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Abstract. Let G = (V,E) be a simple graph of order n and size m. An r-matching of G is a set of r

edges of G which no two of them have common vertex. The Hosoya index Z(G) of a graph G is defined

as the total number of its matchings. An independent set of G is a set of vertices where no two vertices

are adjacent. The Merrifield-Simmons index of G is defined as the total number of the independent

sets of G. In this paper we obtain Hosoya and Merrifield-Simmons indices of corona of some graphs.

1. Introduction

Let G = (V,E) be a simple graph of order n and size m. An r-matching of G is a set of r edges of

G which no two of them have common vertex.

The Hosoya index Z(G) of a graph G is defined as the total number of its matchings [8]. If m(G, k)

denotes the number of its k-matchings, then

Z(G) =

bn
2
c∑

k=0

m(G, k).

The Hosoya index of a graph has application to correlations with boiling points, entropies, calculated

bond orders, as well as for coding of chemical structures.

An independent set of a graph G is a set of vertices where no two vertices are adjacent. The indepen-

dence number is the size of a maximum independent set in the graph.
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The Merrifield-Simmons index of G is defined as the total number of the independent sets of G and

denoted by i(G). The Merrifield-Simmons index was introduced in 1982 in [10]. The Merrifield-

Simmons index is one of the most popular topological indices in chemistry, which was extensively

studied in a monograph [9]. There have been many papers studying the Merrifield-Simmons index

(see [12, 14]).

Paper [11] obtain the Hosoya and Merrifield-Simmons indices for some classes of cartesian product of

two specific graphs. In this paper we would like to obtain these indices for some classes of another

product of two graphs.

The corona of two graphs G1 and G2, is the graph G = G1 ◦ G2 formed from one copy of G1 and

|V (G1)| copies of G2, where the ith vertex of G1 is adjacent to every vertex in the ith copy of G2 ([4]).

In this paper we investigate the Hosoya and Merrifield-Simmons indices for corona of some graphs.

We denote the complete graph of order n and the complement of G, by Kn and G, respectively.

2. Hosoya index of corona of two specific graphs

In this section, we will study Hosoya index of corona of some graphs. We use the following theorem

to obtain main results.

Theorem 2.1. ([5, 7])

(i) Let G be graph with k components G1, . . . , Gk, then

Z(G) =
k∏

i=1

Z(Gi).

(ii) Let G be a graph, and let uv ∈ E(G). Then

Z(G) = Z(G− uv) + Z(G− {u, v}).

Here we consider the corona of Pn and Cn with K1. We denote Pn ◦K1 and Cn ◦K1 simply by P ∗n and

C∗n, respectively. See Figure 1. The following theorem gives the Hosoya index of Pn ◦K1 and Cn ◦K1.
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Figure 1. Labeled Pn ◦K1.

Theorem 2.2. (i) For every n ≥ 3, Z(P ∗n) = Z(Pn ◦K1) = (1+
√

2)n+1−(1−
√

2)n+1

2
√

2
.

(ii) For every n ≥ 3, Z(C∗n) = Z(Cn ◦K1) = (2+
√

2)(1+
√

2)n−1+(2−
√

2)(1−
√

2)n−1
√

2
.
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Proof.

(i) By Theorem 2.1(ii) we have Z(P ∗n) = 2Z(P ∗n−1) + Z(P ∗n−2). The characteristic equation is

x2 − 2x− 1 = 0. So the roots of this equation are 1 +
√

2 and 1−
√

2. Therefore the general

solution is

Z(P ∗n) = c1(1 +
√

2)n + c2(1−
√

2)n.

Now using initial values Z(P ∗1 ) = Z(P2) = 2 and Z(P ∗2 ) = Z(P4) = 5, we obtain

c1 =
1 +
√

2

2
√

2
, c2 =

√
2− 1

2
√

2
.

So we have the result.

(ii) By Theorem 2.1 (ii) we have Z(C∗n) = Z(P ∗n) + Z(P ∗n−2) = 2(Z(P ∗n−1) + Z(P ∗n−2)). Now we

have the result by part (i).

56
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n
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Figure 2. Graph Cn ◦K2.

The following theorem gives us the Hosoya index of Pn ◦K2 and Cn ◦K2 (See Figure 2).

Theorem 2.3. ([3])

(i) For every n ∈ N

Z(Pn ◦K2) =
2 +
√

2

4
(2 + 2

√
2)n +

2−
√

2

4
(2− 2

√
2)n

(ii) For every n ≥ 3

Z(Cn ◦K2) = 2n[(1 +
√

2)n + (1−
√

2)n]

The following theorem is about the Hosoya index of graphs Pn ◦Ki and Cn ◦Ki.

Theorem 2.4. Suppose that i ∈ N and α = i+ 1, β =
√
α2 + 4. Then

(i) For every n ∈ N,

Z(Pn ◦Ki) =
α+ β

2β
(
α+ β

2
)n +

β − α
2β

(
α− β

2
)n.
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(ii) For every n ≥ 3 and i ∈ N,

Z(Cn ◦Ki) =
1

β

[
(
α+ β

2
)n+1 + (

α+ β

2
)n−1 − (

α− β
2

)n+1 − (
α− β

2
)n−1

]
.

Proof. Let Gn = Pn ◦Ki .By the definition of Hosoya index and Lemma we have

Z(Gn) = Z(Pn ◦Ki)

= Z(Gn − v1v2) + Z(Gn − {v1, v2})

= Z(G1)Z(Gn−1) + Z(Gn−2)

= (i+ 1)Z(Gn−1) + Z(Gn−2)

In order to calculate Z(Gn), we must provide the initial conditions. It is easy to arrive at that

Z(G1) = i + 1 = α , Z(G2) = (i + 1)2 + 1 = α2 + 1. Thus, we the recurrence relation Z(Gn) =

(i+ 1)Z(Gn−1) + Z(Gn−2) with initial conditions Z(G1) = i+ 1, Z(G2) = (i+ 1)2 + 1.

The characteristic equation is x2 − (i + 1)x − 1 = 0. Using the quadratic formula, we find that the

roots of this equation are

x1 =
(i+ 1) +

√
(i+ 1)2 + 4

2
, x2 =

(i+ 1)−
√

(i+ 1)2 + 4

2

The general solution for the equation is

Z(Gn) = c1(
i+ 1 +

√
(i+ 1)2 + 4

2
)n + c2(

i+ 1−
√

(i+ 1)2 + 4

2
)n

We would like to determine c1 and c2 that satisfy Z(G1) = i+1 = α and Z(G2) = (i+1)2 +1 = α2 +1.

By solving the system, we obtain c1 =
β + α

2β
, c2 =

β − α
2β

Thus, we have the result.

3. Merrifield-Simmons index of corona of two specific graphs

In this section we obtain the Merrifield-Simmons of corona of two specific graphs. We do this with

two different approaches. First we need the following Theorem:

Theorem 3.1. Let v be a vertex of a graph G. Then i(G) = i(G− {v}) + i(G−N [v]).

Theorem 3.2. (i) i(Pn ◦K1) = 2+
√

3
2
√

3
(1 +

√
3)n +

√
3−2

2
√

3
(1−

√
3)n.

(ii) i(Cn ◦K1) = 9
√

3+16
2
√

3
(1 +

√
3)n−3 + 9

√
3−16

2
√

3
(1−

√
3)n−3.

Proof.

(i) Let Gn = Pn ◦K1. By Theorem 3.1, we have

i(Gn) = i(Gn − {v1}) + i(Gn −N [v1])

= i(P1)i(Gn−1) + i(P1)i(Gn−2)

= 2(i(Gn−1) + i(Gn−2)).
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The characteristic equation is x2 − 2x − 2 = 0. So the roots of this equation are 1 +
√

3 and

1−
√

3. Therefore the general solution is

i(Gn) = c1(1 +
√

3)n + c2(1−
√

3)n.

Now using initial values i(G1) = i(P ∗1 ) = i(P2) = 3 and i(G2) = i(P ∗2 ) = i(P4) = 8, we obtain

c1 =
2 +
√

3

2
√

3
, c2 =

√
3− 2

2
√

3
.

So we have the result.

(ii) Let Gn = Cn ◦K1. By Theorem 3.1, we have

i(Gn) = i(Gn − {v1}) + i(Gn −N [v1])

= i(Pn−1 ◦K1) + i(Pn−3 ◦K1)

Using Part (i) we will have the result.

Theorem 3.3. ([13])

(i) i(Pn ◦K2) = 21+5
√

21
42 (3+

√
21

2 )n + 21−5
√

21
42 (3−

√
21

2 )n.

(ii) i(Cn ◦K2) =
21+5

√
21

14 (3+
√

21
2 )n−1 + 21−5

√
21

14 (3−
√

21
2 )n−1 + 63+15

√
21

14 (3+
√

21
2 )n−3 + 63−15

√
21

14 (3−
√

21
2 )n−3.

Here using independence polynomial of a graph we obtain the Merrifield-Simmons index of certain

graphs. Let us to recall the definition of independence polynomial of a graph.

For a graph G, let ik denote the number of independent sets of cardinality k in G (k = 0, 1, ...). The

independence polynomial of G is I(G, x) =
∑

k=0 ikx
k. It is easy to see that Merrifield-Simmons index

of G, is equal with I(G, 1).

Gutman in [6] has proved the following theorem for independence polynomial of corona of two graphs:

Theorem 3.4. I(G ◦H,x) = (I(H,x))nI(G, x
I(H,x)), where n = |V (G)|.

If we put H = K1, H = K2 and H = Ki in the above theorem, we have the following corollary:

Corollary 3.5. (i) If x 6∈ {−1, 0}, then I(G ◦K1, x) = I(G∗, x) = (1 + x)nI(G, x
1+x).

(ii) If x 6∈ {−1
2 , 0}, then I(G ◦K2, x) = (1 + 2x)nI(G, x

1+2x).

(iii) If x 6∈ {−1, 0}, then for every i ∈ N, we have I(G ◦Ki, x) = (1 + x)inI(G, x
(1+x)i

).

Now the following corollary gives the relationship between Merrifield-Simmons indices of graphs G◦K1,

G ◦K2 and G ◦Ki with their independence polynomials at specific points.

Corollary 3.6. (i) i(G ◦K1) = 2nI(G, 1
2).

(ii) i(G ◦K2) = 3nI(G, 1
3).

(iii) i(G ◦Ki) = 2inI(G, 1
2i

).
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We need the following results to obtain more results on Merrifield-Simmons indices of some classes of

graphs:

Theorem 3.7. ([1])

(i) I(Pn, x) =

bn+1
2
c∏

s=1

(
2x+ 1 + 2x cos

2sπ

n+ 2

)
,

(ii) I(Cn, x) =

bn
2
c∏

s=1

(
2x+ 1 + 2x cos

(2s− 1)π

n

)
.

Theorem 3.8. (i) i(Pn ◦K1) = 2n
bn+1

2
c∏

s=1

(
2 + cos

2sπ

n+ 2

)
,

(ii) i(Cn ◦K1) = 2n
bn
2
c∏

s=1

(
2 + cos

(2s− 1)π

n

)
,

(iii) i(Pn ◦K2) = 3n
bn+1

2
c∏

s=1

(
5

3
+

2

3
cos

2sπ

n+ 2

)
,

(iv) i(Cn ◦K2) = 3n
bn
2
c∏

s=1

(
5

3
+

2

3
cos

(2s− 1)π

n

)
.

(v) For every n, i ∈ N, i(Pn ◦Ki) = 2in
bn+1

2
c∏

s=1

(
1 +

1

2i−2
cos2 sπ

n+ 2

)
.

(vi) For every n, i ∈ N, i(Cn ◦Ki) = 2in
bn
2
c∏

s=1

(
1 +

1

2i−2
cos2 (s− 1

2)π

n

)
.

Remark. Using the following identities ([2], p.64) the reader can check the equalities of Theorems

3.2, 3.3 and 3.8. For real numbers a, b and positive integer n,

an − bn =


(a− b)

n−1
2∏

s=1

(
a2 + b2 − 2ab cos

2sπ

n

)
; if n is odd,

(a− b)(a+ b)

n−2
2∏

s=1

(
a2 + b2 − 2ab cos

2sπ

n

)
; if n is even.

an + bn = (a+ b)

bn
2
c∏

s=1

(
a2 + b2 − 2ab cos

(2s− 1)π

n

)
.
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