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Abstract. In this paper we introduce the concept of order di�erence interval graph ΓODI(G) of a

group G. It is a graph ΓODI(G) with V (ΓODI(G)) = G and two vertices a and b are adjacent in ΓODI(G)

if and only if o(b)− o(a) 2 [o(a), o(b)]. Without loss of generality, we assume that o(a) � o(b). In this

paper we obtain several properties of ΓODI(G), upper bounds on the number of edges of ΓODI(G) and

determine those groups whose order di�erence interval graph is isomorphic to a complete multipartite

graph.

1. Introduction

The study of algebraic structures, using the properties of graphs, has become an exciting research

topic in the past three decades, leading to many fascinating results and questions. There are many

papers on assigning a graph to a ring or group and investigating algebraic properties of ring or group

using the associated graph, for instance, see [4]. In this paper, to any group G, we assign a graph

and investigate algebraic properties of the group using the graph theoretical concepts. We need the

following de�nitions and notations. Terms not de�ned here are used in the sense of [1, 2] and [3].

We consider simple graphs which are undirected, with no loops or multiple edges. For any graph Γ,

we denote the sets of the vertices and edges of Γ by V (Γ) and E(Γ), respectively. The degree degΓ(v)

of a vertex v in Γ is the number of edges incident to v and if the graph is understood, then we denote

degΓ(v) simply by deg(v). The order of Γis de�ned by jV (Γ)j and the maximum and minimum degrees

will be denoted, respectively, by �(Γ) and δ(Γ). A graph Γ is regular if the degrees of all vertices of

Γ are the same. Unicyclic graphs are graphs which are connected and have just one cycle.
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Let G be a group with identity e. The number of elements of a group is called its order and it is

denoted by o(G). The order of an element g in a group is the smallest positive integer n such that

gn = e and is denoted by o(g). If no such integer exists, we say g has in�nite order. If A is any subset

of a group G, the subgroup generated by A, [A] is de�ned as the intersection of all subgroups of G

containing A. If [A]= G, then A is said to be a generating set of G.

2. Main results

Definition 2.1. Let G be a finite group. Then order difference interval graph ΓODI(G) of a group

G is a graph with V (ΓODI(G)) = G and two vertices a and b are adjacent in ΓODI(G) if and only

if o(b) − o(a) 2 [o(a), o(b)], where [x, y] denotes the closed interval. Without loss of generality, we

assume that o(a) � o(b). Here o(a) and o(b) denote the orders of a and b, respectively.

Example 2.2. Let G = (Z6,+6). Then ΓODI(G) is given in Figure 1.

Figure 1

Proposition 2.3. Let G be a group with o(G) = n. Then �(ΓODI(G)) = n− 1.

Proof. Identity e is an element of order 1 in G and hence deg(e) = n− 1 in ΓODI(G). �

Proposition 2.4. Let G be any group and e 6= a 2 G. If deg(a) = o(G) − 1, then a is the unique

element of order 2 in G. In general, the converse is not true. Moreover, the converse is true if G has

no element of order 3.

Proof. First, we show that a is a self-inverse element. If not, then since o(a) = o(a−1), so a and

a−1 are non-adjacent in ΓODI(G) so that deg(a) � o(G) − 2, which is a contradiction. Hence a is a

self-inverse element.

Now, we show that a is unique. Suppose that G has more than one self-inverse element, say a, b.

Clearly, a and b are non-adjacent in ΓODI(G) and so deg(a) < o(G)− 1, which is a contradiction. So

a is the only self-inverse element in G.

Now, we show that the converse is not true. Let G �= Z6. Then ΓODI(G) is given in Example 2.2.

Clearly, 3 is the only self-inverse element in G but deg(3) = 3 < o(G) − 1. So the converse of the

proposition is not true.
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Finally, we show that the converse is true whenever G has no element of order 3. Let a be the unique

element of order 2 in G. Let b 2 G be such that b 6= a, e. Then by hypothesis, o(b) 6= 3. Therefore

o(b)− o(a) � 2 so that a is adjacent to b. Since b is arbitrary, deg(a) = o(G)− 1. �

Corollary 2.5. Let G be any group. Then the identity element in G is the only element of maximum

degree in ΓODI(G) if and only if either o(G) is odd or the number of self-inverse elements in G is at

least 2.

Corollary 2.6. Let G be any group and g 6= e be any element in G. Then deg(g) = deg(e) in ΓODI(G)

if and only if g is a unique self inverse element in G and no element in G is of order 3.

Two integers n and m are called relatively prime if the greatest common divisor (g. c. d) of m and

n is 1.

Lemma 2.7. Let a be a generator element in group G of order n. Then a is adjacent to all the

non-generator elements of G in the graph ΓODI(G).

Proof. Let a be a generator element and b be a non-generator element in G. Since a is generator of

G, it follows that o(a) = n. Now, o(b) = m � n
2 . It is clear that o(a)− o(b) � n

2 and so a is adjacent

to b. Since a and b are arbitrary, a is adjacent to all the non-generator elements of G in ΓODI(G). �

Proposition 2.8. Let G be a cyclic group with o(G) = n. Then at least φ(n) vertices have same

degree in ΓODI(G). Moreover, deg(g) = n − φ(n) if g is a generator of G, where φ(n) is the number

of positive integers less than n and relatively prime to it.

Proof. First, we show that if a and b are elements with same order in G, then deg(a) = deg(b) in

ΓODI(G). Let deg(a) = m. Then a is adjacent to a1, a2, . . . , am and so o(ai)− o(a) � o(a), 1 � i � m.

By hypothesis, o(ai)− o(b) � o(b), 1 � i � m and so deg(b) � m. Suppose that deg(b) > m. Then by

a similar argument, we get deg(a) > m, which is a contradiction. Therefore, deg(a) = deg(b).

Since G is cyclic, number of generators in G is φ(n) and so φ(n) elements in G have same order.

So at least φ(n) vertices have same degree in ΓODI(G). Let g be a generator element of G. Then it

follows from Lemma 2.7 that deg(g) = n− φ(n). �

Proposition 2.9. For any group G, ΓODI(G) is complete if and only if o(G) = 2.

Proof. If o(G) = 2, then ΓODI(G) �= K2. Suppose ΓODI(G) is complete. If o(G) � 3 and every

element in G is a self-inverse element, then every element of G is of order 2 and so ΓODI(G) cannot

be complete. If there exists at least one element which is not a self-inverse element, the element and

its inverse have the same order in G and hence non-adjacent in ΓODI(G). These contradictions show

that o(G) = 2. �

Corollary 2.10. Let G be any group with n � 3 elements. Then ΓODI(G) cannot be regular.

Proof. This follows from Propositions 2.3 and 2.9. �
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Theorem 2.11. Let o(G) = pα, p a prime. Then G has (k + 1)-elements with different orders if and

only if Γ= ΓODI(G) is a (k + 1)-complete partite graph.

Proof. First note that pj − pi 2 [pi, pj ], i < j, i, j 2 N. Let a1, a2, . . . , ak+1 2 G be the elements of

di�erent orders and let Mi = fb 2 G : o(ai) = o(b)g, 1 � i � k + 1. Clearly, each Mi 6= ; since

a 2Mi. Also, Mi \Mj = ; for all i 6= j and M1 [M2 [ . . . [Mk+1 = V (ΓODI(G)). No two elements

in Mi are adjacent and pj − pi 2 [pi, pj ] for all i 6= j. Hence G is a complete (k + 1)-partite graph.

Conversely, suppose G is a (k + 1)-complete partite graph. Then clearly, the (k + 1)- partitions have

di�erent orders since otherwise we can �nd ai 2Mi and aj 2Mj such that ai and aj are non-adjacent.

Therefore the group G has (k + 1)-elements with di�erent orders. �

Proposition 2.12. For any group G, ΓODI(G) can never be a unicyclic graph.

Proof. Suppose that ΓODI(G) is unicyclic. Since �(ΓODI(G)) = n − 1 and e is the vertex with

degree �, ΓODI(G) − e has exactly one edge e0. Let e0 = ab. Then o(a) and o(b) are di�erent with

o(b) − o(a) 2 [o(a), o(b)]. Now, at least one of a and b should not be a self-inverse element since

otherwise 0 = o(b) − o(a) /2 [o(a), o(b)]. Let a 6= a−1. But o(a) = o(a−1) and so a−1, b are also

adjacent in ΓODI(G)− e, which is a contradiction. �

Proposition 2.13. Let G be any group. There exists a, b 2 G − e such that a is adjacent to b in

ΓODI(G) if and only if it contains a cycle. Moreover, G has a smallest cycle of length 3 and also the

girth of ΓODI(G) is 3.

Proof. Suppose that a and b are adjacent. Since e is adjacent to a and b, ΓODI(G) contains a cycle of

length 3. Conversely, consider the cycle C3, say exye. Clearly x and y are adjacent in C3. So x and

y are adjacent in ΓODI(G). �

Proposition 2.14. Let G be any group. Then ΓODI(G) can never be Eulerian.

Proof. If o(G) is even, then by Proposition 2.3, deg(e) is odd and so the result is obvious.

Next, assume that o(G) is odd. Let a1, a2, . . . , ak+1 2 G be the elements of di�erent orders and

let Mi = fb 2 G : o(ai) = o(b)g, 1 � i � k + 1. Also each Mi is non-empty since a 2 Mi. Now, let

M1 = feg. The cardinality of each Mi, i 6= 1, is even since every element in G− e is non-self inverse.

Moreover Mi\Mj = ; for all i 6= j and M1[M2[ . . .[Mk+1 = V (ΓODI(G)). Clearly, no two elements

in Mi are adjacent and every element of Mi is adjacent to each element of some Mj . In particular,

deg(a) in ΓODI(G)− feg is even for a 2Mi. Since a is also adjacent to e in ΓODI(G), It follows that

deg(a) is odd. Therefore ΓODI(G) is non-Eulerian. �

Theorem 2.15. Let G be any group. If either (i) o(G) = p, p � 2, p is prime or (ii) o(a) = 2 for all

a 2 G− e, then ΓODI(G) �= K1,o(G)−1. But converse is not true.

Proof. (i) Suppose that o(G) = p. Let a, b 2 G−e. Therefore o(a) = o(b) = o(G) and so every element

in G except identity is a generator. Therefore 0 = o(b) − o(a) /2 [o(a), o(b)]. But identity is adjacent

to every vertex in ΓODI(G) which shows that ΓODI(G) is K1,o(G)−1.
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(ii) Suppose o(a) = 2 for all a 2 G− e. Then order di�erence of any two elements in G except identity

is zero. So any two vertices in ΓODI(G) except identity is non-adjacent and hence by Proposition 2.3,

ΓODI(G) is K1,o(G)−1.

Consider the group G = D6. Then ΓODI(G) is K1,5. But neither o(G) is a prime nor order of every

element in G− e is two. �

The following two corollaries immediately follows from Theorem 2.15.

Corollary 2.16. Let G be any group. If either (i) o(G) = p, p � 2, p is prime or (ii) o(a) = 2 for all

a 2 G− e, then ΓODI(G) is a tree. The converse is not true.

Corollary 2.17. Let G be any group. If either (i) o(G) = p, p � 2, p is prime or (ii) o(a) = 2 for all

a 2 G− e, then ΓODI(G) has exactly o(G)− 1 pendent vertices. The converse is not true.

Proposition 2.18. Let G be any group with o(G) = pα, where p is a prime number and α 2 N. Then

every element in G− e has the same order if and only if ΓODI(G) �= K1,o(G)−1. Moreover, that order

is p.

Proof. By hypothesis, all elements in G−e have the same order and so di�erence between order of any

two elements in G− e is zero. So every two elements in G except identity are non-adjacent. Hence the

result. Conversely, suppose that ΓODI(G) �= K1,o(G)−1. Then by Theorem 2.11, number of elements

of di�erent orders in G except identity is 1 and so the result follows. Moreover, by Cauchy Theorem

the order is p. �

Observation 2.19. In general, converse of Proposition 2.18 is not true. Consider the group G = D6.

Then ΓODI(G) is K1,5. But every element in G− e is not of same order.

Proposition 2.20. For any group G, ΓODI(G) is a path if and only if o(G) = 2 or 3.

Proof. Suppose that o(G) = 2 or 3. Then ΓODI(G) is isomorphic to a path, namely P2 or P3. Suppose

that ΓODI(G) is path. Then 1 � deg(a) � 2 for all a 2 V (ΓODI(G)). If o(G) � 4, then by Proposition

2.3, deg(e) = o(G)− 1 � 3 and so o(G) = 2 or 3. �

Theorem 2.21. Let G be any group. Then ΓODI(G) is a bipartite graph if and only if it is a star.

Proof. If ΓODI(G) is a star, then it is bipartite. Conversely, assume that ΓODI(G) is a bipartite graph.

Suppose that ΓODI(G) is not a star. Then there exists at least two vertices u, v in ΓODI(G) that have

degree at least 2. So we get a cycle e− u− v− e. This a cycle of length 3, which is a contradiction as

G is bipartite. �

Corollary 2.22. Let G be any group. Then ΓODI(G) is a tree if and only if it is a star.

A coloring of a graph Γ is an assignment of colors to its vertices so that no two adjacent vertices

have the same color. The chromatic number χ(G) is de�ned as the minimum n for which Γ has a

n−coloring.
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Proposition 2.23. Let G be any group. Then 2 � χ(ΓODI(G)) � k+ 1 where k+ 1 = number of Mi

and Mi is defined as Theorem 2.14. Moreover, these bounds are sharp.

Proof. If i = 1, then ΓODI(G) is a star. So it is a bipartite graph and hence χ(ΓODI(G)) = 2.

If 2 � i � k, then G has at least k + 1 elements with di�erent orders. Since every vertex of Mi is

adjacent to some vertex of Mj , χ(ΓODI(G)− e) is at most k. Also, e is adjacent to all the vertices in

V (ΓODI(G)) so that χ(ΓODI(G)) is at most k + 1. Therefore we get 2 � χ(ΓODI(G)) � k + 1.

To observe the sharpness of the bounds, consider G1 = fZ3,+3g. Then ΓODI(G1) �= P3 and hence

χ(ΓODI(G1)) = χ(P3) = 2. Now, consider G2 = f�1,�ig. Then ΓODI(G2) �= K4 − e. Therefore

χ(ΓODI(G1)) = χ(K4 − e) = 3 = k + 1, where k = 2. �

Theorem 2.24. Let G be any group. Then,

(1) χ(ΓODI(G)) = 2 if and only if it is a star.

(2) ΓODI(G) �= KjM1j,...,jMk+1j if and only if χ(ΓODI(G)) = k + 1, where k + 1 = number of elements

of different order in G.

Proof. (1) If χ(ΓODI(G)) = 2, then ΓODI(G) is a bipartite graph and so by Theorem 2.21, ΓODI(G)

is a star. Conversely, assume that ΓODI(G) is a star. Then by Theorem 2.21, ΓODI(G) is a bipartite

graph and hence χ(ΓODI(G)) = 2.

(2) Here Mi is de�ned as Theorem 2.14. Suppose that ΓODI(G) �= KjM1j,jM2j,...,jMk+1j. Then

χ(ΓODI(G)) = k+1. Conversely, assume that χ(ΓODI(G)) = k+1, where k+1 = number of elements

of di�erent order in G. Now, Let M1 = feg and Mi = fa 2 G − e : o(ai) = o(b) for all b 2 Gg
i = 2, 3, . . . , k + 1. Then any two elements of di�erent order in G are adjacent since otherwise

χ(ΓODI(G)) � k. Thus ΓODI(G) �= KjM1j,jM2j,...,jMk+1j. �

Theorem 2.25. Let G be any group with o(G) = n = pn1
1 pn2

2 . . . pnk
k . Let q be the number of edges of

the graph ΓODI(G). Then q � 1
2 [n2−n+M − (jM1j2 + jM2j2 + . . .+ jMkj2)] where M = jM1j+ jM2j+

. . .+ jMkj. Moreover, equality holds if and only if ΓODI(G) is a complete (k + 1)-partite graph.

Proof. Clearly, M 0is are mutually non-adjacent. Hence the maximum number of edges of G equals(
n
2

�
− f

( jM1j
2

�
+ . . . +

( jMkj
2

�
g = [n(n−1)

2 − f jM1j(jM1j−1)
2 + . . . + jMkj(jMkj−1)

2 g] = 1
2 [n2 − n − fjM1j2 +

jM2j2 + . . . + jMkj2g + (jM1j + . . . + jMkj)] = 1
2 [n2 − n + M − (jM1j2 + . . . + jMkj2)]. Hence q �

1
2 [n2 − n+M − (jM1j2 + . . .+ jMkj2)]. Moreover, q =

(
n
2

�
− f

( jM1j
2

�
+ . . .+

( jMkj
2

�
g if and only if each

Mi is adjacent to each Mj , i 6= j if and only if ΓODI(G) is a complete (k + 1)-partite graph since

otherwise some Mi is non-adjacent to some Mj , i 6= j. �

The following two theorems are direct consequences of the fact that every group isomorphism

preserves the order of each element.

Theorem 2.26. If G1, G2 are two groups such that G1
�= G2, then ΓODI(G1) �= ΓODI(G2).

Theorem 2.27. Let G be any group. Then Aut(G) � Aut(ΓODI(G)).
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Remark 2.28. The converse of Theorem 2.27 is not true. Consider the group G = (Z5,+5). Here

ΓODI(G) �= K1,4. Define g : ΓODI(G) ! ΓODI(G) such that g(0) = 0, g(1) = 2, g(2) = 3, g(3) = 4,

g(4) = 1. Clearly g is an automorphism of ΓODI(G). But g(1 +5 2) = g(3) = 4 and g(1) +5 g(2) =

2 +5 3 = 0. Hence g(1 +5 2) 6= g(1) +5 g(2) so that g is not an automorphism of G.
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