\varphi(M_i))) = 1,$$

for $i = 1, 2, \ldots, n$. Since

$$\varphi(M_i) \cap C_H(\varphi(M_i)) = 1,$$
$$|\varphi(M_i)||C_H(\varphi(M_i))| = |H|$$

and

$$\varphi(M_i)C_H(\varphi(M_i)) = H,$$

thus

$$C_H(C_H(\varphi(M_i))) = \varphi(M_i) \leq \varphi(M_i)C_H(\varphi(M_i)) = H.$$

Therefore $\varphi(M_i)$ for $i=1,2,\ldots,n$ is a normal subgroup of H. Moreover we have

$$\varphi(M_1) \dots \varphi(M_{i-1}) \varphi(M_{i+1}) \dots \varphi(M_n) \subseteq$$

$$C_H(C_H(\varphi(M_1)) \cap \dots \cap C_H(\varphi(M_{i-1})) \cap C_H(\varphi(M_{i+1})) \cap \dots \cap C_H(\varphi(M_n)))$$

and so

$$\varphi(M_1) \dots \varphi(M_{i-1})\varphi(M_{i+1}) \dots \varphi(M_n) \cap \varphi(M_i) \subseteq$$

$$C_H(C_H(\varphi(M_1)) \cap \dots \cap C_H(\varphi(M_{i-1})) \cap C_H(\varphi(M_{i+1})) \cap \dots \cap C_H(\varphi(M_n))) \cap$$

$$C_H(C_H(\varphi(M_i))) = 1,$$

which implies that

$$\varphi(M_1)\dots\varphi(M_{i-1})\varphi(M_{i+1})\dots\varphi(M_n)\cap\varphi(M_i)=1,$$

for $i = 1, 2, \ldots, n$. Hence

$$\varphi(M_1) \cap \varphi(M_2) \dots \varphi(M_n) = 1,$$

$$\varphi(M_2) \cap \varphi(M_3) \dots \varphi(M_n) = 1,$$

$$\dots, \varphi(M_{n-1}) \cap \varphi(M_n) = 1.$$

On the other hand $|M_1| \dots |M_n| = |G|$. Now it is easy to see that

$$\varphi(M_1)\varphi(M_2)\ldots\varphi(M_n)=H.$$

Put $\varphi(M_i) = H_i$, i = 1, 2, ..., n. Therefore we have proved

$$H \cong H_1 \times \cdots \times H_n$$
.

We know that

$$G_i \cong M_i = C_G(C_G(M_i)).$$

Thus $\nabla(G_i) \cong \nabla(C_H(C_H(\varphi(M_i))))$, because

$$\nabla(C_G(C_G(M_i))) \cong \nabla(C_H(C_H(\varphi(M_i))))$$

and since

$$C_H(C_H(\varphi(M_i))) = \varphi(M_i) = H_i,$$

we conclude that $\nabla(G_i) \cong \nabla(H_i)$ for $i = 1, 2, \dots, n$.

Corollary 3.3. Let G_1, G_2, \ldots, G_n be finite non-abelian groups. If G_1, G_2, \ldots, G_n are characterizable by non-commuting graph and $Z(G_i) = 1$ for i = 1, 2, ..., n, then $G_1 \times G_2 \times \cdots \times G_n$ is characterizable by non-commuting graph.

Proof. Assume that $\nabla(H) \cong \nabla(G_1 \times G_2 \times \cdots \times G_n)$. Thus

$$\nabla(C_H(\varphi(G_2 \times \cdots \times G_n)) \cong \nabla(C_{G_1 \times \cdots \times G_n}(G_2 \times \cdots \times G_n)) = \nabla(G_1).$$

But G_1 is characterizable by non-commuting graph and so

$$G_1 \cong C_H(\varphi(G_2 \times \cdots \times G_n))$$

and since

by non-commuting graph and so
$$G_1\cong C_H(\varphi(G_2\times\cdots\times G_n))$$

$$Z(C_{G_1\times G_2\times\cdots\times G_n}(G_2\times\cdots\times G_n))=Z(G_1)=1,$$

$$Z(C_H(\varphi(G_2\times\cdots\times G_n)))=1.$$

we have

$$Z(C_H(\varphi(G_2 \times \cdots \times G_n))) = 1.$$

It follows that Z(H)=1. By Proposition 3.2, there are subgroups H_1,H_2,\ldots,H_n of H such that

$$H \cong H_1 \times H_2 \times \cdots \times H_n$$

 $H\cong H_1\times H_2\times \cdots \times H_n$ and $\nabla(G_i)\cong \nabla(H_i)$ for $i=1,2,\ldots,n$. But since G_i is characterizable by non-commuting graph, we have $G_i \cong H_i$, i = 1, 2, ..., n and so

$$H_1 \times H_2 \times \cdots \times H_n \cong G_1 \times G_2 \times \cdots \times G_n.$$

Therefore $H \cong G_1 \times G_2 \times \cdots \times G_n$.

Corollary 3.4. If S_1, S_2, \ldots, S_m are finite non-abelian simple groups, then $S_1 \times S_2 \times \cdots \times S_m$ is characterizable by non-commuting graph.

Proof. In [3] the authors prove that all simple groups are characterizable by non-commuting graph. Thus by Corollary 3.3, direct product of simple groups are characterizable by non-commuting graph.

Proposition 3.5. Let G be a finite non-abelian group such that $I_G = Inn(G)$ and Z(G) = 1, where Inn(G) is the group of inner automorphisms of G. If H is a group with $\nabla(G) \cong \nabla(H)$ and |G| = |H|, then $G \cong H$.

www.SID.ir

Proof. By Lemma 2.3 we have $I_G \cong I_H$. But Z(G) = 1, $Inn(G) \cong I_G$ and so we have $G \cong I_G$. Moreover Z(H) = 1 and by Lemma 2.2 we can write

$$H \cong Inn(H) \leq Aut(H) \leq I_H \cong I_G \cong G.$$

Therefore H is embedded in G and since |H| = |G|, we have $G \cong H$.

References

- [1] A. Abdollahi, S. Akbari and H. R. Maimani, Non-commuting graph of a group, J. Algebra, 298 (2006) 468-492.
- [2] M. R. Darafsheh, Groups with the same non-commuting graph, Discrete Appl. Math., 157 no. 4 (2009) 833-837.
- [3] Ron Solomon and Andrew Woldar, All Simple groups are characterized by their non-commuting graphs, preprint, 2012.

M. R. Darafsheh

School of Mathematics, Statistics and Computer Science, College of Science, University of Tehran, Tehran, Iran Email: darafsheh@ut.ac.ir

Pedram Yousefzadeh

Department of Mathematics, K. N. Toosi University of Technology, Tehran, Iran

Email: pedram_yous@yahoo.com