Transactions on Combinatorics

ISSN (print): 2251-8657, ISSN (on-line): 2251-8665
Vol. 1 No. 3 (2012), pp. 21-38.

(© 2012 University of Isfahan

www.combinatorics.ir; www.ui.ac.ir
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ABSTRACT. For a given graph G = (V, E), let £(G) = {L(v) : v € V'} be a prescribed list assignment.
G is .Z-L(2,1)-colorable if there exists a vertex labeling f of G such that f(v) € L(v) for all v € V;
[f(u) — f(v)] > 2 if dg(u,v) = 1; and |f(u) — f(v)| > 1 if dg(u,v) = 2. T G is £-L(2,1)-colorable for
every list assignment . with |L(v)| > k for all v € V, then G is said to be k-L(2, 1)-choosable. In this

paper, we prove all cycles are 5-L(2, 1)-choosable.

1. Introduction

Let G = (V, E) be a graph of order n. Sometimes, we use V(G) and E(G) to denote V and E,
respectively.

As a variation of Hale’s:.channel assignment problem [5], the L(2,1)-labeling of a simple graph with
a condition at distance two was first proposed and studied by Griggs and Yeh [1]. An L(2,1)-labeling
of a graph G is a function f from the vertex set of G to the set of nonnegative integers such that
|f(u) — f(v)| > 2 it dg(u,v) = 1; and |f(u) — f(v)| > 1 if dg(u,v) = 2. If no label of an L(2,1)-
labeling is greater than k, then the labeling is called a k-L(2,1)-labeling. The L(2,1)-labeling number
AG) of a graph G is the smallest number k such that G has a k-L(2,1)-labeling. Griggs and Yeh [1]
determined the exact values of A\(P,,), A(C,) and A(W,). In addition to obtaining bounds on the A-
numbers of graphs in such classes as trees and n-cubes, they considered the relationship between \(G)
and invariants x(G) (the chromatic number), A(G) (the maximum degree) and |V(G)|. They showed
that A(G) < A(G)? + 2A(G) and conjecture that A(G) < A(G)? for A(G) > 2. Chang and Kuo [2]
improved the bound to A(G) < A(G)? + A(G). Other researchers have considered various aspects or
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variations of the L(2, 1)-labeling problem. Vizing [6] and Erdés et al. |7] generalized the graph coloring
problem and introduced the list coloring problem independently more than three decades ago. We
shall consider a new variation of the L(2, 1)-labeling problem, the list-L(2, 1)-labeling problem. In the
same way as list-coloring problem helps to obtain solutions to some coloring problems, we can consider
list-L(2, 1)-coloring problem, hopefully, that will help us to solve some L(2, 1)-coloring problems.

Let N be the set of all non-negative integers. A list coloring of a graph G is an assignment of labels
(colors) to the vertices such that each vertex v receives a label from a prescribed list L(v) C N and
adjacent vertices receive distinct labels. Z(G) = {L(v) : v € V(G)} is called a list assignment of G.
G is called k-choosable if G admits a list coloring for all list assignments £ with at least k labels in
each list. For list coloring of plane graphs, some results have obtained. All 2-choosable graphs have
been characterized by Erdés et al. |[7]. Thomassen [8] proved that every plane graph is 5-choosable,
whereas Voigt [14] presented examples of plane graphs which are not 4-choosable.

Let Z(G) = {L(v) : v € V(G)} be a list assignment of a graph G = (V,E). G is .£-L(2,1)-
colorable if there exists a vertex labeling f of G such that f(v) € L(v)forallv € V; |f(u) — f(v)| > 2
if dg(u,v) = 1; and |f(u) — f(v)] > 1 if dg(u,v) = 2. Such labeling f is called a .Z-L(2,1)-labeling
of G. If G is Z-L(2,1)-colorable for every list assignment .& with |L(v)| > k for all v € V, then G is
said to be k-L(2, 1)-choosable.

In this paper, we denote the path P, by vy - --v,. A'list assignment .£ of P, is of order (a1, ..., ay)
if |L(v;)| > a;, for all i = 1,...,n. P, is said tobe (ai,...,a,)-L(2,1)-choosable if P, is £-L(2,1)-
colorable for every list assignment .Z of order (@i, .. a,). An £-L(2,1)-labeling f of P, is said to be
strictly if f(vi) # f(vn). Py, is called strictly &-L(2,1)-colorable if there exists a strictly Z-L(2,1)-
labeling of P,. P, is said to be [a1,. . yan|-L(2,1)-choosable if for every list assignment £ of order
(a1,...,an), Py, is strictly Z-L(2,1)-colorable.

From now on, L(v;) = (£}, .ws,€") denotes the set of labels available for vertex v;, where all the
labels are in descending order.

Let .« = {L(v) : v € V} bea list assignment of G = (V,E). Let M = max{UyevL(v)} and
m = min{U,ey L(v)}. A vertex v € V is called an M -vertex or m-verter (with respect to ) if
M € L(v) or m € L(v), respectively. Also, a vertex v € V is called an M*-vertex or m*-vertex (with
respect to &) if {M,M — 1} C L(v) or {m,m + 1} C L(v), respectively. Unless there is possibility
of confusion, the phrase “with respect to £” will be omitted. Clearly, an M*-vertex (m*-vertex)
must also be an M-vertex (m-vertex). A vertex which is not an M-vertex is called a non-M -vertex.
Definitions for non-m-vertex, non-M*-vertex and non-m*-vertex are similarly. In this paper we shall

establish the following main result:

Theorem 1.1. Forn > 3, the cycle Cy, is 5-L(2,1)-choosable.

We shall prove the theorem in Section All the results in Section [3| are based on the L(2,1)-
choosability of paths which are listed in Section
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2. Supporting Lemmas

Lemma 2.1. P, is (2,3)-L(2, 1)-choosable.

Proof: Let .Z be a list assignment of P» of order (2, 3).

If ¢} > ¢3, then ¢} — £3 > 2. Hence we label v; with ¢} and v with £3. If £1 < £}, then £} — ¢2 > 2.
Hence we label vy with E% and v with E%. O

n

For convenience, we use (a, b, ¢, d) to denote the sequence (a, b, m, d). Suppose . = {L(v) :
v € V(G)} is a list assignment for a graph G. Suppose a vertex v has been labeled by ¢ € L(v). Then
¢ cannot be used to label the vertex u with d(u,v) < 2 and ¢ &+ 1 cannot beused to label the vertex
w with d(w,v) = 1. In this case, we remove those corresponding labels from the list of the vertices of
distance at most 2 from v. That is, L' (u) = L(u)\{¢} if d(u,v) = 2 and L'(w) = L(w)\{¢,(+1,{—1} if
d(w,v) = 1. The resulting list assignment ¥’ = {L/(z) : x # v} is called the residual list assignment
(RLA for abbreviation) for the graph G —wv. This concept can be extended to more vertices have been
labeled.

Lemma 2.2. P, 3 is (2,4,5[",3)-L(2,1)-choosable, n'> 0.

Proof: Firstly, we prove the lemma is true for'm = 0. Let .Z be a list assignment of P3 of order
(2,4,3).
Case 1. (] > 4.

We label v; with ¢3. Then the order of the RLA of P = wvyvs is (3,2). By Lemma Py is
Z-L(2,1)-colorable.

Case 2. (1 </} —2.

If ¢ < ¢, we label vy with £} and vs with £3. There is at least one label left in the residual list
of v1. So Py is Z-L(2,1)-colorable. If fé > (3, we label vz with 551)). Then the order of the RLA of
P =wvyvy is (2,3). By Lemma [2.1] P3 is £-L(2, 1)-colorable.

Case 3. (1 = ¢} — 1 with 0} # (3.

If 61 < 03, then we label vy with ¢4 and v with £3. There is at least one label left in the residual
list of v3. So Py is £-L(2,1)-colorable. If £} > ¢}, then we label vs by 3. The order of the RLA of
P = wvjvy is (2,3). Hence P3 is .Z-L(2,1)-colorable.

Case 4. [} = 0} with ¢} # ¢3.

If ¢} < ¢, then we label v; with ¢}. The order of the RLA of P = wqvg is (2,3). Hence P; is
#-L(2,1)-colorable. If £} > £3, then we label vs with 1. The order of the RLA of P = vyvy is (2,3).
Hence Ps is .Z-L(2,1)-colorable.

So we have shown that Pj is .£-L(2,1)-colorable except the cases when ¢} = (1 = ¢} or /3 +1 =
-y

When we consider the reverse ordering of the natural ordering of each list. By the same argument,

we can also show that Pj is £-L(2, 1)-colorable except the cases when (2 = (3 = (3 or 3 —1 = (3 = (3.


www.SID.ir

24 Trans. Comb. 1 no. 3 (2012) 21-38 H. Zhou, W.C.Shiu and P.C.B. Lam

Combining both considerations, the case which has not been considered is when (i) /1 = ¢} = £} or
O+ 1=1¢)=1¢% and (i) 2 =05 = (3 or 2 — 1 = (3 = (3. Now, we have £} — (2 >2 ¢} —¢3 > 2 and
3< 0 — 03 =105 — 0%+ (%2 — 05 From the last inequality, we have £} — (2 > 2 or (3 — (3 > 2.

If 63 — (2 > 2, then we label v; and vy with £3 and /3 respectively. There is at least one label left
in the residual list of vg. If £3 — ¢3 > 2, then we label v; and vy with ¢ and £3. There is also at least
one label left in the residual list of v3. So P3 is .£-L(2,1)-colorable.

Remark 2.3. It is very often to use the symmetry with respect to the ordering of the list for proving

the choosability of paths and cycles in this paper.

Secondly, we prove the lemma for n = 1. Let £ be a list assignment of P, of order (2,4,5,3).
Suppose 1 > ¢3. We label v; with £}. Then the order of the RLA of P = wvouzvy is (2,4,3). Since
we have proved P is (2,4, 3)-L(2,1)-choosable, we get Py is .£-L(2,1)-colorable. So we assume that
¢} < £} in the following.

Case 1. /1 < /).

We label vy with £} and vy with £2. Then the order of the RLA of P =wsuvy is (3,2). By Lemma
Py is £-L(2,1)-colorable.

Case 2. (1 > (1.

If 0 > éé, then we label vy with £}. The order of the RLA of P = vjvovs is (2,4,3). Hence Py is
Z-L(2,1)-colorable. If ¢; < £}, then we label vz with £3. The order of the RLA of P = vyvs is (2,3).
By Lemma [2.1] we may label P. Now there is at least one label left in the residual list of v4. So Py is
Z-L(2,1)-colorable.

Case 3. (3 = ¢} with ¢} # /1.

If ¢} > (3, then we label vy with £}. The order of the RLA of P = vjvouv3 is (2,4,4). Hence Py is
ZL-L(2,1)-colorable. If ¢} < £ then we label vy with ¢ and v; with £2. The order of the RLA of
P = v3vy is (2,3). Hence Py is .Z-L(2,1)-colorable.

So we have proved that P, is .Z-L(2,1)-colorable except the case that (1 < (3 = ¢} = ¢}. By
symmetry, we also know that Py is .Z-L(2, 1)-colorable except the case that ¢2 > (3 = (3 = (3.

So now we assume that (1 < €3 = (1 =0} and (2 > 03 = (5 = (3. Thend < (1 —05 =03 — 03+ 0245,
It implies that either 6% — &21 > 2 or &21 - Eg > 2.

If ¢ — (3 > 2, then we label vy, vo, v3 and vy with €1, ¢3, £} and 3, respectively. If (2 — (3 > 2,
then we label vy, v2, v3 and vg with €3, €3, €3 and €3, respectively. So Py is £-L(2,1)-colorable.

Thirdly, we prove the lemma for n = 2. Let . be a list assignment of P5 of order (2,4,5,5,3).

Suppose /1 > ¢. We label v; with £1. Then the order of the RLA of P = wavzvavs is (2,4,5,3).
Since we have proved Py is (2,4,5,3)-L(2,1)-choosable, we get P5 is .£-L(2,1)-colorable. Suppose
0F < 0. Tf 03 < 41, then we label vy with £} and v with ¢3. Hence the order of the RLA of P = v3v4vs
is (2,4,3). Then Ps is .£-L(2,1)-colorable. So we have to deal with the case when (1 < ¢} < /1.
Case 1. If &11 < éé, then we label vy with 6%. The orders of the RLAs of P = vjvy and P’ = v4v5
are (2,3) and (4, 2), respectively. By Lemma we may label P. Then the order of the RLA of P’
becomes (3,2). Hence Ps is .Z-L(2, 1)-colorable.
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Case 2. If ¢} > ¢} and ¢} > ¢}, then label vy with £} and vs with £3. The order of the RLA of
P = vivous is (2,4, 3). Hence Ps is .Z-L(2,1)-colorable.

Case 3. If (] > Ké and /] < G), then label vs with ﬂ%. The order of the RLA of P = vjvav3vy is
(2,4,5,4). Hence Pj is £-L(2,1)-colorable.

Case 4. If ¢} = ¢} and ¢} > ¢}, then label vs with ¢}. The orders of the RLAs of P = vjve and
P’ = vy are (2,3) and (3, 3), respectively. By Lemma [2.1) we may label P. The order of the RLA of
P’ becomes (2,3). Hence P5 is .Z-L(2,1)-colorable.

Case 5. If E}l = Ké and &11 < E%, then label vs with E%. The order of the RLA of P = wvivgvsvy is
(2,4,5,4). Hence P5 is .£-L(2, 1)-colorable.

So we have proved that Ps is #-L(2,1)-colorable except the case that (] < 3 < ¢} = ¢} = /¢l By
symmetry, we also know that Ps is .Z-L(2, 1)-colorable except the case that ¢3 > €3 > (3 = (5 = (3.

Now we have to deal with the case that £ < £} < ¢} = ¢} = 0} and €3 > €5 > ¢} = (5 = (3. Similar
to the proof for n = 1, either 5411 — Eg >2or E% — &51 > 2. For the first case, we label vq, v, v3, v4 and
v by K%,éé,ﬁg, E}l and E%, respectively. For the second case, we label v, w9, v3, v4 and vs by f%,f%,ﬁé,
3 and 2, respectively. So Ps is .£-L(2,1)-colorable.

Finally, we prove the lemma for n > 3 using induction on n. The lemma is true when n = 0,1, 2.
Assume that the lemma holds when n < k for k > 3. " Now we consider n = k. Let .Z be a list
assignment of Py of order (2,4, 5k 3). Assume i is the smallest index such that v; is an M-vertex.
Case 1. i =1.

We label v; with ¢}. The order of the RLA .%’ of P = wvov3---vj,3 is (2,4,5%-1 3). By the
induction hypothesis, P is £’-L(2,1)-colorable. Hence Pj3 is .£-L(2,1)-colorable.

Case 2. i = 2.

We label vy with £} and vy with #7. The order of the RLA %" of P = v3vy - - - vy 3 is (2,4, 5F2 3).
By the induction hypothesis P-is ¥’-L(2,1)-colorable. Hence Py 3 is .£-L(2,1)-colorable.

Case 3. i = 3.

We label vg with E})). The orders of the RLAs of P = vjvy and P’ = vqvs - - - vg3 are (2,3) and
(3,4,5%=3] 3), respectively. By Lemma [2.1] we may label P. The order of the RLA .Z’ of P’ becomes
(2,4,5%=313). By the induction hypothesis P’ is .Z’-L(2,1)-colorable. Hence Pj,3 is Z-L(2,1)-
colorable.

Case 4. 4 < i <k when k > 4.

We label v; with 611. The orders of the RLAs of P = vjvg---v;—1 and P’ = v 11049 vpy3 are
(2,4, 5[i_4],4) and (3,4, 5lk—l 3), respectively. By the induction hypothesis, P can be labeled. After
that the order of the RLA %’ of P’ is (2,4,5F%, 3). By the induction hypothesis P’ is £'-L(2,1)-
colorable. Hence Py 3 is .Z-L(2,1)-colorable.

Case 5. i =k + 1.

We label vpy1 with €11c+1' The orders of the RLAs of P = vjvg---vgp and P’ = wvgiovpi3 are
(2,4,5%=31 4) and (3,2), respectively. By Lemma, we may label P’. Then the order of the RLA
&' of Pis (2,4,5%3 3). By the induction hypothesis P is .#’-L(2,1)-colorable. Hence P43 is
Z-L(2,1)-colorable.
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Case 6. i =k + 2.

We label viio with £,1€+2 and vgy3 with €i+3. The order of the RLA £’ of P = vjvg---vpyq is
(2,4,50F=21 3). Similar to the above cases, Pj3 is .Z-L(2,1)-colorable.
Case 7. i =k + 3.

We label vy, 3 with E}H_& The order of the RLA of P = vjvy - - vgy2 is (2,4, 5[k_1],4). Similar to
the above cases, Pyy3 is Z-L(2,1)-colorable. O

Following we only list the statements of supporting lemmas. The proofs of these lemmas are shown

in Appendix since they are all technical.

Lemma 2.4. Ps is £-L(2,1)-colorable for £ = {L(v) : v € V(Ps)} of order(3,3,3) and {1 # ¢3.
Lemma 2.5. P; is (3,3,4)-L(2,1)-choosable.

Lemma 2.6. Py is (2,5,4,4)-L(2,1)-choosable.

Lemma 2.7. Py is (3,4,4,4)-L(2,1)-choosable.

Lemma 2.8. P5 is (3,4,5,4,4)-L(2,1)-choosable.

Corollary 2.9. P, is 3-L(2, 1)-choosable, P3 and Py are 4-L(2,1)-choosable, P, is 5-L(2,1)-choosable
forn >5.

Following we study the choosability of acpath requested that the labels of the end vertices are
different.

Lemma 2.10. Ps is [3,4,3]-L(2, 1)=choosable.

Lemma 2.11. Py is [3,4,4,4]=L(2,1)-choosable.

Lemma 2.12. P; is [4,4,5,4,4]-L(2,1)-choosable.

Lemma 2.13. For n> 2, Pyy3 is [3,4, 5, 4]-L(2,1)-choosable.

3. Proof of Main Theorem

Chen [13] proved C), is 5-L(2,1)-choosable for 3 < n < 5. Due to the thesis may not be easily
accessed, we provide a different proof. Also we prove Theorem is true for C, with n > 6.

We let £ = {L(v) : v € V(Cy)}, with |L(v)| > 5 throughout this section. We always denote
Cpn = (v1--vp).

Proof of the Main Theorem for 3 < n < 4.

Without loss of generality, we assume v; is an M-vertex. For Cs, we label v; with 1, then the
order of the RLA of P = vyvs is (3,3). So we can label P properly according to Lemma Hence
the result follows. For Cy, we label v; with £1, then the order of the RLA of P = vyugvy is (3,4, 3).
Note that vy and vq must be labeled differently. We can label P properly according to Lemma [2.10

Hence the result follows. O
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Proof of the Main Theorem for n = 5.

Suppose there exists a non-M-vertex. Without loss of generality, we assume vo is a non-M-vertex
and v; is an M-vertex. We label v; with /1. Then the order of the RLA of P = vavsvgus is (4,4, 4, 3).
We can label P properly according to Lemma [2.11] since vo and vs must be labeled differently. So now
we assume all vertices of Cs are M-vertices.

Suppose there exists a non-M *-vertex. Without loss of generality, we assume vs is a non-M *-vertex.
Since v; is an M-vertex, we label v1 with £1. Then the order of the RLA of P = vougvgvs is (4,4, 4,3).
We can label P properly according to Lemma [2.11} Now we assume all vertices of C5 are M*-vertices.

By symmetry, we can conclude C5 is Z-L(2,1)-colorable if there exists a non-m*-vertex. So we
assume all vertices of C5 are M*-vertices and m*-vertices. Now we label vy, vg, v3, v4 and vs with (1,

63, 03, €3 and ¢2, respectively. This completes the proof. O

Finally, we prove the Main Theorem for n > 6. This will be done in a series of lemmas. We shall
first show that if at least one vertex of C), is a non-M-vertex, then C, is £-L(2, 1)-colorable. It follows
by symmetry that if at least one vertex of C), is a non-m-vertex, then C,, is .Z-L(2,1)-colorable. We
shall also show that if at least one vertex of (), is a non-M *-vertex; and similarly a non-m*-vertex,
then C), is Z-L(2,1)-colorable.

Lemma 3.1. Forn > 6, if C,, contains two adjacent non-M -vertices, then Cy, is £-L(2,1)-colorable.

Proof: By renumbering the vertices we may denote the longest path with all non-M-vertices as
P =wvp_it1- - Vp_1Vyn, where ¢ > 2. Now v,_7 and v,, are two non-M-vertices, and vy is an M-vertex.
We label v; with ¢1. This action will not-eliminate any label from L(v,_1), it will eliminate at most
one label from L(v,), two labels from L(vy) and one label from L(v3). The order of the RLA of
the path vovs--- vy, is (3,4, 5[”_4},4). Since the labels of vy and v, must be different, the lemma is
proved if the path vovs - - - v, is (3,4, 5"~4 4]-L(2, 1)-choosable. It is clear that the lemma follows
from Lemma 2.13] O

Lemma 3.2. Forn > 6, if C,, contains a non-M -vertez, then Cy, is £-L(2,1)-colorable.

Proof: By Lemma [3:1] we only need to consider cases in which the two neighbors of every non-M-
vertex of C,, are M-vertices. We renumber the vertices of C,, as follows:

For n > 8, if no two non-M-vertices of (), are at distance 4, we number the vertices of C,, such
that vy is a non-M-vertex, and consequently v, _o is an M-vertex. If there exist two non-M-vertices
at distance 4, we number the vertices such that v, and v4 are non-M-vertices. For n = 6 or 7, we can
always number the vertices such that vs is a non-M-vertex. By our assumption, v; is an M-vertex.

Now we make the following marking process for vertices of Cy,:

We first mark v;. Suppose that v; has been marked, for some ¢ < n — 2. If i <n — 6, then we mark
the vertex v;y3 if it is an M-vertex, otherwise we mark v;14. Note that by our assumption, if v;43 is
a non-M-vertex, then v;;4 must be an M-vertex. Repeat this process until the subscript of the newly
marked vertex is greater than n — 6. If this case occurs, then let the newly marked vertex be v, and

do the following process.
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Case 1. If k =n — 3 or kK =n — 2, then stop.

Case 2. If k =n —4, and v,_3 is a non-M-vertex, then stop.

Case 3. If k =n — 4 and v,,_3 is an M-vertex, then remove the mark from v, _4, mark v,_3 instead
and stop.

Case 4. If k =n —5 and v,_o is an M-vertex, then mark v,_o and stop.

Case 5. If k =n — 5, and v,_o is a non-M-vertex, then stop.

Note that all marked vertices are M-vertices. We draw the cycle C}, on the plane such that vy, vs,
..., v, are placed clockwise.

This lemma is proved if we can obtain a proper Z-L(2, 1)-labeling function-of C,,. To do that, we
first label all marked M-vertices by the largest label M in their lists. After that, remove all marked
vertices. It dissects C), into disjoint paths which are called links. We call the link containing vy the
first link, and the link containing v, the last link. A link containing @ vertices is called an z-link.
With the possible exception of the last two links, each link contains 2 or 3 vertices. When we label a
marked vertex v by M. It will eliminate at most two labels from an M-vertex adjacent to v, at most
one label from a non-M-vertex adjacent to v. It will also eliminate at most one label or zero label
from an M-vertex or a non-M-vertex at distance two from v, respectively. Consequent orders of the
RLAs of these 2-links and 3-links are (3, 3) and (3,4, 3), respectively.

Consider the first link. If v9 is a non-M-vertex, then the RLA of this link is of the order (4,3) or
(4,4,4). If vy is an M-vertex, then vs must be anon-M-vertex. The RLA of this link is of the order
(3,4,4).

We consider n > 10 first.

For Case 1 or Case 4, each link is either a 2-link or a 3-link. The order of the RLA of the first
link is (4,3) or (3,4,4) and that of the remaining links are (3,3) or (3,4, 3). We shall label the links
clockwise. By Lemma [2.1] or Lemma [2.2] we may label the second link properly first. After that, the
order of the RLA of the next link becomes (2,3) or (2,4,3). By Lemma or Lemma again,
we may label it properly. Hence the procedure can be continued up to the last link. After labeling
the last link, the order of the RLA of the first link may be reduced from (4, 3) or (3,4,4) to (3,2) or
(2,4,3), respectively. By Lemma or Lemma it can be labeled properly.

For Case 2, we will label the links anticlockwise. The last link is v, v,,_1Vn_2vn_3 and v,_3 is a non-
M-vertex. The order of its RLA .¥" is (3,4,4,4). By Lemma the last link is .Z’-L(2, 1)-colorable.
So we first label this link. After that, the order of the RLA of the next link becomes (2, 3) or (2,4, 3).
By Lemma 2.1 or Lemma we may label it properly. Hence the procedure can be continued up to
the second link. After the second link has been labeled, the order of the RLA of the first link vz
or v4v3vy may be reduced from (3,4) or (4,4,3) to (2,3) or (3,4,2), respectively. By Lemma [2.1] or
Lemma it can be labeled properly.

For Case 3, the last link is P = v,v,_1v5_2. The second last link @ is either v, _4v,_5v,_¢ Or
Vp—4Vn—5Un—_6Un_7 Where v,_4 is an M-vertex. For the latter case, v,_5 is a non-M-vertex. After
labeling all marked vertices, the order of the RLA of @ is either (3,4, 3) or (3,5,4,3), and that of P is
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(3,4,3). By Lemma we may label @ first. After that the order of the RLA of P may be reduced
to (3,4,2). By Lemma we may label P. Now we label the remaining links from the third last
link anticlockwise. Similar to the previous cases, the labeling can be continued up to the second link.
Finally we may label the first link.

For Case 5, since v,—g is a non-M-vertex, by our numbering C,, contains two non-M-vertices of
distance 4. By our numbering again, v,, and v4 are non-M-vertices. So the order of the RLA of the last
link v, vp—1Vp—2Up—3Vp—4 is (4,4,5,4,3). Hence we may label the last link by means of Lemma
Now we can continue as before to label the links anticlockwise one by one until the first link is labeled.

Finally, we consider 6 <n < 9.

Case A. n = 6. If vy is an M-vertex, then it is referred to Case 1. So we assume vy is a non-M-vertex
and consequently vs and vs are M-vertices. If vg is an M-vertex, then we mark vs and vg,
and label them by M. Now the orders of the RLAs of vjv2 and vsvg are both (3,4). We can
first label v1vy by means of Lemma [2.1] Then the order of the RLA of vsvy is reduced to
(2,3). By means of Lemma we can complete the labeling of Cg. If vg is a non- M-vertex,
then we mark v; and label it by M. Then the order of the RLA of the link Ps = vov3v4v506
is (4,4,5,4,4). By Lemma [2.12] P5 is [4,4,5,4,4]-L(2, 1)-choosable. We can complete the
labeling of the cycle.

Case B. n =7. It is referred to Case 1.

Case C. n = 8. There are three subcases. If vy4is a non-M-vertex, then mark v; and vs. It is referred
to Case 1. If v4 is an M-vertex but vs is not, then it is referred to Case 2. Finally, if both v4
and vy are M-vertices, then we mark v; and vs, and label them by M. By our numbering,
vy is a non-M-vertex. So the orders of the RLAs of the first and the second links are (4,4, 3)
and (3,4, 3) respectively. We may label the second link first and then label the first link to
complete the labeling.

Case D. n = 9. Suppose-there exist two non-M-vertices of distance 4. By our numbering v4 and wvg
are non-M-vertices. Hence vs is an M-vertex. As a special case, we mark v; and vs and
label them by M. We have to consider two links P = vgvrvgvg and ) = vovzvy. The orders
of the RLAs of P and Q are (3,4,4,4) and (3,4,4), respectively. By Lemma we may
label P first. After that the order of the RLA of @ is reduced to (2,4,3). By Lemma
we may label Q.

Suppose there are no two non-M-vertices of distance 4. So by our numbering v is a
non-M-vertex and v7 is an M-vertex. If vy is an M-vertex, then it is referred to Case 4.
If v4 is a non-M-vertex, then vz and vg are both M-vertices. As a special case, we will
mark vs and vg, and label them by M. We consider two links, namely P = vqvsvgvy and
@ = vgvivy. The orders of the RLAs of P and @ are (4,4,4,3) and (3,4,4), respectively.

The labeling method is similar as above.

This completes the proof of the lemma. O

It is straight forward to obtain the following:
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Corollary 3.3. Forn > 6, if C,, contains a non-m-vertex, then C,, is £-L(2,1)-colorable.
Lemma 3.4. Forn > 6, if C,, contains a non-M*-vertez, then C,, is £-L(2,1)-colorable.

Proof: By Lemma [3.2] we may assume that all vertices of C),, are M-vertices. Suppose vz is a non-
M*-vertex. Let n = 3k + j, where k > 2 and 0 < 57 < 2. We shall first mark v; and then mark the
remaining vertices of C,, in the following manner:

(1) If j =0, then mark vs;11, 1 <7<k —1.

(2) If j = 1, then mark vsj10, 1 <i <k —1.

(3) If j = 2, then mark vs. If n = 8, stop. If n > 8, then mark v3;, 3 <i < k.

As the proof of Lemma, we label all marked vertices by M. After removing all marked vertices,
C,, is dissected into some 2- or 3-links. The first link is either vovg or vovsvs. Because vy is a non-M *-
vertex, the order of the RLA of the first link is (4, 3) or (4,4,3). The order of the RLA of each other
link is either (3,3) or (3,4, 3). Similar to the proof of Lemma we can label all the links clockwise
starting from the second link to the last link. After that, the order of the RLA of the first link is
reduced to (3,2) or (3,4,2). Finally, we can label it. Hence, the cycle is labeled properly. O

Corollary 3.5. Forn > 6, if C,, contains a non-m*-vertez, then C,, is £-L(2,1)-colorable.

Proof of the Main Theorem for n > 6.
From Lemma and Corollary it suffices to consider the case that all vertices of C), are
M*-vertices and m*-vertices. We give a .Z-L(2,1)-labeling f of C,, as following;:

(1) If n =0 (mod 3), then define
m ifi=1 (mod3),
fvi) =9 ifi=2 (mod3),

M if i =0 (mod 3).

(2) If n =1 (mod 3), then redefine the above f at v,_3,...,v, as

)
m if i =n—3,

M= ifi=n—2
fui) =
m+1 ifi=n-—1,

M if i =n.

(3) If n =2 (mod 3), then redefine the f in (1) at v,—1 and v, as
m+1 ifi=n-—1,

flui) = .
M—-1 ifi=n.

It is easy to check that f is a proper .Z-L(2,1)-labeling function of G. Hence we conclude that the
cycle Cp,n > 6, is 5-L(2, 1)-choosable.
4. Appendix: Proofs of Supporting Lemmas

Lemma Py is £-L(2,1)-colorable for £ = {L(v) : v € V(P3)} of order (3,3,3) and ¢} # (4.
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Proof: Without loss of generality, we assume ¢} > ¢1. If £} > (1, we label vo with £} and vy with /3.
There is at least one label left in the residual list of v3 to complete the labeling. If £} < £1, we label
vy with £}. The order of the RLA of P = vyv3 is (2,3). By Lemma P can be labeled properly. O

Lemma Ps is (3,3,4)-L(2, 1)-choosable.
Proof: Let .Z be a list assignment of P3 of order (3,3,4).
Case 1. /] > /).

We label v; with £}. The order of the RLA of P = vqus is (2,3). By Lemma Py is £-L(2,1)-
colorable.

Case 2. (] < 4.

We label vy with E%. There are at least two labels left in the residual list of v1 and at least one label
left in that of v3. We first label v3. Then there is at least one label left in the residual list of v1. So
we can label vy.

Case 3. (] = /1.

If 6% > ﬁ%, then we label v3 with K%. The order of the RLA of P-=wjv9 is (3,2). By Lemma Py
is .£-L(2,1)-colorable.

If ¢} < £3, then we label vo with £} and vy with ¢3. There is at least one label left in the residual

list of v3 to complete the labeling. O

Lemma Py is (2,5,4,4)-L(2,1)-choosable.
Proof: Let £ be a list assignment of Py of erder (2,5,4,4).
Case 1. (1 > /1.

We label v; with ¢}. The order of the RLA of P = wouzvy is (3,3,4). The result follows by
Lemma [2.5
Case 2. (1 < /1.

We label vy with ¢i. The ordet of the RLA of P = wvjvovs is (2,4,3). The result follows by
Lemma

We assume that ¢}.< ¢} and ¢ > ¢} in the remaining cases.

Case 3. (] < /L.

We label vz with Kil,). The order of the RLA of P = vjvg is (2,3) and there are at least two labels
left in the residual list of v4. By Lemma P can be labeled. After labeling P, there is at least one
label left in the residual list of v4. So Py is Z-L(2,1)-colorable.

Case 4. (3 > (L.

We label vy with E% and v; with E%. Then the order of the RLA of P = vsvy is (2,4). The result

follows by Lemma 2.1} O

Lemma Py is (3,4,4,4)-L(2,1)-choosable.
Proof: Let .Z be a list assignment of P; of order (3,4,4,4).

Suppose £1 > ¢3. Then we label v; with ¢i. The order of the RLA of P = vyvgvy is (3,3,4). By
Lemma we can label P and hence Py is .Z-L(2,1)-colorable.
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Suppose ¢} < £3. If £3 > ¢}, then we label v3 with £1. There is at least one label left in the residual
list of vg4. So we label vy by an available label. The order of the RLA of P = vyvg becomes (3,2). By
Lemma we know that Py is £-L(2,1)-colorable. If £} < ¢} then we label vy with £}. The order
of the RLA of P = wv3vy is (2,3) and there are at least two labels left in the residual list of v;. By
Lemma [2.1] we may label P = wsvy. Then there is at least one label left in the residual list of v; to
complete the labeling.

Now we assume that (1 = £3.

Case 1. Suppose ¢} > (1. By the same proof as the case when (1 < ¢} < ¢}, we get that Py is
Z-L(2,1)-colorable.

Case 2. Suppose (3 < £3. We label vy with £} and v; with ¢3. The order of the RLA of P = v3vy is
(2,3). By Lemma 2.1} P, is £-L(2,1)-colorable.

Case 3. Suppose £} = ¢} and ¢} > (1. We label v4 with ¢j. The order of the RLA of P = vjvqv3 is
(3,4,3). By Lemmal[2.2] Py is .Z-L(2, 1)-colorable.

Up to now, the remaining case we have to deal with is /1 =3 = Eé > ¢}. By symmetry, we also
know that Py is Z-L(2, 1)-colorable except the case that £3 = (5 = (5 <3

So we have to deal with the case that (1 = ¢} = ¢} >} and /3 = (3 = ¢3 < ¢}. In this case,
either ¢3 — (2 > 2 or (2 — (3 > 2. For the former case, we label vy, vo, v3 and vy by €3, €3, ¢4 and £3,
respectively. For the latter case, we label v1, va, v3 and vy by £2, €3, /1 and £3, respectively. So Py is
Z-L(2,1)-colorable. O

Lemma Ps is (3,4,5,4,4)-L(2,1)-choosable.
Proof: Let .Z be a list assignment of P5 of order (3,4,5,4,4).
Case 1. (] > /1.

We label v; with ¢1. The order of the RLA of P = vyvgvgvs is (3,4,4,4). The result follows by
Lemma 2.7
Case 2. (] < /).
Case 2.1. If ¢} > 1 then we label vo with £3. The order of the RLA %" of P = vzvqvs is (3, 3,4) and
there are at least two labels left in the residual list of v;. So by Lemma P is £'-L(2,1)-colorable.
After labeling P, there is at least one label left in the residual list of v;. So Ps is .Z-L(2, 1)-colorable.
Case 2.2. If /3 < ¢} 'and ¢} < ¢}, then we label vg with £3. The orders of the RLAs of P = v1v5 and
P’ = vyu5 are (3,3) and (2, 3), respectively. We first label P’ = vyv5 according to Lemma 2.1 Then
the order of the RLA of P = vjv2 becomes (3,2). The result follows by Lemma
Case 2.3. If ¢} < ¢} and ¢} > ¢}, then we label vy with ¢}. There is at least one label left in the
residual list of vs. Then we label vs. After that, the order of the RLA of P = vjvous is (3,4,3). So
the result follows by Lemma [2.2
Case 3. (1 = /1.
Case 3.1. (] < 43

We label vo with £ and vy with £3. The order of the RLA of P = v3vyvs is (3,3,4). The result
follows by Lemma
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Case 3.2. (1 > ().

If ¢} < £1, then by the same proof of Case 2.2, we get the result.

If ¢} > 1, then by the same proof of Case 2.3, we get the result.
Case 3.3. (1 = /1.

If ¢} > 1, then by the same proof of Case 2.3, we have the result.

If ¢} < Eé, then we label vy with ¢} and v with ¢3. The order of the RLA of P = vgvgvs is (2,4,4).
So the result follows by Lemma

If ¢} = ¢ and ¢} > ¢}, then we label v5 with £}. The order of the RLA of P = vjvauzvy is (3,4, 5,3).
So the result follows by Lemma [2.2

Up to now, the remaining case we need to deal with is the case that ¢} = £3 = ¢ = ¢} > /1. By
symmetry we can also show that Ps is .£-L(2, 1)-colorable except the casethat £3 = (5 = (3 = ¢} < (2.

Now suppose (1 = (3 = (3 = ¢} > 0} and 3 = ] = (] = ¢} < (3. In this case, either (3 — (3 > 2
or E% — E% > 2. For the former case, we label vy with E%. Then the-order of the RLA of P = vgvavs is
(3,3,4) and there are at least two labels left in the residual list of vy: We first label P according to
Lemma[2.5] Then there is at least one label left in the residual list of v to complete the labeling. For
the latter case, we label vy with #3. Then the order of the RLA of P = wsvsvs is (3,3,4) and there
are at least two labels left in the residual list of v;. We'first label P according to Lemma 2.5 Then

there is at least one label left in the residual list of v1 to complete the labeling. (|

Lemma Ps is [3,4,3]-L(2,1)-choosable.
Proof: Let £ be a list assignment of P3 of order (3,4, 3).
Case 1. Both v; and v3 are non-M-vertices.

Then vo must be an M-vertex, and we label v9 by 65. There are both at least two labels left in the
residual lists of v; and v3. Now we can label v; and vg by two distinct labels.
Case 2. Only one of v; and w3 is an M-vertex.

By symmetry we may assume that vy is an M-vertex and vg is not. We label v; with ¢1. Then the
order of the RLA of P =wgu3 is (2,3). By Lemma we can label P.
Case 3. Both v and v3 are M-vertices but vy is not.

We label vy with #1. Then the order of the RLA of P = vyv3 is (3,2). By Lemma we can label
P.

Note that the only case not covered by Cases 1 to 3 is the case that vy, v and vs are all M-vertices.

By symmetry, we can also show that Pj is strictly .£-L(2, 1)-colorable except when vy, vy and vs
are all m-vertices.

So we assume that v1, v9 and vy are M-vertices and m-vertices. If (% — 8% > 2, then we label v vy
and vg with £2, 3 and ¢3 respectively; otherwise ¢3 — 3 > 2, then we label vy vy and vg with ¢2, (3

and £} respectively. O

Lemma Py is [3,4,4,4]-L(2, 1)-choosable.
Proof: Let £ be a list assignment of Py of order (3,4,4,4).
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Suppose £} > (1. If ¢} < £, then we label vy with £} and v with #. The order of the RLA of
P = v3vy is (3,2). By Lemma we can label P. If /1 > ¢} then we label v; with 1. The order of
the RLA of P = vgu3vy is (2,4,3). By Lemma we can label P.

Suppose (1 < ¢3 —2. If £3 > (1 then we label vy with £3. The order of the RLA of P = v3vy is
(2,3) and there are at least three labels left in the residual list of v;. By Lemma we can label
P. Now there is still one label left in the residual list of v; to complete the labeling. If £ < Eil,, and
o> E%, then we label v4 with £;. The order of the RLA of P = vjv9u3 is (3,4,2). By Lemma we
can label P. If ¢} < ¢} and ¢} < £}, then we label v with ¢. The order of the RLA of P = vy is
(3,3) and there are at least three labels left in the residual list of v4. By Lemma we can label P.
Now there is still one label left in the residual list of v4 to complete the labeling.

Suppose (1 = ¢} — 1. If £3 > (1 then we label vy with £3. The order-of the RLA of P = v3vy is
(3,3) and there are at least three labels left in the residual list of v;. By Lemma we can label
P. Now there is still one label left in the residual list of v; to complete the labeling. If £ < E;l,) and
o> fé, then we label v4 with £§. The order of the RLA of P =vjv903'i8 (3,4, 3). By Lemma we
can label P. If Z% < Eil)) and 6}1 < Eé, then we label v3 with E}; and v; with f%. There are at least one
label left in the residual list of vo and two labels left in that of v4. Now we can label vy and v4 with
two distinct labels.

Now we assume that (1 = /3.

Case 1. (3 > E;l,, + 2. We label v with ¢3. Theorder of the RLA of P = v3vy is (4,3) and there are
at least three labels left in the residual list of ;. By Lemma [2.1] we can label P. Now there is still
one label left in the residual list of v; to complete the labeling.

Case 2. ¢} < (1 —2. We label v; with /]."The order of the RLA of P = vyu3vy is (4,3,3). By
Lemma 2.5, we can label P.

Case 3. ¢} =/(1+1. If £} > £}, we label vy with £;. Then at the worst /3 and £} will be eliminated.
The order of the RLA of P = vjvavs is (3,3,3) with ¢} > (3. By Lemma P can be labeled. If
< E%, we label vy with £} andw; with #3. Then the order of the RLA of P = v3vy is (2,3). By
Lemma 2.1} we can label P.

Case 4. (5 =0} —1.1f 0] > ¢}, we label vy with £. The order of the RLA of P = viveu3 is (3,4, 3).
By Lemma P can be labeled. If ¢} < i, we label v; with ¢{. Then the order of the RLA of
P = vjvgus is (3,3,4). By Lemma we can label P. If £ = ¢}, we label v; with ¢1. Then at the
worst £3, ¢4 and ¢} will be eliminated. The order of the RLA of P = vyuzvy is (3, 3,3) which may not
be labeled only when (2 = ¢% according to Lemma In this case, we label v with £3. Then at the
worst 1, ¢4 and ¢} will be eliminated. The order of the RLA of P = vjvs is (2,3) and there are at
least three labels left in the residual list of v4. By Lemma [2.1] we can label P. Now there is still one
label left in the residual list of v4 to complete the labeling.

Case 5. (= /(5. If £} > ¢}, we label vy with £. The order of the RLA of P = vjvovs is (3,4,3). By
Lemma P can be labeled.

Up to now, the remaining case we have to deal with is ¢} = ¢3 = ¢} > ¢}. By symmetry, we also
know that Py is strictly -#-L(2, 1)-colorable except the case that ¢ = (3 = (3 < (1.
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So we have to deal with the case that (1 = ¢} = 1 > ¢} and (3 = 05 = (5 < 1.

We first consider the subcase that 1 = ¢3 = ¢} > (1. We know either £} — (2 > 2 or (3 — (5 > 2.
If 4 — (2 > 2, we label v1,v9 and v3 with €2, ¢} and ¢3 respectively. There is still one label left in
the residual list of vy to complete the labeling. If £ — 8‘21 > 2, we label vy, v and v3 with 3, ¢3 and
% respectively. Now there is still one label left in the residual list of vy to complete the labeling. By
symmetry, we know Py is strictly Z-L(2, 1)-colorable when (3 = (3 = (3 < (1.

So we only have to deal with the subcase that ¢} = ¢ = (1 = ¢} and €3 = (5 = (5 = (.

In this subcase, without loss of generality, we assume that £ — 2 > 2. We label v, vy and v3 with
3,0} and ¢4 respectively. Now v4 can not be labeled only when ¢3 — ¢; = 1 and ¢? = ¢2. While this
indicate that (2 — K% =0 - ¢4 > 2. So we can label vy, v2,v3 and vy with £2, E%, ¢} and £3 respectively.

O

Lemma Ps is [4,4,5,4,4]-L(2,1)-choosable.
Proof: Let .Z be a list assignment of P5 of order (4,4,5,4,4).
Case 1. Both v; and v5 are non-M-vertices.

If vg is an M-vertex, then we label vy by ¢3. The order of the RLA of P = vsvqvs is (3,3,4) and
there are at least three labels left in the residual list of v1. By Lemma[2.5] P can be labeled. After that
there is at least one label left in the residual list of vi/to complete the labeling. If v4 is an M-vertex,
then by symmetry it is similar as above.

Now we consider the case when vy and vy are both non-M-vertices. Obviously vs is the unique
M-vertex. So we label vz with Z%. The orders of the RLAs of P = vjvy and P’ = vyqvs are (4,3) and
(3,4), respectively. We label P according to Lemma Now the order of the RLA of P’ is (2,3).
Hence Ps is strictly .£-L(2, 1)-colorable.

Case 2. Only one of v; and v is an M-vertex.

By symmetry we may assume that vy is an M-vertex and vs is not. If vg is not an M-vertex, then
we can label v; with ¢1. The order of the RLA of P = wvauzvgvs is (2,5,4,4). By Lemma we can
label P.

So we assume v is an M-vertex. If vy is an M-vertex, then we label vy and v4 by ﬁ% and £},
respectively. The order of the RLA of P = vou3 is (2, 3) and there are at least three labels remaining
in the residual list of v5. By Lemma [2.1] we can label P with its RLA, and after that at least two
labels are available to label vs. If vy is a non-M-vertex, then we can label v3 by E})). The orders of the
RLAs of P = vjuy and P’ = vgvs are (3,2) and (3,4), respectively. By Lemma we can label P
first and after that P’ can also be labeled.

Case 3. Both vy and vy are M-vertices but vs is not.

If vy is an M-vertex, then we can label v; and vy by £1 and £}, respectively. The order of the RLA of
P = vyv3 is (2,4) and there are at least two labels remaining in the residual list of v5. By Lemma
we can label P with its RLA, and after that at least one label is available to label vs. If vy is an

M-vertex, then by symmetry it is similar as above.
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Now we consider the case when both vo and v4 are non-M-vertices. We label vg by E}). The order
of the RLA of P = vjvau3vy is (3,4,5,3). By Lemma we can label P with its RLA.
Case 4. v, v3 and vs are M-vertices.

If vy is an M-vertex, then we label v; and vy by ¢} and ¢}, respectively. The order of the RLA of
P = vyvs3 is (2,3) and there are at least two labels remaining in the residual list of vs. By Lemma
we can label P with its RLA, and after that at least one label is available to label vs. The labeling
method is similar when vy is an M-vertex.

Note that the only case not covered by Cases 1 to 4 is the case that vi, v3 and vs are M-vertices
but vy and v4 are not.

By symmetry, we can also show that Pj is strictly Z-L(2, 1)-colorable except when v;, vs and vs
are m-vertices but vy and v4 are not.

So we assume that (i) vy, vz and vs are M-vertices and m-vertices and (ii) v2 and v4 are non-M-
vertices and are non-m-vertices. We label vs and vs by €g and Eé, respectively. After that £2 and £3 in
L(v4) are not eliminated. The order of the RLA of P = vjvy is (2, 3). Again by Lemma we can
label P. After that, there is still one label available to label vy. O

Lemma Forn > 2, Py is [3,4, 5", 4]-L(2,1)-choosable.
Proof: First we prove the lemma is true when n =/2. Let .Z be a list assignment of P; of order
(3,4,5,5,4). Assume that ¢ is the smallest index such that v; is an M-vertex.

Suppose i = 1. We label v; with £1. Since the label of v5 must differ from ¢}, the order of the RLA
of P = vousgvgvs is (2,4,5,3). By Lemma P has a proper L(2,1)-labeling and hence P; is strictly
Z-L(2,1)-colorable.

Suppose i = 2. We label ve with £3 and vy with ¢3. The order of the RLA of P = v3v4vs is (2,4, 3).
The result follows by Lemma 2.2}

Suppose i = 4. We label vg with £} and vs with Eg. The order of the RLA of P = vjvovs is (2,4, 3).
The result follows by Lemma

Suppose i = 5. We label v5 with €é. The order of the RLA of P = vjvovsvy is (3,4,5,4). The result
follows by Lemma

Suppose i = 3. We consider the following three cases:

Case 1. (1 — (3 > 2.

We label v3 with Eé. Then the orders of the RLAs of P = vjvy and P’ = vgqvs are (3,4) and (3, 3),
respectively. According to Lemma we may label P’ first. Then the order of the RLA of P is (2, 3).
Ps is strictly Z-L(2, 1)-colorable.

Case 2. (3 — ¢} =1 and £} > /].

We label v3 with £3. Then the orders of the RLAs of P = vjvy and P’ = vgvs are (3,3) and (4, 3),
respectively. We label P = vjv2 according to Lemma Then the order of the RLA of P’ becomes
(3,2). So we can label P’ properly and hence the result follows.

Case 3. (L — (Y =1and (} =1} > (L.
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We label v3 with fé. Then the orders of the RLAs of P = vjvy and P’ = vyvs are (3,3) and (3,4),
respectively. We label P = vjv2 by means of Lemma Then the order of the RLA of P’ becomes
(2,3). So we can label P’ properly. Hence the result follows.

Now the only case unsolved is when ¢} < ¢} +1 = ¢} = ¢} = ¢. By considering the symmetric
cases as above, we conclude that the only case unsolved is when 1 < 3 +1 = 3 = ¢} = £ and
Ei)’ > E% - 1= Kg = Ei = Eg. In this case, we label vy, v9, vs, v4, vs by E%, E%, Eé, 03, Eg, respectively.
Hence Ps is strictly .Z-L(2, 1)-colorable.

Then we prove the lemma for n > 3. Let .Z be a list assignment of P, ;3 of order (3,4, 5["],4).
Assume that ¢ is the smallest index such that v; is an M-vertex.

Case 1. i =1.

We label vy with ¢1. The order of the RLA £’ of P = vav3 - - v 43 is (2,4, 1] 3). By Lemma
P is £'-L(2,1)-colorable. Hence P, 3 is strictly Z-L(2, 1)-colorable.

Case 2. i = 2.

We label vy with £} and vy with £3. The order of the RLA of P =wgvy:-- v, 3 is (2,4, 5ln—2] 3).
The result follows by Lemma
Case 3. i = 3.

We label v3 with @%. The orders of the RLAs of P.=wvs and P’ = vqv5---v,43 are (3,3) and
(3,4, 5[”_3],4), respectively. We label P = vive by means of Lemma Then the order of the RLA
of P’ becomes (2,4, 53], 3). The result follows by Lemma
Case 4. 4 < i <n when n > 4.

We label v; with E}. The orders of the RLAs of P = vyvg---v;—1 and P’ = v;110;49 - Upy3 are
(3,4,504 4) and (3,4,5"7, 4), respectively.We label P by means of Lemma Then the order
of the RLA of P’ becomes (2,4;527%,3). The result follows by Lemma
Case 5. i =n+ 1.

We label v,41 with K}Hrl. The orders of the RLAs of P = wvjve---v, and P’ = v, 90,43 are
(3,4, 5[”_3],4) and (3, 3), respectively. We label P’ by means of Lemma Then the order of the
RLA of P is (2,4;5"=3] 3). The result follows by Lemma
Case 6. i =n + 2.

We label v,4o with K}HQ and v,43 with £ﬁ+3- The order of the RLA of P = wvivg:--vp41 i8S
(2,4,5["2 3). The result follows by Lemma
Case 7. i =n+ 3.

We label v,,43 with E}Hg. The order of the RLA of P = vjvg -« - v,42 is (3,4, 5,n=1] ,4). The result
follows by Lemma O
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