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ABSTRACT. In this paper, we investigate a problem of finding natural condition to assure the product
of two graphs to be hamilton-connected. We present some sufficient and necessary conditions for GLIH
being hamilton-connected when G is a hamilton-connected graph and H'is a tree or G is a hamiltonian
graph and H is Ko.

1. Introduction

In this paper, we consider finite simple graphs, and refer to [I] for terms and notations not defined
here. Let G = (V, E) be a graph. For any vertex v € V| let dg(v) denote the degree of v in G, and
A(G) denote the maximum degree of G. Let ¢(G) be the number of components in G. Denote P,
Cy, and K ;_1 to be a path with m vertices (m > 2), a cycle with n vertices (n > 3) and a star with
J vertices (j > 1), respectively.

Let G1 = (V1, Ey) and G2 = (Va, E3) be two graphs. The Cartesian product of G; and G3, denoted
by G10G>, is the graph with vertex set V3 x V5 such that the vertices (x1,y1) and (x2,y2) are adjacent
if and only if either @3 = xo € Vi with y1y2 € Fo, or y1 = yo € Vo with z129 € Fy. It follows the
definition that for any (z,y) € V(QG),

dey06, (2, y) = da, () + da, (y)-
For any y € Vb, define Gy, to be the graph with vertex set Vi, = {(z,y) | « € V1} and edge set
Evy = {(z1,y)(x2,y) | z122 € E1}. Similarly, For any « € Vi, define Ga, to be the graph with vertex
set Vog = {(z,y) | x € Va} and edge set Fop = {(z,y1)(z,y2) | y1y2 € E2}.
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Note that G, is isomorphic to graph Gy, for any y € V3; and that G, is isomorphic to graph G2
for any = € Vp. It is clear that

VigNViy =0, EyyNEyy =0 fory#y;
Vag N Vag =0, Eap N Egy =0 for x # a';
Vig N Vag = {(z,y)} for z € Vi; y e Va;
E(G10G2) = (Uyew, E1y) U (Uzev; E2z);

V(G10Gs) = (Uyew, Viy) = (Uzev, Vaz).
A spanning path(cycle) is called a Hamilton path(cycle). A graph G is traceable if it contains a

Hamilton path, and hamiltonian if it contains a Hamilton cycle. A graph G is hamilton — connected
if there exists a Hamilton path joining any two different vertices of G.

Let F' be a subgraph of a graph G. An ear of F in GG is a nontrivial path in G whose ends lie in F'
but whose internal vertices do not.

A graph G is called a cactus if it has at least 3 vertices, all cycles of G are vertex-disjoint, maximum
degree of GG is 3 and all vertices of degree 3 are on a cycle of G.

We denote by & the class of graphs with following properties:
(i) any graph H € & can be edge-covered by two subgraphs Ho and Hp, such that H = HoUHp,

Hc and Hp are edge-disjoint, Hg is an edge disjoint union of cycles C1,---,Cp, and Hp is a
forest.
(ii) there is no vertex/in Hg common to more than two cycles among the cycles Cy, -+, Cp,

(ili) H € & has at least two vertices.

We call the pair (Hg, Hp) a cycle — tree covering of H.
A graph H € ¢ satisfying the following:
(i) for every vertex on exactly one cycle of He in the cycle-tree covering of H all its neighbors
are either all pendent (vertices of degree one) or all nonpendant, i.e. for such vertex u we have
either df,(u) > 0 and df'(u) = 2 or df,(u) = 0 and dj¥ (u) > 2,
(ii) a vertex common to exactly two cycles in the cycle-tree covering of H has neighbors on these
cycles only,
is called generalized cactus. In particular, such cactus is even if all its cycles are of even length.
The generalized b— cactus is a generalized cactus with every branch vertex (vertices of degree more
than 3) on a cycle.

We denote by .# the class of graphs with following properties:
(i) any graph G € .# is union of cycles C1, - -, Cy,
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(ii) for two cycles for C;, Ciy1, [V(C;iNCiy1)| =1,1<i<p—-1,1<[; < max[@, W(gi”l)‘]

(iii) at least one of these cycles is odd cycle.

When p =2, [; =1, graph G is denoted by ©(l,m,n), where |V (C})| =n, |[V(C2)| =m.

Here we mention some related results. Gould in [4] raised a research problem to find natural
conditions to assure the product of two graphs to be hamiltonian. Paulraja in [I1] gave the sufficient
and necessary conditions for the prism over graphs to be hamiltonian. And Lu et.al in [9] present
some sufficient and necessary conditions for GLJH being hamiltonian when G is a hamiltonian graph
and H is tree.

The followings are some results related with our main Theorem.
Theorem 1.1. [I] Let S be a set of vertices of a hamiltonian graph G. Then ¢(G — S) < |S]|.

Theorem 1.2. [I1] Let G be a graph. The Cartesian product GOKy is hamiltonian if and only if G

has an even generalized b-cactus as a subgraph.

Lemma 1.3. [9] Let C), be a cycle (n > 3). For any tree T, if T contains a subdivision of K{g) as
a subgraph. Then G = C,T is not traceable, where Kfnz})) is the graph obtained by identifying every
degree 1 vertex of a K13 with the center of a Kq .

Lemma 1.4. [7] Suppose that m is an odd integer. Then Cp[Ky is hamilton-connected.

Note that when m is an even integer, C),L1K5 is not hamilton-connected. In this paper, we shall
investigate the sufficient and necessary conditions-for GLJH being hamilton-connected when G is a
hamilton-connected graph and H is a tree or G.is hamiltonian graph and H is K5. Our main theorems

are as follows:

Theorem 1.5. Let G be a hamilton-connected graph, and let T be a tree with mazimum degree /\. Then
graph GOT is hamilton-connected if and only if A(T) < |V(G)|—1 and T contains no subdivision of
Kg) as a subgraph, where K£n3) is the graph obtained by identifying every degree 1 vertex of a K13

with the center of a K.
Theorem 1.6. Let G be a hamiltonian graph. The Cartesian product GUKy is hamilton-connected if
and only if:

(i) G is of odd order, or

(ii) G is of even order and G contains O(1,2k+ 1,20+ 1) as a spanning subgraph, where ©(1, 2k +
1,20 + 1) is the graph union of two odd cycles with a common edge.

2. Proof of Theorem [1.5]

In this section we will give a proof of Theorem

Lemma 2.1. Let T = Ky, be a star, and let G be a hamilton-connected graph with n vertices (n > 3).
If m <n—1, then the graph H = GUT 1is hamilton-connected.
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Proof. Let V(K1,m) = {y0,Y1, - s Ym}, where d(yo) = m and d(y;) = 1 for 1 <i < m. Then Gy, = G
fori =0,1,---,m. Particularly, V(G1y,) = {(v1,¥i), (v2,9i), -+, (Vn,yi)} fori =0,1,--- ,m. We shall

determine a Hamilton path between any two given vertices in GUT'. We distinguish the following cases.
Case 1. Any (Ul)y0)7 (/vayO) € Glym 1< l,f <n.

Because graph G is hamilton-connected, there exists a Hamilton path joining any two distinct
vertices of the graph G. Let Py be a Hamilton path of Gy, between (v, yo) and (v, yo). Let 21 = vy,
x, =vyp and Py = ((1,%0), (x2,%0), - » (Tn,¥0)). Let P; be a Hamilton path of Gy, between (x;,y;)
and (x;+1,¥;). Then

P o= (Po—{(z1,90)(®2,%0), (x2,50)(x3,%0), =+, (@m-1,%0)(Zm, %0) })
UPLU P2 U -+ Py U {(21,90) (21, ¥1), (22, Y0) (22, 1), (T2, 90) (22 ¥2),
(23,90) (%3, Y2), (3,Y0) (¥3,Y3), s (T Yo ) (Tems Ym ) }
is a Hamilton path between (v;,y0) and (v, yo) in H.

Case 2. Any (v, y0) € Giyy, (vf,4i) € Gy, 1< f<n, 1 <i<m.

Let Py be a Hamilton path between (vi41,¥;), (vf,yi) in Giy,. From Case 1, we can find a Hamilton
path P5 between (vj,yo) and (vi41,%0) in GO(T —y;). Then

P = PLUBRU{(vi1,v0)(vig1,vi)}
is a Hamilton path between (vj,y0) and (vs, ;) in H.
Case 3. Any (Ul)yi) € Glyw (Uf7y]) S Glyj7 1 S l7f S n, 1 S Za] S m, { ;éj

Let P, be a Hamilton path between (v, y;) and (vp, y;) in Gyy; for 1 < p < m. Let P, be a Hamilton
path between (vy,y;) and (vg, y5)dn Giy; for 1 < ¢ < m. From Case 1, we can find a Hamilton path
P3 between (vp, yo)and (vg,yo) in GO(T — {yi,y;}). Then

P = PrUPU{(vp,90)(vp,¥i), (Vg, Yo) (Vg ¥5) }

is a Hamilton path between (v;,y;) and (vy,y;) in H.
Case 4. Any (v, yi), (vf,yi) € Giy,, 1 <1, f<n, 1<i<m.

Let Let P; be a Hamilton path between (v;,y;) and (v, ;) in Giy;. From Case 1, we can find a
Hamilton path P, between (v, yo) and (vs,yo) in GO(T —y;) for {(vs, yi)(vr,yi)} € Prfor 1 <r,s <n.
Then

b= (Pr = {(vr,9i)(vs,50)}) U {(vr, 9i) (vr, 90), (vs, 4i) (vs, 4o0) } U P

is a Hamilton path between (v;,y;) and (vy,y;) in H. O


www.SID.ir

Trans. Comb. 1 no. 3 (2012) 11-19 R. Hoshur and E. Vumar 15

Remark 2.2. By the argument used in Case 1 in the proof of Lemma |E1y, N E(P)] = 0 of
m=n—1. Ifn—1>m, then (z;,y0)(xi+1,%) € E(P) for m <i < (n—1), that is, |E1y, N E(P)| =
n—m—1. If n —1 < m, there exists no Hamilton path between (vi,yo), (vf,yo) € Giyp-

Corollary 2.3. Let G be a hamilton-connected graph with n vertices (n > 3). Then the graph H =

GUK, , is not hamilton-connected.

Recall that K Y:Ls) is the graph obtained by identifying every degree 1 vertex of a K 3 with the center
of a K1,. Note that A(K g)) = n + 1. Since a hamilton-connected graph is also hamiltonian, by

Lemma 1.3 in [9], we have the following corollary.

Corollary 2.4. Let G be a hamilton-connected graph with n vertices (n.>-3). If T contains a
subdivision of Kfrg) as a subgraph, then the graph H = GUT is not hamilton-connected.

Proof of Theorem [I.51

Let H = GOT be a hamilton-connected graph and A(T) > n+ 1, where |V(G)| = n. If there
exists y € V(T) such that dr(y) > n+ 1, then ¢(H = Giy) = ¢(T —y) = dr(y) > n+ 1. By
Theorem 1.1, H = GOT is not hamiltonian and hence is not hamilton-connected, a contradiction. If
A(T) = V(G) = n, by Corollary 2.3, H is not hamilton-connected. Therefore A(T) < n — 1. By
Corollary 2.4, T contains no subdivision of K %) as a subgraph.

So it suffices to show that if A(T') < n—1 and T contains no subdivision of K f”?)) as a subgraph, then
H = GUT is a hamilton-connected graph. If 7T is a star, then it follows from Lemma 2.1. Therefore
we may assume that 7' is not a star. By way of contradiction, let T" be a tree with minimal number
of vertices such that A(T') < n — 147 contains no subdivision of K £n?’) as a subgraph and H = GOT
is not hamilton-connected.

Note that T' can be viewed as a graph obtained from finite stars 77, 15, --- , T by connecting their
centers with edges and there exists such a star 7; that is connected to the other stars with only one
edge. Without lose of generality, we may assume that T} is only connected to T5. Let y; the center of
T; (i =1,2). Since T —Tyis also a tree and |V(T' —T1)| < |V(T)|, GO(T — T1) is hamilton-connected.
Since A(Th) < n — 1, by Lemma 2.1, GOT; is hamilton-connected.

Now we shall construct a Hamiltonian path between any two distinct vertices of H = GUT', and

then obtain a contradiction.
Case 1. Any (v, y:), (vf,y5) € GOTy, 1 <1, f < n.

Let P; be a Hamilton path between (v, ;) and (v, y;) in GOT). Since dr, (y1) < n — 2, at least
one edge of Gy, lies in P;. By Remark 2.2, we may assume (vi,y1)(v2,91) € E1y, N E(P1). Then
there exists a Hamilton path Ps between (v1,y2)(ve, y2) in GO(T — T1). Hence

P =P U (P~ {(v1,y1)(v2,91)}) U {(v1,y1)(v1,92), (v2,y1) (v2, y2) }

is a Hamilton path between (vj,y;) and (vy,y;) in GOT.
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Case 2. Any (Ul7yi)7 (vfay]) € GD(T - T1)7 1<, f<n.
The proof of this case is similar to the proof of Case 1. So it is omitted.
Case 3. Any (v, y;) € GOT1, (vy,y;) € GO(T —T1), 1 <1, f <n.

Let P; be a Hamilton path between (v;,y;) and (v, y1) in GOT). Let P, be a Hamilton path between
(v, y2) and (vg,y;) in GO(T — T1). Then

P =P UPU{(ve,11)(ve,92)}

is a Hamilton path between (v;,y;) and (vy,y;) in GOT'.

3. Proof of Theorem [1.6

In this section we will give the sufficient and necessary condition for GUK, being hamilton-
connected. We know that prism over odd cycle is hamilton-connected[7], but the prism over even
cycle is not hamilton-connected. We now can consider the case when G contains O(1,2k + 1,20 + 1)

or ©(1,2k + 1,20 4+ 1) as a spanning subgraph. Note that G a is hamiltonian graph with even order.

Lemma 3.1. Let V(P,,) = {x1 , 22, -+, T}, andlet XY be the bipartite partition of bipartite graph
G = P,0Ky. Then there exists Hamilton path joining any two vertices (xe,y;) € X and (xf,y;) € Y
for 1 < e f <m, 1 <i,j <2, but no Hamilton path joining (x;,y1) € X and (x;,y2) € Y for
1<l<m.

Proof. Let V(Pp,) ={x1,22, -5 xm}, V(K2) = {y1,y2}, and V(P,,,0K>) = {(z1,v1), (z2,91), -,
(T, 1), (21,92), (T2,92), -+ § (Tm, y2)}. We can see that P,[0K is a bipartite graph. Let X and
Y be the bipartite partition of the G. We will show that for any (z.,y;) € X and (z,y;) € Y for
1<e f<m,1<i,j<2there exists a Hamilton path joining them, but no Hamilton path joining
(x1,y1) € X and (z3,y52) €Y for 1 <l <m.

Obviously, there exists Hamilton path between (z1,y1) and (x1,y2) or (Zm,y1) and (zm,y2) in G.
But no Hamilton path between (x;,y1) € X and (x;,y2) € Y for 1 <l <m.

Now consider any (z.,y;) € X and (x¢,y;) € Y, where e # f.

By induction on m. suppose that it is true for P,OK, with & < m. Let P, = (z1,22, -+ ,xf_1),
Py = (xp,xf41,- -+ ,%m). We may assume z. € V(P;). By the induction hypothesis, there is a
Hamilton path P’ between (z.,v;) and (f-1,Yj+1) in PiOK, and there exists Hamilton a path P"
between (z,y;) and (zf,y;j+1), where (xf,y;)(zf,yj+1) € E(Pp0K3). Then

P =P UP U{(zs,yj+1)(@r-1,95+1)}

is a Hamilton path between (z¢,y;) and (z¢,y;) in G. O

Proposition 3.2. Let G = ©(1,2k,2l). Then H = GOK> is not hamilton-connected.


www.SID.ir

Trans. Comb. 1 no. 3 (2012) 11-19 R. Hoshur and E. Vumar 17

Proof. Let C1 and Cj be two even cycles, and let V(C1) = {x1, a2, -+, zor}, V(C2) = {a;l,a:g,w;,, cee
Ty}, B(CL N Co) = {miwa}, V(Ka) = {1, 92}

We suppose that GOKj is hamilton-connected. There exists a Hamilton path P between (x1,y;)
and (z2,y2). Let C = G\ {z122}, and note that C is an cycle with even order. Then COK> is not
hamilton-connected, and there exists no Hamilton path between (x1,y;) and (z2,y2) in COKs. So
edges (r1,y1)(x2,y1) or (x1,y2)(x2,y2) must be contained in P, and one of them must be the first or
last edge of P.

Now let P = (x3, 24, -+ ,xok), and let P, = <a?;),xil, e ,w;l>. Say edge (z1,y1)(x2,y1) is first edge
of P. From the argument earlier, there must exist Hamilton path between (z3,y;) and (xo,y2) in
P0K5. Because (z3,y1) and (x9,y2) is in same partite in Pi\lJK59, by the Lemma 3.1, there exists

no Hamilton path joining (z3,y1) and (zax,y2), contradiction. O
Lemma 3.3. Let G =0O(1,2k+ 1,2l 4+ 1). Then H = GOK; is hamilton-connected.
Proof. Let C7 and C3 be two odd cycles, and V(C1) = {z1,z2, -, Zopgr}y V(Ca) = {wl,:ﬁz,x;, e
Tori1}h B(C1NCy) = {miaa}, V(K2) = {1, 0}
Case 1. Any (xe,yi), (xf,y;) € V(C10OK2), 1 <e, f <2k+41, 1<4,5 < 2.
Let Pl == <‘T37'” 7'1:6)7 P2 = <$€+17"‘ ,{Ef,“ ' 7$2k+1>‘
Let X3, Y7 be bipartite partition of P,[1K5; X5, Y5 be bipartite partition of of Po[1K5. Without loss
of generality, we may assume that (z3,y1) € X1, (#3,y2) € Y1 and (zor11,y1) € Xo, (Tok+1,y2) € Ya.
If (ze,y;) € Xy (if (ze, ;) € Y1 we can choose the (x3,y1)), by Lemma 3.1, we can find a Hamilton
path P3 between (z.,y;) and (x3,y2) in Pi{OKs. Similarly if (zf,y;) € Xo (if (x4,y;) € Yo we can
choose the (z2r+1,¥y1)), we can find a Hamilton path P, between (z¢,y;) and (z2x41,y2) in P,OK,.
By Lemma 1.4, there is a Hamilton path P5; between (z1,y2) and (z2,y2) in CoKs. Then

P =Py UPyU Ps U{(z1,y2)(Tor+1,Y2), (72, y2) (23, 92) }
is a Hamilton path between (x.,y;) and (z¢,y;) in GOK».
Case 2. Any (x;,yz)(xlf,y]) e V(C0Ky), 3<e, f<2l+1, 1<4,5 <2.
The proof of this case is similar to that of Case 1. So it is omitted.
Case 3. Any (ze,y;) € V(C1OKy), (m/f,yj) e V(COKy), 1 <e<2k+1,3< f <2041, 1 <i,j<2.

Let Py_o = <a:f3,w/4, e ,x/21+1) and let X, Y be bipartite partition of Py_s[0K5. Consider the
vertices (x/21+1, Y1), (a;IQZH, y2) or (5,y1), (x3,y2) that are in different partite sets. Say the former, we
can assume (9:/21+1,y1) € X, (:z:/21+1,y2) ey.

Without loss of generality, we may assume (x/f, yj) € X, by Lemma 3.1, there is a Hamilton path
P; between (x/f,yj) and (:Elzlﬂ,yg) in Py_s0K5. Also there is a Hamilton path P» between (x1,y2)
and (ze,y;) in C10K5. Then

P =P UPU{(zy,1,92)(z1,52)}
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is a Hamilton path between (z.,y;) and (a;/f,yj) in GOKGs. O
Proposition 3.4. Suppose that H = C,L0K3 is a hamilton-connected graph. Then n is an odd integer.

Proof. Let V(Cy) = {z1,22, -+ ,zn}, V(K2) = {y1,y2}. Let P be a Hamilton path between (z1,y1)

and (22, y2), then Pr = (1, 41), (%1,92), (Tn, y1); (Tn, y2), (@n—1,91), -+, (23, 91), (T2, 41), (22, y2)) and
Py contains every pillar of the prism. Let X = V(Gy,,), then |0(X)| = 2t 4+ 1, where 0(X) is set of
edges with one end in X.

Since H = C,0K> is an odd graph, and by [0(X)| + 2e(X) = Y cx d(v), we have |0(X)| = |X| (
mod 2), so |X| = |V(G1y,)| = n is an odd integer. O

Conclude all the above, we can obtain the sufficient and necessary condition for prism over hamilton-
ian graph being hamilton-connected, that is Theorem Therefore we can give a sufficient condition

for GOP,, being hamilton-connected.

Theorem 3.5. Let m be an integer, where m > 2. Then H = GU Py is hamiltonian-connected, if:

(i) G is a hamiltonian graph with odd order, or
(ii) G is a hamiltonian graph with even order, and G _contains ©(1,2k + 1,21 + 1) as a spanning
subgraph, where ©(1,2k 4+ 1,21 + 1) is the graph union of two odd cycles with a common edge.

Proof. Let C,, be a Hamilton cycle of G, V(Cy,) = {x1, zay= ,zn}, V(Py) = {y1,y2, ** ,Ym}

We prove it by induction on m.

When m = 2, by Theorem 1.6 it is right. Now.we suppose that GLP,,_; is hamilton-connected
when G satisfies those conditions. We shall show that H = G[F,, is hamilton-connected.

Case 1. Any (xeayi)7 (':L'fay]) € V(CHDPm71)7 1 < €,f < n, 1 < Za] <m— 1.

By induction hypothesis there is a Hamilton path P; between (x¢,y;) and (zy,y;) in GOP,,_1.
Without loss of generality, assume (z;, Ym—1)(Zit1, Ym—1) € F(Cr,OP,—1 N P1). Then

P = (PI\A{(zs, ym-1)(@it1, Ym-1)}) U{(@s, Ym—1)(@is Ym), (Tit1, Ym—1)(Tit1, Ym) } U
{(xiv ym)(xi*b ym)v (.1'2'71, ym)(xi*% ym)a Ty (xi+2a ym)(xiJrly ym)}
is a Hamilton path between (x¢,y;) and (zy,y;) in H.

Case 2. Any (xeayi) € V(Cnljpmfl)7 (:Cfaym) € V(Glym)7 1< €,f <n, 1<i<m-1,

By induction hypothesis there is a Hamilton path P; between (x.,y;) and (2 41, Ym—1) in GOP,,_1.
Then

P = PLU{(zf11,Ym-1)(@f1,Ym)} U
{(xf—i-b ym)(xf—l—Qv ym)a (CBf+2, ym)(wf-i-?n ym)7 ) ($f—17 ym)($f7 ym)}

is a Hamilton path between (z¢,y;) and (¢, ym) in H.
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Case 3. Any (ze, Ym), (-Tfaym) € V(Glym)a I1<e, f<n.

Let Pl - <(.’Ee+17 ym)u (xe+2’ ym)7 T, (.Tf, ym)>7 P2 - <(If+1, ym)v (:Uf+27 ym)7 T, (136, ym)> By
induction hypothesis there is a Hamilton path P3 between (Teq1,¥m—1) and (241, Ym—1) in GOPy,_1.

Then

P = P3U{(Tet1,Ym—1)(Tet1,Ym)s (T 41 Ym—1) (@41, Ym) } UPLU Py
is a Hamilton path between (x¢,ym) and (z,ym) in H. O
By the proof of the Lemma 3.3 we can obtain the following corollary.

Corollary 3.6. Let G be a graph such that GLKy is a hamilton-connected graph. If H = G U P with
|[E(GNP)| =1, where P is an ear of G, then HOKj5 is hamilton-connected.
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