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Abstract. The non commuting graph ∇(G) of a non-abelian finite group G is defined as follows:

its vertex set is G − Z(G) and two distinct vertices x and y are joined by an edge if and only if

the commutator of x and y is not the identity. In this paper we prove some new results about this

graph. In particular we will give a new proof of Theorem 3.24 of [A. Abdollahi, S. Akbari, H. R,

Maimani, Non-commuting graph of a group, J. Algebra, 298 (2006) 468-492.]. We also prove that if

G1, G2, . . . , Gn are finite groups such that Z(Gi) = 1 for i = 1, 2, . . . , n and they are characterizable

by non commuting graph, then G1 ×G2 × · · · ×Gn is characterizable by non-commuting graph.

1. Introduction

Let G be a finite group. The non-commuting graph∇(G) of G is defined as follows: the set of

vertices of ∇(G) is G− Z(G), where Z(G) is the center of G and two vertices x and y are connected

whenever [x, y] 6= 1, where [x, y] is the commutator of x and y. In [1] the authors put forward a

conjecture as follows:

Conjecture 1. Let G be a finite non-abelian nilpotent group and H be a group such that ∇(G) ∼=
∇(H). Then H is nilpotent.

In this paper we prove this conjecture in the case of |G| = |H|. In fact this is proved in [1], but

our proof is different. We say G is factorizable if G is isomorphic to a direct product of its proper

subgroups. We will show that if G and H are two centerless groups and ∇(G) ∼= ∇(H), then G is

factorizable if and only if H is factorizable. Moreover if G ∼= G1 × G2 × · · · × Gn, then there are
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subgroups of H say H1, H2, . . . ,Hn such that H ∼= H1×H2× · · · ×Hn. G is called characterizable by

non-commuting graph if, when H is an arbitrary group with ∇(G) ∼= ∇(H), then G ∼= H. We prove

that if G1, G2, . . . , Gn are finite groups such that Z(Gi) = 1 for i = 1, 2, . . . , n and Gi is characterizable

by non-commuting graph, then G1×G2× · · · ×Gn is characterizable by non-commuting graph. In [3]

Ron Solomon and Andrew Woldar proved that all finite non-abelian simple groups are characterizable

by non-commuting graph.

2. Preliminaries

Lemma 2.1. Let G and H be two finite non-abelian groups. If ∇(G) ∼= ∇(H), then ∇(CG(A)) ∼=
∇(CH(ϕ(A))) for all ∅ 6= A ⊆ G−Z(G), where ϕ is the isomorphism from ∇(G) to ∇(H) and CG(A)

is non-abelian.

Proof. It is sufficient to show that ϕ |V (CG(A)): V (CG(A)) −→ V (CH(ϕ(A))) is onto, where ϕ |V (CG(A))is

the restriction of ϕ to V (CG(A)) and

V (CG(A)) := CG(A)− Z(CG(A)),

V (CH(ϕ(A))) := CH(ϕ(A))− Z(CH(ϕ(A)))

Assume that d is an element of V (CH(ϕ(A))). Then d ∈ H − Z(H) and so there exists an element

c of G − Z(G) such that ϕ(c) = d. From d = ϕ(c) ∈ CH(ϕ(A)), it follows that [ϕ(c), ϕ(g)] = 1 for

all g ∈ A and since ϕ is an isomorphism from ∇(G) to ∇(H), [c, g] = 1 for all g ∈ A. Therefore

c ∈ CG(A). But d 6∈ Z(CH(ϕ(A))), so for an element x ∈ CH(ϕ(A)) we have [x, d] 6= 1. Hence x is an

element of H that does not commute with d ∈ H. This implies that x ∈ H −Z(H). Thus there exists

x′ ∈ G − Z(G), such that ϕ(x′) = x. It is easy to see that [x′, c] 6= 1 and therefore c 6∈ Z(CG(A)).

Therefore c ∈ CG(A)− Z(CG(A)) = V (CG(A)). Hence ϕ(c) = d. �

We denote by IG the set of all bijections φ : G −→ G such that [x, y] = 1 if and only if [φ(x), φ(y)] = 1

for all x, y ∈ G. It is easy to see that IG is a subgroup of SG, where SG is the symmetric group on G.

Lemma 2.2. Let G be a finite non-abelian group. Then Aut(G) ≤ IG, where Aut(G) is the automor-

phism group of G.

Proof. Suppose that ψ ∈ Aut(G). If x, y ∈ G are two arbitrary elements of G, then [x, y] = 1 if and

only if ([x, y])ψ = 1 and [xψ, yψ] = 1 and the proof is complete. �

Lemma 2.3. Let G and H be two finite non-abelian groups with ∇(G) ∼= ∇(H) and |G| = |H|. Then

IG ∼= IH .

Proof. Since ∇(G) ∼= ∇(H), |G−Z(G)| = |H −Z(H)|. But |G| = |H| and so |Z(G)| = |Z(H)|. Thus

there is a bijection α from Z(G) to Z(H). Moreover since ∇(G) ∼= ∇(H), there is a graph isomorphism
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ϕ from G− Z(G) to H − Z(H). We define ψ : IG −→ IH by

ψ(φ)(x) = ϕ ◦ φ |G−Z(G) ◦ϕ−1(x)

if x 6∈ Z(H) and

ψ(φ)(x) = α ◦ φ |Z(G) ◦α−1(x)

if x ∈ Z(H), for all φ ∈ IG, where ◦ denote the composition of functions. Routine checking shows

that ψ is an isomorphism from IG to IH and so IG ∼= IH . �

3. Results and Properties

Proposition 3.1. Let G be a finite non-abelian nilpotent group and H be a group such that ∇(G) ∼=
∇(H) and |G| = |H|. Then H is nilpotent.

Proof. We use induction on |G| = n. Clearly if |G| = 1, then the assertion holds. Suppose the result

is valid for all groups K, with |K| < n. We will prove Proposition 3.1 when |G| = n. Since G is

nilpotent, we can write G ∼= P1 × P2 × · · · × Pk, where Pi is the pi-Sylow subgroup of G say of order

pi
αi for i = 1, 2, . . . , k.

If G is a p-group for some prime number p, then since |G| = |H|, H is a p-group too and so H is

nilpotent. If G = P ×A, where P is a p-group and A is an abelian group, then G
Z(G) is a p-group and

since |G| = |H| and |Z(G)| = |Z(H)|, we conclude that H
Z(H) is a p-group and so H is nilpotent in

this case.

Let ϕ be an isomorphism from ∇(G) to ∇(H). We extend ϕ to H by defining ϕ(z) = ψ(z), where ψ

is an arbitrary bijective map from Z(G) to Z(H).

By above argument we may assume that k > 1 and G is not product of a p-group and an abelian

group.

If CG(Pi) = G, for all i = 1, 2, . . . , k, then Pi ≤ Z(G) for i = 1, 2, . . . , k and so G = Z(G), a

contradiction. Hence there is a Sylow-subgroup Pi of G such that CG(Pi) 6= G. But CG(Pi) is

nilpotent and ∇(CG(Pi)) ∼= ∇(CH(ϕ(Pi))) by Lemma 2.1, where ϕ is an isomorphism from ∇(G) to

∇(H) and so CH(ϕ(Pi)) is nilpotent by inductive hypothesis. Without loss of generality we assume

that

G = P1 × P2 × · · · × Pk, k > 1

Let

K =CG(P1 × · · · × Pi−1 × Pi+1 × · · · × Pk)

Thus

K =Z(P1)× · · · × Z(Pi−1)× Pi × Z(Pi+1)× · · · × Z(Pk)

Therefore K
Z(G) is a pi-group and so

CH(ϕ(P1 × · · · × Pi−1 × Pi+1 × · · · × Pk))
Z(H)
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is a pi-group too, because |K| = |CH(ϕ(P1 × · · · × Pi−1 × Pi+1 × · · · × Pk))|. On the other hand

Z(G) = Z(CG(P1 × · · · × Pi−1 × Pi+1 × · · · × Pk))

This implies that

Z(H) =Z(CH(ϕ(P1 × · · · × Pi−1 × Pi+1 × · · · × Pk))),

because ϕ is an isomorphism from ∇(G) to ∇(H). Thus

CH(ϕ(P1 × · · · × Pi−1 × Pi+1 × · · · × Pk))
Z(CH(ϕ(P1 × · · · × Pi−1 × Pi+1 × · · ·Pk)))

is a nilpotent group and so CH(ϕ(P1 × · · · × Pi−1 × Pi+1 × · · · × Pk)) is nilpotent. Moreover since

CG(Pi) = P1 × · · · × Pi−1 × Z(Pi)× Pi+1 × · · · × Pk,

we have p1
α1 · · · pi−1

αi−1pi+1
αi+1 · · · pkαk

∣∣|CG(Pi)|. Now if

p1
α1 · · · pi−1

αi−1pi+1
αi+1 · · · pkαk

∣∣|CG(A)|

for an arbitrary subset A of G , then we have

P1 × · · · × Pi−1 × Pi+1 × · · · × Pk ≤ CG(A)

and since Z(G) ≤ CG(A), we conclude that

P1 × · · · × Pi−1 × Z(Pi)× Pi+1 × · · · × Pk = CG(Pi) ≤ CG(A)

Therefore if |CG(A)| = |CG(Pi)|, then CG(A) = CG(Pi) for all A ⊆ G. We know that

|CH(ϕ(Pi))| = |CH(h−1ϕ(Pi)h)| = |h−1CH(ϕ(Pi))h|

for all h ∈ H. Thus

|CG(Pi)| = |CG(ϕ−1(h−1ϕ(Pi)h))|.

Hence

CG(Pi) = CG(ϕ−1(h−1ϕ(Pi)h)),

which implies that

CH(ϕ(Pi)) = CH(h−1ϕ(Pi)h) = h−1CH(ϕ(Pi))h,

where h is an arbitrary element of H. Therefore CH(ϕ(Pi)) EH. By a similar argument we can see

that

CH(ϕ(P1 × · · · × Pi−1 × Pi+1 × · · · × Pk))EH.

Obviously

|CG(Pi)CG(P1 × · · · × Pi−1 × Pi+1 × · · · × Pk)| =

|CG(Pi)||CG(P1 × · · · × Pi−1 × Pi+1 × · · · × Pk)|
|CG(Pi) ∩ CG(P1 × · · · × Pi−1 × Pi+1 × · · · × Pk)|

= |G|.
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Thus

|CH(ϕ(Pi))||CH(ϕ(P1 × · · · × Pi−1 × Pi+1 × · · · × Pk))|
|CH(ϕ(Pi)) ∩ CH(ϕ(P1 × · · · × Pi−1 × Pi+1 × · · ·Pk))|

= |H|

and so

CH(ϕ(Pi))CH(ϕ(P1 × · · · × Pi−1 × Pi+1 × · · · × Pk)) = H

and since

CH(ϕ(Pi)) and CH(ϕ(P1 × · · · × Pi−1 × Pi+1 × · · · × Pk))

are nilpotent normal subgroups of H, we conclude that H is nilpotent. �

Proposition 3.2. Let G and H be two finite non-abelian groups. If ∇(G) ∼= ∇(H) and |Z(G)| =

|Z(H)| = 1, then G is factorizable if and only if H is factorizable. Moreover if G ∼= G1×G2×· · ·×Gn,

then there are subgroups H1,H2,. . . ,Hn of H such that H ∼= H1 ×H2 × · · · ×Hn and ∇(Gi) ∼= ∇(Hi)

for i = 1, 2, . . . , n.

Proof. Without loss of generality assume that G = G1 ×G2 × · · · ×Gn. Put

Mi = 1× · · · ×Gi × · · · × 1,

for 1 ≤ i ≤ n. This implies that

CG(Mi) = G1 × · · · ×Gi−1 ×Gi+1 × · · · ×Gn,

for 1 ≤ i ≤ n. Thus

|CG(Mi)||Mi| = |G|,

CG(CG(Mi)) = Mi,

Mi ∩ CG(Mi) = 1,

for 1 ≤ i ≤ n. On the other hand

CG(M1) ∩ . . . ∩ CG(Mi−1) ∩ CG(Mi+1) ∩ . . . ∩ CG(Mn) = Mi,

for 1 ≤ i ≤ n. Therefore we have

CG
(
CG(M1) ∩ . . . ∩ CG(Mi−1) ∩ CG(Mi+1) ∩ . . . ∩ CG(Mn)

)
∩ CG

(
CG(Mi)

)
= 1,

for 1 ≤ i ≤ n. Since ∇(G) ∼= ∇(H), there is an isomorphism, ϕ from ∇(G) to ∇(H). Hence

|CH(ϕ(Mi))||ϕ(Mi)| = |H|,

CH(CH(ϕ(Mi))) = ϕ(Mi)

and

ϕ(Mi) ∩ CH(ϕ(Mi)) = 1,

CH(CH(ϕ(M1)) ∩ . . . ∩ CH(ϕ(Mi−1)) ∩ CH(ϕ(Mi+1)) ∩ . . . ∩ CH(ϕ(Mn))) ∩ CH(CH(ϕ(Mi))) = 1,
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for i = 1, 2, . . . , n. Since

ϕ(Mi) ∩ CH(ϕ(Mi)) = 1,

|ϕ(Mi)||CH(ϕ(Mi))| = |H|

and

ϕ(Mi)CH(ϕ(Mi)) = H,

thus

CH(CH(ϕ(Mi))) = ϕ(Mi)E ϕ(Mi)CH(ϕ(Mi)) = H.

Therefore ϕ(Mi) for i = 1, 2, . . . , n is a normal subgroup of H. Moreover we have

ϕ(M1) . . . ϕ(Mi−1)ϕ(Mi+1) . . . ϕ(Mn) ⊆

CH(CH(ϕ(M1)) ∩ . . . ∩ CH(ϕ(Mi−1)) ∩ CH(ϕ(Mi+1)) ∩ . . . ∩ CH(ϕ(Mn)))

and so

ϕ(M1) . . . ϕ(Mi−1)ϕ(Mi+1) . . . ϕ(Mn) ∩ ϕ(Mi) ⊆

CH(CH(ϕ(M1)) ∩ . . . ∩ CH(ϕ(Mi−1)) ∩ CH(ϕ(Mi+1)) ∩ . . . ∩ CH(ϕ(Mn)))∩

CH(CH(ϕ(Mi))) = 1,

which implies that

ϕ(M1) . . . ϕ(Mi−1)ϕ(Mi+1) . . . ϕ(Mn) ∩ ϕ(Mi) = 1,

for i = 1, 2, . . . , n. Hence

ϕ(M1) ∩ ϕ(M2) . . . ϕ(Mn) = 1,

ϕ(M2) ∩ ϕ(M3) . . . ϕ(Mn) = 1,

. . . , ϕ(Mn−1) ∩ ϕ(Mn) = 1.

On the other hand |M1| . . . |Mn| = |G|. Now it is easy to see that

ϕ(M1)ϕ(M2) . . . ϕ(Mn) = H.

Put ϕ(Mi) = Hi, i = 1, 2, . . . , n. Therefore we have proved

H ∼= H1 × · · · ×Hn.

We know that

Gi ∼= Mi = CG(CG(Mi)).

Thus ∇(Gi) ∼= ∇(CH(CH(ϕ(Mi))), because

∇(CG(CG(Mi))) ∼= ∇(CH(CH(ϕ(Mi))))
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and since

CH(CH(ϕ(Mi))) = ϕ(Mi) = Hi,

we conclude that ∇(Gi) ∼= ∇(Hi) for i = 1, 2, . . . , n. �

Corollary 3.3. Let G1, G2, . . . , Gn be finite non-abelian groups. If G1, G2, . . . , Gn are characterizable

by non-commuting graph and Z(Gi) = 1 for i = 1, 2, . . . , n, then G1×G2× · · ·×Gn is characterizable

by non-commuting graph.

Proof. Assume that ∇(H) ∼= ∇(G1 ×G2 × · · · ×Gn). Thus

∇(CH(ϕ(G2 × · · · ×Gn)) ∼= ∇(CG1×···×Gn(G2 × · · · ×Gn)) = ∇(G1).

But G1 is characterizable by non-commuting graph and so

G1
∼= CH(ϕ(G2 × · · · ×Gn))

and since

Z(CG1×G2×···×Gn(G2 × · · · ×Gn)) = Z(G1) = 1,

we have

Z(CH(ϕ(G2 × · · · ×Gn))) = 1.

It follows that Z(H) = 1. By Proposition 3.2, there are subgroups H1, H2, . . . ,Hn of H such that

H ∼= H1 ×H2 × · · · ×Hn

and ∇(Gi) ∼= ∇(Hi) for i = 1, 2, . . . , n. But since Gi is characterizable by non-commuting graph, we

have Gi ∼= Hi, i = 1, 2, . . . , n and so

H1 ×H2 × · · · ×Hn
∼= G1 ×G2 × · · · ×Gn.

Therefore H ∼= G1 ×G2 × · · · ×Gn. �

Corollary 3.4. If S1, S2, . . . , Sm are finite non-abelian simple groups, then S1 × S2 × · · · × Sm is

characterizable by non-commuting graph.

Proof. In [3] the authors prove that all simple groups are characterizable by non-commuting graph.

Thus by Corollary 3.3, direct product of simple groups are characterizable by non-commuting graph.

�

Proposition 3.5. Let G be a finite non-abelian group such that IG = Inn(G) and Z(G) = 1, where

Inn(G) is the group of inner automorphisms of G. If H is a group with ∇(G) ∼= ∇(H) and |G| = |H|,
then G ∼= H.
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Proof. By Lemma 2.3 we have IG ∼= IH . But Z(G) = 1, Inn(G) ∼= IG and so we have G ∼= IG.

Moreover Z(H) = 1 and by Lemma 2.2 we can write

H ∼= Inn(H) ≤ Aut(H) ≤ IH ∼= IG ∼= G.

Therefore H is embedded in G and since |H| = |G|, we have G ∼= H.

�
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