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Abstract. In this paper, we investigate a problem of finding natural condition to assure the product

of two graphs to be hamilton-connected. We present some sufficient and necessary conditions for G�H

being hamilton-connected when G is a hamilton-connected graph and H is a tree or G is a hamiltonian

graph and H is K2.

1. Introduction

In this paper, we consider finite simple graphs, and refer to [1] for terms and notations not defined

here. Let G = (V,E) be a graph. For any vertex v ∈ V , let dG(v) denote the degree of v in G, and

4(G) denote the maximum degree of G. Let c(G) be the number of components in G. Denote Pm,

Cn and K1,j−1 to be a path with m vertices (m ≥ 2), a cycle with n vertices (n ≥ 3) and a star with

j vertices (j ≥ 1), respectively.

Let G1 = (V1, E1) and G2 = (V2, E2) be two graphs. The Cartesian product of G1 and G2, denoted

by G1�G2, is the graph with vertex set V1×V2 such that the vertices (x1, y1) and (x2, y2) are adjacent

if and only if either x1 = x2 ∈ V1 with y1y2 ∈ E2, or y1 = y2 ∈ V2 with x1x2 ∈ E1. It follows the

definition that for any (x, y) ∈ V (G),

dG1�G2(x, y) = dG1(x) + dG1(y).

For any y ∈ V2, define G1y to be the graph with vertex set V1y = {(x, y) | x ∈ V1} and edge set

E1y = {(x1, y)(x2, y) | x1x2 ∈ E1}. Similarly, For any x ∈ V1, define G2x to be the graph with vertex

set V2x = {(x, y) | x ∈ V2} and edge set E2x = {(x, y1)(x, y2) | y1y2 ∈ E2}.
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Note that G1y is isomorphic to graph G1, for any y ∈ V2; and that G2x is isomorphic to graph G2

for any x ∈ V1. It is clear that

V1y ∩ V1y′ = ∅, E1y ∩ E1y′ = ∅ for y 6= y′;

V2x ∩ V2x′ = ∅, E2x ∩ E2x′ = ∅ for x 6= x′;

V1y ∩ V2x = {(x, y)} for x ∈ V1; y ∈ V2;

E(G1�G2) = (∪y∈V2E1y) ∪ (∪x∈V1E2x);

V (G1�G2) = (∪y∈V2V1y) = (∪x∈V1V2x).

A spanning path(cycle) is called a Hamilton path(cycle). A graph G is traceable if it contains a

Hamilton path, and hamiltonian if it contains a Hamilton cycle. A graph G is hamilton− connected

if there exists a Hamilton path joining any two different vertices of G.

Let F be a subgraph of a graph G. An ear of F in G is a nontrivial path in G whose ends lie in F

but whose internal vertices do not.

A graph G is called a cactus if it has at least 3 vertices, all cycles of G are vertex-disjoint, maximum

degree of G is 3 and all vertices of degree 3 are on a cycle of G.

We denote by E the class of graphs with following properties:

(i) any graph H ∈ E can be edge-covered by two subgraphs HC and HF , such that H = HC ∪HF ,

HC and HF are edge-disjoint, HC is an edge disjoint union of cycles C1, · · · , Cp, and HF is a

forest.

(ii) there is no vertex in HC common to more than two cycles among the cycles C1, · · · , Cp,

(iii) H ∈ E has at least two vertices.

We call the pair (Hc, HF ) a cycle− tree covering of H.

A graph H ∈ ε satisfying the following:

(i) for every vertex on exactly one cycle of HC in the cycle-tree covering of H all its neighbors

are either all pendent (vertices of degree one) or all nonpendant, i.e. for such vertex u we have

either dpG(u) ≥ 0 and dnpG (u) = 2 or dpG(u) = 0 and dnpG (u) ≥ 2,

(ii) a vertex common to exactly two cycles in the cycle-tree covering of H has neighbors on these

cycles only,

is called generalized cactus. In particular, such cactus is even if all its cycles are of even length.

The generalized b−cactus is a generalized cactus with every branch vertex (vertices of degree more

than 3) on a cycle.

We denote by F the class of graphs with following properties:

(i) any graph G ∈ F is union of cycles C1, · · · , Cp,
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(ii) for two cycles for Ci, Ci+1, |V (Ci ∩ Ci+1)| = li, 1 ≤ i ≤ p− 1, 1 ≤ li ≤ max[ |V (Ci)|
2 , |V (Ci+1)|

2 ]

(iii) at least one of these cycles is odd cycle.

When p = 2, li = l, graph G is denoted by Θ(l,m, n), where |V (C1)| = n, |V (C2)| = m.

Here we mention some related results. Gould in [4] raised a research problem to find natural

conditions to assure the product of two graphs to be hamiltonian. Paulraja in [11] gave the sufficient

and necessary conditions for the prism over graphs to be hamiltonian. And Lu et.al in [9] present

some sufficient and necessary conditions for G�H being hamiltonian when G is a hamiltonian graph

and H is tree.

The followings are some results related with our main Theorem.

Theorem 1.1. [1] Let S be a set of vertices of a hamiltonian graph G. Then c(G− S) ≤ |S|.

Theorem 1.2. [11] Let G be a graph. The Cartesian product G�K2 is hamiltonian if and only if G

has an even generalized b-cactus as a subgraph.

Lemma 1.3. [9] Let Cn be a cycle (n ≥ 3). For any tree T , if T contains a subdivision of K
(n)
1,3 as

a subgraph. Then G = Cn�T is not traceable, where K
(n)
1,3 is the graph obtained by identifying every

degree 1 vertex of a K1,3 with the center of a K1,n.

Lemma 1.4. [7] Suppose that m is an odd integer. Then Cm�K2 is hamilton-connected.

Note that when m is an even integer, Cm�K2 is not hamilton-connected. In this paper, we shall

investigate the sufficient and necessary conditions for G�H being hamilton-connected when G is a

hamilton-connected graph and H is a tree or G is hamiltonian graph and H is K2. Our main theorems

are as follows:

Theorem 1.5. Let G be a hamilton-connected graph, and let T be a tree with maximum degree4. Then

graph G�T is hamilton-connected if and only if 4(T ) ≤ |V (G)| − 1 and T contains no subdivision of

K
(n)
1,3 as a subgraph, where K

(n)
1,3 is the graph obtained by identifying every degree 1 vertex of a K1,3

with the center of a K1,n.

Theorem 1.6. Let G be a hamiltonian graph. The Cartesian product G�K2 is hamilton-connected if

and only if:

(i) G is of odd order, or

(ii) G is of even order and G contains Θ(1, 2k+ 1, 2l+ 1) as a spanning subgraph, where Θ(1, 2k+

1, 2l + 1) is the graph union of two odd cycles with a common edge.

2. Proof of Theorem 1.5

In this section we will give a proof of Theorem 1.5.

Lemma 2.1. Let T = K1,m be a star, and let G be a hamilton-connected graph with n vertices (n ≥ 3).

If m ≤ n− 1, then the graph H = G�T is hamilton-connected.
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Proof. Let V (K1,m) = {y0, y1, · · · , ym}, where d(y0) = m and d(yi) = 1 for 1 ≤ i ≤ m. Then G1yi
∼= G

for i = 0, 1, · · · ,m. Particularly, V (G1yi) = {(v1, yi), (v2, yi), · · · , (vn, yi)} for i = 0, 1, · · · ,m. We shall

determine a Hamilton path between any two given vertices in G�T . We distinguish the following cases.

Case 1. Any (vl, y0), (vf , y0) ∈ G1y0 , 1 ≤ l, f ≤ n.

Because graph G is hamilton-connected, there exists a Hamilton path joining any two distinct

vertices of the graph G. Let P0 be a Hamilton path of G1y0 between (vl, y0) and (vf , y0). Let x1 = vl,

xn = vf and P0 = 〈(x1, y0), (x2, y0), · · · , (xn, y0)〉. Let Pi be a Hamilton path of G1yi between (xi, yi)

and (xi+1, yi).Then

P = (P0 − {(x1, y0)(x2, y0), (x2, y0)(x3, y0), · · · , (xm−1, y0)(xm, y0) })

∪P1 ∪ P2 ∪ · · ·Pm ∪ {(x1, y0)(x1, y1), (x2, y0)(x2, y1), (x2, y0)(x2, y2),

(x3, y0)(x3, y2), (x3, y0)(x3, y3), · · · , (xm, y0)(xm, ym)}

is a Hamilton path between (vl, y0) and (vf , y0) in H.

Case 2. Any (vl, y0) ∈ G1y0 , (vf , yi) ∈ G1yi , 1 ≤ l, f ≤ n, 1 ≤ i ≤ m.

Let P1 be a Hamilton path between (vl+1, yi), (vf , yi) in G1yi . From Case 1, we can find a Hamilton

path P2 between (vl, y0) and (vl+1, y0) in G�(T − yi). Then

P = P1 ∪ P2 ∪ {(vl+1, y0)(vl+1, yi)}

is a Hamilton path between (vl, y0) and (vf , yi) in H.

Case 3. Any (vl, yi) ∈ G1yi , (vf , yj) ∈ G1yj , 1 ≤ l, f ≤ n, 1 ≤ i, j ≤ m, i 6= j.

Let P1 be a Hamilton path between (vl, yi) and (vp, yi) in G1yi for 1 ≤ p ≤ m. Let P2 be a Hamilton

path between (vf , yj) and (vq, yj) in G1yj for 1 ≤ q ≤ m. From Case 1, we can find a Hamilton path

P3 between (vp, y0) and (vq, y0) in G�(T − {yi, yj}). Then

P = P1 ∪ P2 ∪ {(vp, y0)(vp, yi), (vq, yo)(vq, yj)}

is a Hamilton path between (vl, yi) and (vf , yj) in H.

Case 4. Any (vl, yi), (vf , yi) ∈ G1yi , 1 ≤ l, f ≤ n, 1 ≤ i ≤ m.

Let Let P1 be a Hamilton path between (vl, yi) and (vf , yi) in G1yi. From Case 1, we can find a

Hamilton path P2 between (vr, y0) and (vs, y0) in G�(T−yi) for {(vs, yi)(vr, yi)} ∈ P1 for 1 ≤ r, s ≤ n.

Then

P = (P1 − {(vr, yi)(vs, yi)}) ∪ {(vr, yi)(vr, y0), (vs, yi)(vs, y0)} ∪ P2

is a Hamilton path between (vl, yi) and (vf , yi) in H. �
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Remark 2.2. By the argument used in Case 1 in the proof of Lemma 2.1, |E1y0 ∩ E(P )| = ∅ if

m = n− 1. If n− 1 > m, then (xi, y0)(xi+1, y0) ∈ E(P ) for m ≤ i ≤ (n− 1), that is, |E1y0 ∩E(P )| =
n−m− 1. If n− 1 < m, there exists no Hamilton path between (vl, y0), (vf , y0) ∈ G1y0.

Corollary 2.3. Let G be a hamilton-connected graph with n vertices (n ≥ 3). Then the graph H =

G�K1,n is not hamilton-connected.

Recall that K
(n)
1,3 is the graph obtained by identifying every degree 1 vertex of a K1,3 with the center

of a K1,n. Note that 4(K
(n)
1,3 ) = n + 1. Since a hamilton-connected graph is also hamiltonian, by

Lemma 1.3 in [9], we have the following corollary.

Corollary 2.4. Let G be a hamilton-connected graph with n vertices (n ≥ 3). If T contains a

subdivision of K
(n)
1,3 as a subgraph, then the graph H = G�T is not hamilton-connected.

Proof of Theorem 1.5.

Let H = G�T be a hamilton-connected graph and 4(T ) ≥ n + 1, where |V (G)| = n. If there

exists y ∈ V (T ) such that dT (y) ≥ n + 1, then c(H − G1y) = c(T − y) = dT (y) ≥ n + 1. By

Theorem 1.1, H = G�T is not hamiltonian and hence is not hamilton-connected, a contradiction. If

4(T ) = V (G) = n, by Corollary 2.3, H is not hamilton-connected. Therefore 4(T ) ≤ n − 1. By

Corollary 2.4, T contains no subdivision of K
(n)
1,3 as a subgraph.

So it suffices to show that if4(T ) ≤ n−1 and T contains no subdivision of K
(n)
1,3 as a subgraph, then

H = G�T is a hamilton-connected graph. If T is a star, then it follows from Lemma 2.1. Therefore

we may assume that T is not a star. By way of contradiction, let T be a tree with minimal number

of vertices such that 4(T ) ≤ n− 1, T contains no subdivision of K
(n)
1,3 as a subgraph and H = G�T

is not hamilton-connected.

Note that T can be viewed as a graph obtained from finite stars T1, T2, · · · , Tk by connecting their

centers with edges and there exists such a star Ti that is connected to the other stars with only one

edge. Without lose of generality, we may assume that T1 is only connected to T2. Let yi the center of

Ti (i = 1, 2). Since T −T1 is also a tree and |V (T −T1)| ≤ |V (T )|, G�(T −T1) is hamilton-connected.

Since 4(T1) ≤ n− 1, by Lemma 2.1, G�T1 is hamilton-connected.

Now we shall construct a Hamiltonian path between any two distinct vertices of H = G�T , and

then obtain a contradiction.

Case 1. Any (vl, yi), (vf , yj) ∈ G�T1, 1 ≤ l, f ≤ n.

Let P1 be a Hamilton path between (vl, yi) and (vf , yj) in G�T1. Since dT1(y1) ≤ n − 2, at least

one edge of G1y1 lies in P1. By Remark 2.2, we may assume (v1, y1)(v2, y1) ∈ E1y1 ∩ E(P1). Then

there exists a Hamilton path P2 between (v1, y2)(v2, y2) in G�(T − T1). Hence

P = P2 ∪ (P1 − {(v1, y1)(v2, y1)}) ∪ {(v1, y1)(v1, y2), (v2, y1)(v2, y2)}

is a Hamilton path between (vl, yi) and (vf , yj) in G�T .
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Case 2. Any (vl, yi), (vf , yj) ∈ G�(T − T1), 1 ≤ l, f ≤ n.

The proof of this case is similar to the proof of Case 1. So it is omitted.

Case 3. Any (vl, yi) ∈ G�T1, (vf , yj) ∈ G�(T − T1), 1 ≤ l, f ≤ n.

Let P1 be a Hamilton path between (vl, yi) and (vt, y1) in G�T1. Let P2 be a Hamilton path between

(vt, y2) and (vf , yj) in G�(T − T1). Then

P = P1 ∪ P2 ∪ {(vt, y1)(vt, y2)}

is a Hamilton path between (vl, yi) and (vf , yj) in G�T .

3. Proof of Theorem 1.6

In this section we will give the sufficient and necessary condition for G�K2 being hamilton-

connected. We know that prism over odd cycle is hamilton-connected[7], but the prism over even

cycle is not hamilton-connected. We now can consider the case when G contains Θ(1, 2k + 1, 2l + 1)

or Θ(1, 2k + 1, 2l + 1) as a spanning subgraph. Note that G a is hamiltonian graph with even order.

Lemma 3.1. Let V (Pm) = {x1 , x2 , · · · , xm}, and let X,Y be the bipartite partition of bipartite graph

G = Pm�K2. Then there exists Hamilton path joining any two vertices (xe, yi) ∈ X and (xf , yj) ∈ Y

for 1 ≤ e, f ≤ m, 1 ≤ i, j ≤ 2, but no Hamilton path joining (xl, y1) ∈ X and (xl, y2) ∈ Y for

1 < l < m.

Proof. Let V (Pm) = {x1 , x2 , · · · , xm}, V (K2) = {y1, y2}, and V (Pm�K2) = {(x1, y1), (x2, y1), · · · ,
(xm, y1), (x1, y2), (x2, y2), · · · , (xm, y2)}. We can see that Pm�K2 is a bipartite graph. Let X and

Y be the bipartite partition of the G. We will show that for any (xe, yi) ∈ X and (xf , yj) ∈ Y for

1 ≤ e, f ≤ m, 1 ≤ i, j ≤ 2 there exists a Hamilton path joining them, but no Hamilton path joining

(xl, y1) ∈ X and (xl, y2) ∈ Y for 1 < l < m.

Obviously, there exists Hamilton path between (x1, y1) and (x1, y2) or (xm, y1) and (xm, y2) in G.

But no Hamilton path between (xl, y1) ∈ X and (xl, y2) ∈ Y for 1 < l < m.

Now consider any (xe, yi) ∈ X and (xf , yj) ∈ Y , where e 6= f .

By induction on m. suppose that it is true for Pk�K2 with k < m. Let P1 = 〈x1, x2, · · · , xf−1〉,
P2 = 〈xf , xf+1, · · · , xm〉. We may assume xe ∈ V (P1). By the induction hypothesis, there is a

Hamilton path P
′

between (xe, yi) and (xf−1, yj+1) in P1�K2 and there exists Hamilton a path P
′′

between (xf , yj) and (xf , yj+1), where (xf , yj)(xf , yj+1) ∈ E(Pm�K2). Then

P = P
′ ∪ P

′′ ∪ {(xf , yj+1)(xf−1, yj+1)}

is a Hamilton path between (xe, yi) and (xf , yj) in G. �

Proposition 3.2. Let G = Θ(1, 2k, 2l). Then H = G�K2 is not hamilton-connected.
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Proof. Let C1 and C2 be two even cycles, and let V (C1) = {x1, x2, · · · , x2k}, V (C2) = {x1, x2, x
′
3, · · · ,

x
′
2l}, E(C1 ∩ C2) = {x1x2}, V (K2) = {y1, y2}.
We suppose that G�K2 is hamilton-connected. There exists a Hamilton path P between (x1, y1)

and (x2, y2). Let C = G \ {x1x2}, and note that C is an cycle with even order. Then C�K2 is not

hamilton-connected, and there exists no Hamilton path between (x1, y1) and (x2, y2) in C�K2. So

edges (x1, y1)(x2, y1) or (x1, y2)(x2, y2) must be contained in P , and one of them must be the first or

last edge of P .

Now let P1 = 〈x3, x4, · · · , x2k〉, and let P2 = 〈x′3, x
′
4, · · · , x

′
2l〉. Say edge (x1, y1)(x2, y1) is first edge

of P . From the argument earlier, there must exist Hamilton path between (x3, y1) and (x2k, y2) in

P1�K2. Because (x3, y1) and (x2k, y2) is in same partite in P1�K2, by the Lemma 3.1, there exists

no Hamilton path joining (x3, y1) and (x2k, y2), contradiction. �

Lemma 3.3. Let G = Θ(1, 2k + 1, 2l + 1). Then H = G�K2 is hamilton-connected.

Proof. Let C1 and C2 be two odd cycles, and V (C1) = {x1, x2, · · · , x2k+1}, V (C2) = {x1, x2, x
′
3, · · · ,

x
′
2l+1}, E(C1 ∩ C2) = {x1x2}, V (K2) = {y1, y2}.

Case 1. Any (xe, yi), (xf , yj) ∈ V (C1�K2), 1 ≤ e, f ≤ 2k + 1, 1 ≤ i, j ≤ 2.

Let P1 = 〈x3, · · · , xe〉, P2 = 〈xe+1, · · · , xf , · · · , x2k+1〉.
Let X1, Y1 be bipartite partition of P1�K2; X2, Y2 be bipartite partition of of P2�K2. Without loss

of generality, we may assume that (x3, y1) ∈ X1, (x3, y2) ∈ Y1 and (x2k+1, y1) ∈ X2, (x2k+1, y2) ∈ Y2.

If (xe, yi) ∈ X1 (if (xe, yi) ∈ Y1 we can choose the (x3, y1)), by Lemma 3.1, we can find a Hamilton

path P3 between (xe, yi) and (x3, y2) in P1�K2. Similarly if (xf , yj) ∈ X2 (if (xf , yj) ∈ Y2 we can

choose the (x2k+1, y1)), we can find a Hamilton path P4 between (xf , yj) and (x2k+1, y2) in P2�K2.

By Lemma 1.4, there is a Hamilton path P5 between (x1, y2) and (x2, y2) in C2�K2. Then

P = P3 ∪ P4 ∪ P5 ∪ {(x1, y2)(x2k+1, y2), (x2, y2)(x3, y2)}

is a Hamilton path between (xe, yi) and (xf , yj) in G�K2.

Case 2. Any (x
′
e, yi)(x

′
f , yj) ∈ V (C2�K2), 3 ≤ e, f ≤ 2l + 1, 1 ≤ i, j ≤ 2.

The proof of this case is similar to that of Case 1. So it is omitted.

Case 3. Any (xe, yi) ∈ V (C1�K2), (x
′
f , yj) ∈ V (C2�K2), 1 ≤ e ≤ 2k+1, 3 ≤ f ≤ 2l+1, 1 ≤ i, j ≤ 2.

Let P2l−2 = 〈x′3, x
′
4, · · · , x

′
2l+1〉 and let X, Y be bipartite partition of P2l−2�K2. Consider the

vertices (x
′
2l+1, y1), (x

′
2l+1, y2) or (x

′
3, y1), (x

′
3, y2) that are in different partite sets. Say the former, we

can assume (x
′
2l+1, y1) ∈ X, (x

′
2l+1, y2) ∈ Y .

Without loss of generality, we may assume (x
′
f , yj) ∈ X, by Lemma 3.1, there is a Hamilton path

P1 between (x
′
f , yj) and (x

′
2l+1, y2) in P2l−2�K2. Also there is a Hamilton path P2 between (x1, y2)

and (xe, yi) in C1�K2. Then

P = P1 ∪ P2 ∪ {(x
′
2l+1, y2)(x1, y2)}
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is a Hamilton path between (xe, yi) and (x
′
f , yj) in G�K2. �

Proposition 3.4. Suppose that H = Cn�K2 is a hamilton-connected graph. Then n is an odd integer.

Proof. Let V (Cn) = {x1, x2, · · · , xn}, V (K2) = {y1, y2}. Let P1 be a Hamilton path between (x1, y1)

and (x2, y2), then P1 = 〈(x1, y1), (x1, y2), (xn, y1), (xn, y2), (xn−1, y1), · · · , (x3, y1), (x2, y1), (x2, y2)〉 and

P1 contains every pillar of the prism. Let X = V (G1y1), then |∂(X)| = 2t + 1, where ∂(X) is set of

edges with one end in X.

Since H = Cn�K2 is an odd graph, and by |∂(X)|+ 2e(X) =
∑

v∈X d(v), we have |∂(X)| = |X| (

mod 2), so |X| = |V (G1y1)| = n is an odd integer. �

Conclude all the above, we can obtain the sufficient and necessary condition for prism over hamilton-

ian graph being hamilton-connected, that is Theorem 1.6. Therefore we can give a sufficient condition

for G�Pm being hamilton-connected.

Theorem 3.5. Let m be an integer, where m ≥ 2. Then H = G�Pm is hamiltonian-connected, if:

(i) G is a hamiltonian graph with odd order, or

(ii) G is a hamiltonian graph with even order, and G contains Θ(1, 2k + 1, 2l + 1) as a spanning

subgraph, where Θ(1, 2k + 1, 2l + 1) is the graph union of two odd cycles with a common edge.

Proof. Let Cn be a Hamilton cycle of G, V (Cn) = {x1, x2, · · · , xn}, V (Pm) = {y1, y2, · · · , ym}.
We prove it by induction on m.

When m = 2, by Theorem 1.6 it is right. Now we suppose that G�Pm−1 is hamilton-connected

when G satisfies those conditions. We shall show that H = G�Pm is hamilton-connected.

Case 1. Any (xe, yi), (xf , yj) ∈ V (Cn�Pm−1), 1 ≤ e, f ≤ n, 1 ≤ i, j ≤ m− 1.

By induction hypothesis there is a Hamilton path P1 between (xe, yi) and (xf , yj) in G�Pm−1.

Without loss of generality, assume (xi, ym−1)(xi+1, ym−1) ∈ E(Cn�Pm−1 ∩ P1). Then

P = (P1 \ {(xi, ym−1)(xi+1, ym−1)}) ∪ {(xi, ym−1)(xi, ym), (xi+1, ym−1)(xi+1, ym)} ∪

{(xi, ym)(xi−1, ym), (xi−1, ym)(xi−2, ym), · · · , (xi+2, ym)(xi+1, ym)}

is a Hamilton path between (xe, yi) and (xf , yj) in H.

Case 2. Any (xe, yi) ∈ V (Cn�Pm−1), (xf , ym) ∈ V (G1ym), 1 ≤ e, f ≤ n, 1 ≤ i ≤ m− 1,

By induction hypothesis there is a Hamilton path P1 between (xe, yi) and (xf+1, ym−1) in G�Pm−1.

Then

P = P1 ∪ {(xf+1, ym−1)(xf+1, ym)} ∪

{(xf+1, ym)(xf+2, ym), (xf+2, ym)(xf+3, ym), · · · , (xf−1, ym)(xf , ym)}

is a Hamilton path between (xe, yi) and (xf , ym) in H.
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Case 3. Any (xe, ym), (xf , ym) ∈ V (G1ym), 1 ≤ e, f ≤ n.

Let P1 = 〈(xe+1, ym), (xe+2, ym), · · · , (xf , ym)〉, P2 = 〈(xf+1, ym), (xf+2, ym), · · · , (xe, ym)〉. By

induction hypothesis there is a Hamilton path P3 between (xe+1, ym−1) and (xf+1, ym−1) in G�Pm−1.

Then

P = P3 ∪ {(xe+1, ym−1)(xe+1, ym), (xf+1, ym−1)(xf+1, ym)} ∪ P1 ∪ P2

is a Hamilton path between (xe, ym) and (xf , ym) in H. �

By the proof of the Lemma 3.3 we can obtain the following corollary.

Corollary 3.6. Let G be a graph such that G�K2 is a hamilton-connected graph. If H = G∪P with

|E(G ∩ P )| = 1, where P is an ear of G, then H�K2 is hamilton-connected.
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