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Abstract. Let G be a finite group with the identity e. The subgroup intersection graph ΓSI(G) of G

is the graph with vertex set V (ΓSI(G)) = G−e and two distinct vertices x and y are adjacent in ΓSI(G)

if and only if | 〈x〉 ∩ 〈y〉 | > 1, where 〈x〉 is the cyclic subgroup of G generated by x ∈ G. In this paper,

we obtain a lower bound for the independence number of subgroup intersection graph. We characterize

certain classes of subgroup intersection graphs corresponding to finite abelian groups. Finally, we

characterize groups whose automorphism group is the same as that of its subgroup intersection graph.

1. Introduction

The role of algebra and graph theory in the field of Discrete Mathematics has been rapidly increasing

over several decades. The tools of each have been used in the other to explore and investigate problems

in deep. Especially the Cayley graph constructed out of a finite group has been greatly and extensively

used in parallel computers to provide networks to routing problems. There are many papers on

assigning a graph to a group. For example, Cayley graph, non-commuting graph, power graph,

etc.([7, 1, 4, 2]) are some of them to mention in this regard. Let G be a finite group. The power

graph [4, 2] of G is the graph with vertex set G and two vertices x and y are adjacent if either x = yi

or y = xj for some positive integers i and j. In [8], T. Tamizh Chelvam and M. Sattanathan introduced

the subgroup intersection graph ΓSI(G) of a group G as follows: Given a finite group G, we associate

the simple graph ΓSI(G) whose vertex set is G − e and two distinct vertices x and y are adjacent

in ΓSI(G) if and only if | 〈x〉 ∩ 〈y〉 | > 1, where 〈x〉 is the cyclic subgroup of G generated by x ∈ G.
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Note that the power graph of G is a subgraph of the subgroup intersection graph ΓSI(G). Having

introduced ΓSI(G), certain fundamental properties of this new graph are studied [8].

By a graph Γ, we mean an undirected graph with no loops and multiple edges. For any graph

Γ = (V,E), we denote the sets of the vertices by V and edges by E. A subset X of the vertices of Γ is

called an independent set of Γ if the induced subgraph on X has no edges. The maximum size of an

independent set in a graph Γ is called the independence number of Γ and denoted by β0(Γ). A planar

graph is a graph that can be embedded in the plane so that no two edges intersect geometrically except

at vertices. Unicyclic graphs are graphs which are connected and have just one cycle. Two graphs

Γ1 and Γ2 are isomorphic (written Γ1
∼= Γ2) if there exists a one-to-one correspondence between

their vertex sets which preserves adjacency. An isomorphism from a graph Γ to itself is called an

automorphism of Γ.

Let G be a group with the identity element e. The number of elements of a group is called its order

and it is denoted by O(G). The order O(g) of an element g ∈ G is the smallest positive integer n such

that gn = e. If no such integer exists, we say g has an infinite order. We state the following theorems

for the sake of use in the subsequent discussions.

Theorem 1.1. [3] K5 and K3,3 are non-planar.

Theorem 1.2. [8] Let G be a finite group. Then ΓSI(G) is a complete graph if and only if G has a

unique subgroup of order p and O(G) = pm for some prime number p and positive integer m.

Theorem 1.3. [8] Let G be a finite abelian group of order pn for some prime number p. Then ΓSI(G)

is a finite union of complete graphs.

Now we have the following corollary.

Corollary 1.4. Let G be an elementary abelian group of order pn. Then ΓSI(G) ∼=
⋃
m
Kp−1 where

m = pn−1
p−1 .

In this paper, we obtain a lower bound for the independence number of the subgroup intersection

graph. We characterize certain subgroup intersection graphs corresponding to finite abelian groups.

Finally, we characterize groups whose automorphism group is the same as that of its subgroup inter-

section graph.

2. Independence number of ΓSI

In this section, we obtain the independence number of ΓSI(G) corresponding to a finite group G.

Theorem 2.1. Let G be a finite group of order n = pα1
1 pα2

2 . . . pαk
k , where p1, p2, . . . pk are distinct

primes and α1, α2, . . . , αk are positive integers. Then the independence number β0(ΓSI(G)) ≥ k.

Proof. Since each pi divides O(G), there exist ai ∈ G such that O(ai) = pi, for 1 ≤ i ≤ k. Note that

〈ai〉 ∩ 〈aj〉 = {e} for all i 6= j. From this {a1, a2, . . . , an} is an independent set of ΓSI(G) and hence

the result follows. �
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The following lemma is trivial.

Lemma 2.2. Let G be a finite group of order n = pα1
1 pα2

2 . . . pαk
k , where p1, p2, . . . , pk are dis-

tinct primes, α1, α2, . . . , αk are positive integers. Assume that G has unique subgroups of orders

p1, p2, . . . , pk. Two non identity elements a, b ∈ G are non-adjacent in ΓSI(G) if and only if gcd(O(a),

O(b)) = 1.

Theorem 2.3. Let G be a finite group of order n = pα1
1 pα2

2 . . . pαk
k , where p1, p2, . . . pk are distinct

primes and α1, α2, . . . , αk are positive integers. The independence number β0(ΓSI(G)) = k if and only

if G has the unique subgroup of order pi for every i = 1, 2, . . . , k.

Proof. Assume that G has the unique subgroup of order pi for i = 1, 2, . . . , k. If β0(ΓSI(G)) > k,

then G has an independent set A with at least k+ 1 elements. By Lemma 2.2, the orders of elements

in A are pairwise relatively prime. Since O(G) has exactly k distinct prime divisors, we cannot find

k + 1 elements in G whose orders are pairwise relatively prime. Therefore β0(ΓSI(G)) ≤ k, whereas

by Theorem 2.1, β0(ΓSI(G)) ≥ k. Hence β0(ΓSI(G)) = k.

Conversely, assume that β0(ΓSI(G)) = k. Let ai be an element in G such that O(ai) = pi for

i = 1, 2, . . . , k. Suppose G has two distinct subgroups of order pi for some i say Hi and Ki. Then

Hi = 〈ai〉 and Ki = 〈bi〉, for some ai, bi ∈ G. Since Hi ∩ Ki = {e}, the set {a1, a2, . . . , ak, bi} is an

independent set in ΓSI(G) with k + 1 elements, which is a contradiction. Hence G has the unique

subgroup of order pi for i = 1, 2, . . . , k. �

3. Subgroup intersection graph of finite abelian groups

In this section, we study about the subgroup intersection graph of finite abelian groups. We char-

acterize certain subgroup intersection graphs corresponding to finite abelian groups. Finally, we

characterize groups whose automorphism group is the same as that of its subgroup intersection graph.

Theorem 3.1. Let G be a finite cyclic group. Then ΓSI(G) is planar if and only if O(G) ≤ 6.

Proof. Assume that ΓSI(G) is planar. Suppose p|O(G) for some prime p ≥ 7. Clearly G has an element

a of order p. By Theorem 1.2, the subgraph induced by 〈a〉 is Kp−1. Since p ≥ 7, ΓSI(G) is non-planar,

a contradiction. Therefore O(G) = 2n13n25n3 , where n1 ≥ 0, n2 ≥ 0, n3 ≥ 0 are integers. Suppose

there exists r ∈ {10, 12, 15, 18} such that r|O(G). Since G is cyclic, G has an element x of order r

and the subgraph induced by 〈x〉 must contain K5 and so ΓSI(G) is non-planar, a contradiction. This

gives that O(G) must be either 6 or 2n or 3n or 5n for some n ≥ 1. Suppose O(G) is either 3n or 5n

for some n ≥ 2. Then either 9 or 25 must divide O(G) and G has an element x of order either 9 or 25

respectively. By Theorem 1.2, the subgraph induced by 〈x〉 is either K8 or K24, which are non-planar,

a contradiction. Suppose O(G) = 2n for some n ≥ 3. In this case G contains an element x of order 8

and the subgraph induced by 〈x〉 is K7, which is non-planar, a contradiction. Hence O(G) ≤ 6.

Conversely, assume that O(G) ≤ 6. Note that, for O(G) ≤ 5, ΓSI(G) ∼= KO(G)−1 is planar. One

can see from the Figure 2.1 that ΓSI(Z6) is also planar.
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Figure 2.1: ΓSI(Z6)

�

Lemma 3.2. Let G be an abelian group of order either 12 or 18. Then ΓSI(G) is non-planar.

Proof. By Theorem 3.1, it is enough to consider the case that G is non-cyclic. Let G be a non-cyclic

abelian group of order 12. Then G ∼= Z2 × Z2 × Z3. Note that G has the unique subgroup of order

3 and G contains 6 elements of order 6. From this, K5 is a subgraph of ΓSI(G) and so ΓSI(G) is

non-planar.

Let G be a non-cyclic abelian group of order 18 and so G ∼= Z2 × Z3 × Z3. Note that G has the

unique subgroup of order 2 and G contains 8 elements of order 6. From this, K5 is a subgraph of

ΓSI(G) and hence ΓSI(G) is non-planar. �

Lemma 3.3. Let G be an abelian group of order 8. Then ΓSI(G) is planar if and only if G is

isomorphic to Z2 × Z2 × Z2.

Proof. Assume that ΓSI(G) is planar. By Theorem 3.1, G is non-cyclic and so G ∼= Z2 × Z4 or

G ∼= Z2 × Z2 × Z2. Note that ΓSI(Z2 × Z4) is K5 ∪ 2K2 and so ΓSI(Z2 × Z4) is non-planar. Hence G

is isomorphic to Z2 × Z2 × Z2. Converse is trivially true. �

Theorem 3.4. Let G be a finite abelian group. Then ΓSI(G) is planar if and only if G is isomorphic

to Z4 or Z6 or Z5 × Z5 × · · · × Z5 or Z3 × Z3 × · · · × Z3 or Z2 × Z2 × · · · × Z2.

Proof. Assume that ΓSI(G) is planar. Suppose p|O(G) for some prime p ≥ 7. Then Km(m ≥ 6) is

a subgraph of ΓSI(G) and hence ΓSI(G) is non-planar, which is a contradiction. Therefore O(G) =

2n13n25n3 , where n1 ≥ 0, n2 ≥ 0, n3 ≥ 0 are integers. Suppose O(G) = 2n13n2 for two integers n1 ≥ 2

and n2 ≥ 1. Since G is abelian and 12|O(G), G must have a subgroup of order 12. By Lemma 3.2,

ΓSI(G) is non-planar, a contradiction. Similarly we get contradiction in the following cases.

(i) n1 ≥ 1 and n2 ≥ 2

(ii) n1 ≥ 1 and n3 ≥ 1

(iii) n3 ≥ 1 and n2 ≥ 1

In view of these observations, O(G) is either 6 or 2n or 3n or 5n for some integer n ≥ 1.

Suppose G is not an elementary abelian group of order pn, where p = 3, 5. Since G is abelian, Zp2 must

be a subgroup of G and hence Kp2−1 is a subgraph of ΓSI(G), a contradiction. Suppose O(G) = 2n,

for some n ∈ Z+ and G is not isomorphic to either Z2 × Z2 × · · · × Z2 or Z4. Then Z2 × Z4 must be
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a subgroup of G and by Lemma 3.3, ΓSI(G) is non-planar, a contradiction. Hence G is isomorphic to

Z4 or Z6 or Z5 × Z5 × · · · × Z5 or Z3 × Z3 × · · · × Z3 or Z2 × Z2 × · · · × Z2.

Converse part is true from Corollary 1.4 and Theorem 3.1. �

Theorem 3.5. Let G be a finite abelian group. ΓSI(G) is a unicyclic graph if and only if G ∼= Z4.

Proof. Let G ∼= Z4. By Theorem 1.2, ΓSI(G) ∼= K3 and hence ΓSI(G) is a unicyclic graph.

Conversely, assume that ΓSI(G) is a unicyclic graph. Suppose there exists a prime p > 3 such

that p|O(G). Then G has an element of order p and so Kp−1 is a subgraph of ΓSI(G), which is a

contradiction. This implies that O(G) = 2n3m for some non negative integers n and m. Assume that

n ≥ 1 and m ≥ 1. Since G is abelian, G has an element of order 6 and so K4 is a subgraph of ΓSI(G),

which is a contradiction. Therefore O(G) is either 2n or 3n for some positive integer n.

Suppose G is an elementary abelian group of order 3n for some n > 0. By Corollary 1.4, ΓSI(G) ∼=
∪̀K2 where ` = 3n−1

2 and so ΓSI(G) is not unicyclic. On the other hand for some n > 1, Z3n is a

subgroup of G. This implies that K3n−1 is a subgraph of ΓSI(G), which is a contradiction. Therefore

O(G) = 2n.

Suppose G is an elementary abelian group of order 2n. Then ΓSI(G) is totally disconnected, which

is a contradiction.

Suppose for some n > 2, Z2n is a subgroup of G. Then K2n−1 is a subgraph of ΓSI(G), which is a

contradiction.

Suppose for n > 2, Z4 × Z2 is a subgroup of G. Now the subgraph induced by Z4 × Z2 contains

more than two cycles, which is a contradiction. Hence O(G) = 4 and G ∼= Z4. �

Since any group isomorphism between two groups G1 and G2 is a graph isomorphism between the

corresponding ΓSI(G1) and ΓSI(G2), we have the following.

Lemma 3.6. Let G1 and G2 be two groups. If G1
∼= G2, then ΓSI(G1) ∼= ΓSI(G2).

Corollary 3.7. Let G be a finite group. Then Aut(G) ⊆ Aut(ΓSI(G)).

Remark 3.8. The converse of Lemma 3.6 is not true. Consider the group (Z8,+8) and quaternion

group Q8 of order 8. Note that Z8 6∼= Q8, whereas ΓSI(Z8) ∼= K7
∼= ΓSI(Q8).

In view of the above observation, we now characterize groups G for which Aut(G) = Aut(ΓSI(G)).

For an integer n ≥ 1, Sn is the symmetric group of degree n and Un is the multiplicative group of

units in the ring Zn.

Theorem 3.9. For a finite group G, Aut(G) = Aut(ΓSI(G)) if and only if G is either Z2 or Z3 or

Klein’s 4-group.

Proof. Observe that ΓSI(Z2) = K1, ΓSI(Z3) = K2 and ΓSI(Z2 × Z2) = K3. From these observations,

we have Aut(ΓSI(Z2)) = S1, Aut(ΓSI(Z3)) = S2 and Aut(ΓSI(Z2 × Z2)) = S3. On the other hand

Aut(Z2) = S1, Aut(Z3) = S2 and Aut(Z2×Z2) = S3. Hence Aut(G) = Aut(ΓSI(G)) where G is either

Z2 or Z3 or Klein’s 4-group.
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Conversely assume that Aut(G) = Aut(ΓSI(G)). Since the map x 7−→ x−1 is a graph automorphism,

it is also a group automorphism and so G is abelian. Suppose G has two elements x and y such that

o(x) = o(y) ≥ 3 and 〈x〉 ∩ 〈y〉 = {e}. Since the element xy is a non self inverse element, there is a

graph automorphism fixing x and y and mapping xy to its inverse but no group automorphism can

do this. This proves that G is either cyclic or an elementary abelian group of order 2n.

Case(i). G is cyclic.

Suppose G has two elements x and y such that o(x) = p1 and o(y) = p2 for two distinct primes p1

and p2. Since o(xy) = p1p2, the element xy is a non self inverse element of G. As observed above, there

is a graph automorphism fixing x and y and mapping xy to its inverse but no group automorphism

can do this. Hence G must be a cyclic group of order pn, for some prime p and a positive integer

n ≥ 1. From this we have a graph automorphism mapping an element of order pn to an element of

order p, which is impossible for a group automorphism. Therefore G is a cyclic group of order p for

some prime p and in such a case ΓSI(G) = Kp−1 and Aut(ΓSI(G)) = Sp−1. But Aut(G) = Up and

|Up| = p − 1. By the assumption that Aut(G) = Aut(ΓSI(G)), we get that (p − 1)! = p − 1 which is

possible only when p = 2 or p = 3. Hence G is either Z2 or Z3.

Case(ii). G is an elementary abelian group of order 2n.

In this case ΓSI(G) = K2n−1 and hence Aut(ΓSI(G)) = S2n−1, whereas Aut(G) is a general linear

group GL(n, 2) and these two groups are isomorphic if and only if n = 2. Hence G is the Klein’s

4-group.

�
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