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Abstract. A dominating setD ⊆ V of a graphG = (V,E) is said to be a connected cototal dominating

set if 〈D〉 is connected and 〈V −D〉 6= ∅, contains no isolated vertices. A connected cototal dominating

set is said to be minimal if no proper subset of D is connected cototal dominating set. The connected

cototal domination number γccl(G) of G is the minimum cardinality of a minimal connected cototal

dominating set of G. In this paper, we begin an investigation of connected cototal domination number

and obtain some interesting results.

1. Introduction

All graphs considered here are simple, finite, connected and nontrivial. Let G = (V (G), E(G)) be

a graph, where V (G) is the vertex set and E(G) be the edge set of G. The vertex v ∈ V is called a

pendant vertex, if degG(v) = 1 and an isolated vertex if degG(v) = 0, where degG(x) is the degree of a

vertex x ∈ V (G). A vertex which is adjacent to a pendant vertex is called a support vertex. We denote

δ(G)(∆(G)) as the minimum(maximum) degree and p = |V (G)|, q = |E(G)| the order and size of G

respectively. A spanning subgraph is a subgraph containing all the vertices of G. A shortest u−v path

is often called a geodesic. The diameter diam(G) of a connected graph G is the length of any longest

geodesic. The neighborhood of a vertex u in V is the set N(u) consisting of all vertices v which are

adjacent with u. The closed neighborhood is N [u] = N(u) ∪ {u}. The corona of two graphs G and H

is the graph G ◦ H formed from one copy of G and |V (G)| copies of H where ith vertex of G is ad-

jacent to every vertex in the ith copy of H. Any undefined term in this paper may be found in [5] or [6].
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A set D ⊆ V of a graph G = (V,E) is a dominating set if for every vertex v ∈ V − D there ex-

ists a vertex u ∈ D such that v is adjacent to u. A dominating set D is said to be minimal if no

proper subset of D is a dominating set. The minimum cardinality of a minimal dominating set of G

is called a domination number γ(G) of G. A dominating set D is said to be connected dominating set

if 〈D〉 is connected. The connected domination number γc(G) of G is the minimum cardinality of a

minimal connected dominating set of G [10]. A dominating set D is said to be a cototal dominating set

if 〈V −D〉 contains no isolated vertices. The cototal domination number γcl(G) of G is the minimum

cardinality of a minimal cototal dominating set of G [8]. This concept was also studied as restrained

domination in graphs by G. S. Domke [4] and M.A. Henning [7] as follows:

A set S ⊆ V is a restrained dominating set if every vertex in V − S is adjacent to a vertex in S and

to another vertex in V − S. Let γr(G) denote the size of a smallest restrained dominating set with

cardinality γr(G).

In [1], H. Chen et.al., has been studied the concept of k- connected restrained domination in graphs

as follows:

Let G = (V,E) be a graph. A k-connected restrained dominating set is a set S ⊆ V where S is a

restrained dominating set and G[S] has at most k-components. The k-connected restrained domination

number of G is denoted by γkr (G) is the smallest cardinality of a k- connected restrained dominating

set of G.

Our aim in this paper is to introduce a new domination parameter in the field of domination in theory

of graphs which is as follow:

A dominating set D ⊆ V of a graph G = (V,E) is said to be a connected cototal dominating set if

〈D〉 is connected and 〈V −D〉 6= ∅, contains no isolated vertices. A connected cototal dominating set

is said to be minimal if no proper subset of D is connected cototal dominating set. The connected

cototal domination number γccl(G) of G is the minimum cardinality of a minimal connected cototal

dominating set of G.

For simplicity, the minimal connected cototal dominating set is denoted by γccl−set and in a graph

G, γccl−set contains every pendant vertex(if any) and its support vertex in G.

Example

G:

Figure 1

In Figure 1, V (G) = {1, 2, 3, 4, 5, 6}.
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The minimal connected dominating sets are D1 = {2, 6} D2 = {2, 4}. Therefore

γc(G) = |D1| = |D2| = 2.

The minimal cototal dominating sets are D1 = {2, 5}, D2 = {3, 6} and D3 = {1, 4}. Therefore

γcl(G) = |D1| = |D2| = |D3| = 2.

The minimal connected cototal dominating sets are, D1 = {1, 2, 6} and D2 = {2, 3, 4}. Therefore

γccl(G) = |D1| = |D2| = 3.

The following observations are immediate.

Observations

(i) γ(G) ≤ γcl(G) and γc(G) ≤ γccl(G).

(ii) Let D be a γccl− set of G, then 〈D〉 is a tree.

(iii) In a graph G, γc− set contains no pendant vertex(if any) in G.

Note: The connected cototal domination number and k−connected restrained numbers are same if

and only if k = 1 and V −D 6= ∅.

There are certain class of graphs in which the difference between γccl(G) and γkr is very large. For

example trees. Such that γ1
r (T ) = p where as γccl(T ) does not exists.

2. Characterization of connected cototal dominating sets

Obviously, we ask the natural question regarding the existence of connected cototal dominating

sets. Our first theorem gives the characterization of the existence of connected cototal dominating

sets in a graph G.

Theorem 2.1. A graph G has a connected cototal dominating set if and only if it satisfies the following

conditions.

(i) |V (G)| ≥ 3

(ii) G is not a tree

(iii) Let u ∈ V (G) and D be a γccl− set. Then V −D 6= {u}.

The following theorem gives the relationship between γccl(G) and γccl(H), where H is a spanning

subgraph of G.

Theorem 2.2. For any graph G, γccl(G) ≤ γccl(H). Further, the equality holds if and only if γccl(G) =

p− 2 and H is unicyclic.

Proof. Let D be a γccl−set of G and H be any spanning subgraph of G. Let D′ be the γccl−set of H.

By Theorem 2.1, H must contain at least one cycle. Obviously, |D| ≤ |D′|. Hence, γccl(G) ≤ γccl(H).

For equality, suppose γccl(G) = p − 2 and H is unicyclic. Let vivjvkvi be a cycle in H. Since

γccl(G) = p−2, therefore D = {v1, v2, ..., vp−2} is a minimal connected dominating set of H, such that

V − D = {vi, vj} and the induced subgraph of 〈V − D〉 will form K2. Hence 〈V − D〉 contains no

isolated vertex. Therefore,
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γccl(H) = |D|
= |V | − |{vi, vj}|
= p− 2

= γccl(G).

The converse is obvious. �

In the next theorem, we calculate the γccl(G) of some standard class of graphs.

Theorem 2.3. (i) For any cycle Cp; p ≥ 3, γccl(Cp) = p− 2.

(ii) For any wheel Wp; p ≥ 4, γccl(Wp) = 1.

(iii) For any complete graph Kp; p ≥ 3, γccl(Kp) = 1.

(iv) For any graph H = G+K1, γccl(H) = 1.

(v) For any complete bipartite graph Km,n; 2 ≤ m ≤ n, γccl(Km,n) = 2.

(vi) For any grid graph P2 × Pk; k ≥ 2, γccl(P2 × Pk) = 2dk3e.
(vii) For any grid graph C3 × Ck; k ≥ 3, γccl(C3 × Ck) = 3dk3e.

The following result is immediate from Theorem 2.3.

Theorem 2.4. For any graph G, 1 ≤ γccl(G) ≤ p−2. Further, the equality of lower bound is attained

if and only if δ(G) ≥ 2 and ∆(G) = p− 1 and the equality of an upper bound holds if G = Cp, p ≥ 3

or unicyclic.

Proof. Let G be any nontrivial connected graph of order at least three. Suppose γccl(G) = p−1. Let D

be a minimal connected cototal dominating set of G, then γccl(G) = |D| = p−1. Then 〈V −D〉 = {vi}
is an isolated vertex, a contradiction. Hence γccl(G) ≤ |D| − 1 = p− 2.

For the equality of lower bound, suppose δ(G) ≥ 2 and ∆(G) = p− 1. Let v be a vertex of maximum

degree. Then D = {v} and such that 〈V − D〉 has no isolated vertex. Therefore D is a minimal

connected cototal dominating set of G. Hence γccl(G) = |D| = |{v}| = 1.

Converse is easy to follow.

Equality of an upper bound can be easily verified. �

To prove the next theorem we need the following result.

Theorem A [6] For any graph G, d p
1+∆(G)e ≤ γ(G).

Theorem 2.5. For any graph G, d p
1+∆(G)e ≤ γccl(G) ≤ 2q− p. Further, the equality of a lower bound

is attained if ∆(G) = p−1 and δ(G) ≥ 2 and equality of an upper bound is attained if γccl(G) = p−2.

Proof. The lower bound follows from Theorem A and Observation (i). Further if ∆(G) = p − 1 and

δ(G) ≥ 2, then equality of lower bound can be easily verified.

Now, for upper bound, we have by Theorem 2.4,

γccl(G) ≤ p− 2

≤ 2(p− 1)− p
≤ 2q − p.

If γccl(G) = p− 2, then equality of an upper bound can be easily verified. �
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Theorem 2.6. Let G1 and G2 be two connected graphs with δ(G1) ≥ 2 and δ(G2) ≥ 2. Then

γccl(G1 ◦G2) = |V (G1)|(1 + γccl(G2)).

Proof. Let G1 and G2 be any two nontrivial connected graphs of order at least two. Let us construct

a minimal connected cototal dominating set D of G1 ◦G2, such that, |D| = |V (G1)|+ |V (G1)|γccl(G2).

Let H be the spanning subgraph of G1, then clearly |H| ⊆ D. By Theorem 2.4, γccl(G1) ≤ p− 2 and

γccl(G2) ≤ p′ − 2, where p′ is the |V (G2)|. By the definition of corona of a graph, each vertex of G1

is attached with a vertex of G2. Therefore |D| = |H| + |H|(p − 2) is the minimal connected cototal

dominating set of G1 ◦G2. Therefore,

γccl(G1 ◦G2) = |D|
= |H|+ |H|(p− 2)

= |V (G1)|+ |V (G1)|γccl(G2)

= |V (G1)|(1 + γccl(G2)). �

Corollary 1. Let G1 be any graph and G2 any complete graph of order at least three. Then

γccl(G1 ◦G2) = |V (G1)|.

3. Particular Values of γccl(G)

Theorem 3.1. Let G be any nontrivial connected graph of order at least three. Then γccl(G) = 1 if

and only if δ(G) ≥ 2 and γ(G) = 1.

Proof. Let G be any graph of order at least three with γccl(G) = 1. We consider the following cases:.

Case 1. Suppose δ(G) = 1 and γ(G) = 1. Let {vi}; 1 ≤ i ≤ p − 1 be the set of vertices of degree

p− 1 and {ui} be the set of its neighbors. Then by the definition of connected cototal dominating set,

γccl(G) = |{vi} ∪ {ui}| ≥ 2, a contradiction.

Case 2. Suppose δ(G) = 2, then there exists a vertex u of maximum degree less than or equal to

p − 2. Let v be a vertex of minimum degree, then by the definition of connected cototal dominating

set, P = v0, v1 · · · , u is a path in G. If 〈V −P 〉 has no isolated vertices, then |P | is a connected cototal

dominating set. If P is minimal then obviously, |P | ≥ 2.

Hence γccl(G) = |P | ≥ 2, a contradiction.

Conversely, suppose δ(G) ≥ 2 and γ(G) = 1, then there exists a vertex u of degree p − 1. Since

δ(G) ≥ 2, therefore 〈V (G)−{u}〉 contains no isolated vertices. Therefore, {u} is a minimal connected

cototal dominating set. Hence γccl(G) = |{u}| = 1. �

Theorem 3.2. Let G be any graph with at least three vertices. Then γccl(G) = 2 if and only if there

exists at least two adjacent vertices of degree p− 2 and 〈V −D〉 has no isolated vertices.

Proof. Let G be any graph of order at least three with γccl(G) = 2. Suppose G does not contain two

adjacent vertices of degree p− 2, then we consider the following cases:

Case 1. Suppose there exists a vertex of degree p− 1. Then by Theorem 3.1, γccl(G) = 1.

Case 2. Suppose there exists exactly one vertex of degree p − 2. Then we consider the following

subcases:
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Subcase 2.1. If δ(G) = u and ∆(G) = p− 2 = v, then there exists a vertex x which is nonadjacent

to v but adjacent to a vertex y such that deg(y) ≥ 2. Therefore D = {u, v, y, x} and 〈V −D〉 contains

no isolated vertices. Therefore D is a minimal connected cototal dominating set of G. Therefore,

γccl(G) = |D|
= |{u, v, y, x}|
= 4, a contradiction.

Subcase 2.2. If δ(G) = 2 and ∆(G) = p−2. Let u be a vertex of minimum degree, which is adjacent

to v and x, such that deg(v) = p − 2 and deg(x) = 2. Suppose there exists a vertex z which is

not adjacent to x then by Subcase 2.1, γccl(G) ≥ 3, a contradiction. Therefore, either D1 = {v, x}
or D2 = {u, v} is a minimal connected cototal dominating set of G. If D1 is a minimal connected

cototal dominating set, then 〈V (G) −D1〉 = {u} contains an isolated vertex, a contradiction. If D2

is a minimal connected cototal dominating set, then 〈V (G)−D2〉 = {x} contains an isolated vertex,

a contradiction. Let 〈V (G) − D3〉 = {u, v, x} be a connected dominating set of G. If 〈V (G) − D3〉
does not contain an isolated vertex, then D3 is a minimal connected cototal dominating set of G.

Therefore,

γccl(G) = |D3|
= |{u, v, x}|
= 3, a contradiction.

Case 3. Suppose there exists two nonadjacent vertices u and v such that deg(u) = deg(v) = p−2, then

there exists a vertex x such that x is nonadjacent to both u and v. Now to dominate x, we consider

a vertex z such that z ∈ N [x] and which is adjacent to both u and v. Then clearly, γccl(G) ≥ 3, a

contradiction.

Conversely, let u and v be any two adjacent vertices in G, such that deg(u) = deg(v) = p − 2. Let

D = {u, v}. Since δ(G) ≥ 2, therefore 〈V (G)−D〉 contains no isolated vertices. Then clearly D is a

minimal connected cototal dominating set of G. Hence,

γccl(G) = |D|
= |{u, v}|
= 2. �

Theorem 3.3. Let G be a graph of order at least four with δ(G) ≥ 2 and diam(G) = 2. Then

2 ≤ γccl(G) ≤ 3.

Proof. If G satisfies the hypothesis of the Theorem 3.3, then clearly γccl(G) ≥ 2.

For upper bound, let γccl(G) ≤ 3 and diam(G) 6= 2. Let D be a minimal connected cototal dominating

set of G. We consider the following cases:

Case 1. If diam(G) = 1 then G = Kp, by Theorem 2.3, γccl(G) = 1, a contradiction.

Case 2. If diam(G) ≥ 3 then clearly |D| ≥ 4. Hence γccl(G) = |D| ≥ 4, a contradiction. Hence

diam(G) = 2. �
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4. Comparison of γccl(G) with other domination parameters

A dominating set D is said to be a nonsplit dominating set if the induced subgraph 〈V − D〉 is

connected. The nonsplit domination number γns(G) of a graph G is the minimum cardinality of a

nonsplit dominating set of G [9].

In the following theorem we give the relationship between γccl(G) and γns(G).

Theorem 4.1. For any minimal connected cototal dominating set D of G, V − D is a nonsplit

dominating set of G if and only if for each v ∈ D, the following conditions holds:

(i) there exists a cycle in G containing v

(ii) for some cycle Cp, 〈D〉 contains a path Pp−1 < Cp with v as a pendant vertex of Pp−1

Proof. First we prove the necessity.

Suppose V − D is a dominating set of G and let some vertex v ∈ D. Suppose one of the given

condition is not satisfied, then N [v] ⊆ D. This implies that v is nonadjacent to any vertex of V −D,

a contradiction to the hypothesis that V − D is a dominating set. Hence in 〈V − D〉 there exists a

cycle containing v, which proves (i).

Similarly we can prove (ii).

Sufficiency is obvious. �

Next theorem gives the relationship between γccl(G) and γc(G).

Theorem 4.2. A connected dominating set D is a connected cototal dominating set if and only if

〈V −D〉 6= ∅ has no isolated vertices.

Proof. Proof follows from the definition of connected cototal dominating set of G. �

A dominating set D is said to be a total dominating set if the induced subgraph 〈D〉 has no isolated

vertices. The total domination number γt(G) of G is the minimum cardinality of a total dominating

set of G [3].

The following theorem gives the relationship between γccl(G) and γt(G)

Theorem 4.3. Let G be any graph and D be a minimal connected cototal dominating set of G. Then

V −D is a total dominating set if and only if G satisfies the following conditions:

(i) δ(G) ≥ 2

(ii) N(v) ∩ (V −D) 6= ∅ for all v ∈ D.

Proof. Let D be a minimal connected cototal dominating set of G for which V −D is a total dominating

set. We consider the following cases:

Case 1. Let v be a vertex of minimum degree. Suppose δ(G) = 1. Then u ∈ D. Since V −D is a

total dominating set, therefore u must be adjacent to at least one vertex of V −D, a contradiction.

Case 2. Since every vertex ofG is adjacent to at least one vertex of V−D, thereforeN(v)∩(V−D) 6= ∅
for all v ∈ D.

Conversely, suppose the given conditions are satisfied. Then obviously every vertex in V is adjacent

to some vertex in V −D and hence V −D is a total dominating set of G. �
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In the next theorem we characterize the graphs which have equal connected domination and con-

nected cototal domination number.

Theorem 4.4. For any graph G, γc(G) = γccl(G) if and only if G satisfies the following conditions:

(i) δ(G) ≥ 2

(ii) G contains C3 as an induced subgraph having the vertex set {x, y, z}, and

(a) If deg(x) = 2 then deg(y) = 2 and deg(z) = 2

(b) If deg(x) ≥ 3 then deg(y) = 2 and deg(z) = 2

Proof. Let G be any graph of order at least three with γc(G) = γccl(G). Let D be a minimal connected

cototal dominating set of G. Then we consider the following cases:

Case 1. Suppose δ(G) = 1 and G satisfies the condition (ii). Let v be a vertex of minimum degree,

such that deg(v) = 1. By Observation (i), {v} ⊆ D. Also by Observation (ii), v /∈ D′, where D′ is a

minimal connected dominating set of G. Hence |D|+ 1 = |D′|. Therefore,

γccl(G) = |D|
= |D′| − 1

= γc(G)− 1, a contradiction.

Case 2. If δ(G) = 1 and does not satisfies the condition (ii). Then by Case 1, γccl(G) > γc(G), a

contradiction.

Conversely, suppose G satisfies the conditions (i) and (ii). Then one can easily observe that γc(G) =

γccl(G). �

Nordhaus-Gaddum Type Results

Theorem 4.5. Let G be any graph such that both G and G are connected, then

(i) γccl(G) + γccl(G) ≤ 2(p− 1)

(ii) γccl(G) · γccl(G) ≤ (p− 1)2.
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