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Abstract. The first (Π1) and the second (Π2) multiplicative Zagreb indices of a connected graph

G, with vertex set V (G) and edge set E(G), are defined as Π1(G) =
∏

u∈V (G) du
2 and Π2(G) =∏

uv∈E(G) dudv, respectively, where du denotes the degree of the vertex u. In this paper we present a

simple approach to order these indices for connected graphs on the same number of vertices. Moreover,

as an application of this simple approach, we extend the known ordering of the first and the second

multiplicative Zagreb indices for some classes of connected graphs.

1. Introduction

Let G = (V (G), E(G)) be a simple graph (i.e. G does not have loops or multiple edges). Zagreb

indices were first introduced in [6], and they are among oldest and most used molecular structure-

descriptors [8]. The first Zagreb index is defined as the sum of the squares of the degrees of the

vertices:

M1(G) =
∑

u∈V (G)

du
2.

The second Zagreb index is defined as the sum of the product of the degrees of adjacent vertices

M2(G) =
∑

uv∈E(G)

du dv .

We encourage the reader to consult [1, 4, 11, 15, 14, 16] for historical background, computational

techniques, and mathematical properties of Zagreb indices. A detailed bibliography on recent research
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of Zagreb indices is found in [2, 12].

Following an earlier idea of Narumi and Katayama [10], recently Gutman [3] introduced the multi-

plicative version of the Zagreb indices. In particular he put forward

Π1 = Π1(G) =
∏

u∈V (G)

du
2,

Π2 = Π2(G) =
∏

uv∈E(G)

du dv.

In [3, 5], Gutman determined that among all trees with n ≥ 5 vertices, the extremal trees with respect

to these multiplicative Zagreb indices are path Pn and and star Sn. Also Gutman and Ghorbani

[5] have obtained some properties of Narumi-Katayama index, defined as: NK(G) =
∏

u∈V (G)

du for a

graph G.

In [13] Xu and Hua introduced some graph transformations which increase or decrease these two

indices. As an application, they obtained a unified approach to characterize extremal (maximal and

minimal) trees, unicyclic graphs and bicyclic graphs with respect to multiplicative Zagreb indices,

respectively. In this paper by theory of majorization we obtain and extend their results and obtain

ordering of the first and second multiplicative Zagreb indices for some class of connected graphs. Our

idea and pictures are from [7] and this paper was very helpful for us.

2. Preliminaries results

Throughout this paper we only consider finite, undirected and simple graphs. A tree is a connected

acyclic graph. The path of order n is denoted by Pn and the cycle of order n is denoted by Cn. A

pendent vertex or leaf of a graph is a vertex of degree 1. Let Tn, Un and Bn be the class of trees of

order n, the class of connected unicyclic graphs of order n, and the class of connected bicyclic graphs

of order n, respectively. Also for a graph G, denoted by ∆(G) the maximum degree of G.

Let x1 ≥ x2 ≥ . . . ≥ xn and y1 ≥ y2 ≥ . . . ≥ yn, be two non-increasing sequences of real numbers.

If they satisfy the conditions
k∑

i=1

xi ≤
k∑

i=1

yi, for 1 ≤ k ≤ n − 1 and
i∑

i=1

xn =
k∑

i=1

yn, then we say that x = (x1, x2, . . . , xn) is

majorized by y = (y1, y2, . . . , yn) and write x � y. Furthermore, by x ≺ y we mean that x � y and

x 6= y.

We recall that if I ⊂ R is an interval and f : I → R is a real-value function such that f
′′
(t) ≥ 0

on I, then f is convex on I. If f
′′
(t) > 0, then f is strictly convex on I. Similarly, if f

′′
(t) ≤ 0 (

f
′′
(t) < 0) on I, then f is concave (strictly concave) on I.

A real-value function φ defined on a set A ⊂ Rn is said to be Schur-convex on A if

x = (x1, . . . , xn), y = (y1, . . . , yn) ∈ A and x � y ⇒ φ(x) ≤ φ(y).
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If, in addition, φ(x) < φ(y) where x ≺ y, then φ is said to be strictly Schur-convex on A. Similarly, φ

is said to be Schur-concave on A if

x, y ∈ A and x � y ⇒ φ(x) ≥ φ(y),

and φ is strictly Schur-concave on A if strict inequality φ(x) > φ(y) holds when x ≺ y.

The following result has been established in [9]

Lemma 2.1. [See [9]] Let I ⊂ R be an interval and let φ(x1, . . . , xn) =
∑n

i=1 g(xi), where g : I → R.

Then if g is strictly convex on I, then φ is strictly Schur-convex on In. Similarly if g is strictly concave

on I, then φ is strictly Schur-concave on In.

Corollary 2.2. Let G and Ǵ be two connected graphs with degree sequences x = (x1, x2, . . . , xn) and

y = (y1, y2, . . . , yn), respectively. If x � y, then
(i) Π1(G) ≥ Π1(Ǵ), with the equality holds if an only if x = y.

(ii) Π2(G) ≤ Π2(Ǵ), with the equality holds if an only if x = y.

Proof: (i) Observe that for t > 0, (2 ln t)
′′

= −2
t2
< 0. So on interval (0,+∞), the function 2 ln t is

strictly concave. If x � y, then by Lemma 2.1,
n∑

i=1

2 lnxi ≥
n∑

i=1

2 ln yi and thus ln
n∏

i=1

xi
2 ≥ ln

n∏
i=1

yi
2.

Since et is a strictly increasing function, so ln
n∏

i=1

xi
2 ≥ ln

n∏
i=1

yi
2, and hence Π1(G) ≥ Π1(Ǵ). Now

suppose that x � y and Π1(G) = Π1(Ǵ). Then
n∏

i=1

x2i =
n∏

i=1

y2i , and thus
n∑

i=1

2 lnxi ≥
n∑

i=1

2 ln yi. Hence

by Lemma 2.1, we have x = y.

(ii) Note that for t > 0, (t ln t)
′′

= 1
t > 0. So on interval (0,+∞), the function t ln t is strictly

convex. If x � y, then by Lemma 2.1,

n∑
i=1

xi lnxi ≤
n∑

i=1

yi ln yi and thus ln

n∏
i=1

xi
xi ≤ ln

n∏
i=1

yi
yi . Since

et is a strictly increasing function, so
n∏

i=1

xi
xi ≤

n∏
i=1

yi
yi . It is easy to see that Π2(G) =

n∏
i=1

xi
xi and

Π2(Ǵ) =
n∏

i=1

yi
yi , and hence Π2(G) ≤ Π2(Ǵ). Now suppose that x � y and Π2(G) = Π2(Ǵ). Then

n∏
i=1

xxi
i =

n∏
i=1

yyii , and thus

n∑
i=1

xi lnxi ≤
n∑

i=1

yi ln yi. Hence by Lemma 2.1, we have x = y.

3. Main Results

3.1. Trees.

Theorem 3.1. [5] Let T ∈ Tn \ {Pn, Sn} be a tree with n vertices. Then

(3.1) Π1(Sn) < Π1(T ) < Π1(Pn),

(3.2) Π2(Sn) > Π2(T ) > Π2(Pn).
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Proof: (3.1) Since the degree sequence (2, . . . , 2, 1, 1) is minimal in the class Tn ( i.e., in the order

≺) and the degree sequence (n − 1, 1, . . . , 1) is maximal in the class Tn, we obtain the result by part

(i) of Corollary 2.2.

The proof of claim (3.2) is similar and we omit the details.

Let T1 = Sn, T2, . . . , T13 be the trees on n vertices as shown in Fig. 1. Then we have

Theorem 3.2. Let T ∈ Tn \ {T1, T2, . . . , T6, T13} and n ≥ 13. Then Π1(T1) < Π1(T2) < Π1(T3) <

Π1(T6) < Π1(T4) = Π1(T5) < Π1(T13) < Π1(T ).
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Fig. 1. The trees T2, ..., T13. The picture taken from [7]

Proof: By an elementary computation, we have Π1(T1) = (n − 1)2, Π1(T2) = 4(n − 2)2, Π1(T3) =

9(n−3)2, Π1(T4) = 16(n−3)2 = Π1(T5), Π1(T6) = 16(n−4)2, Π1(T7) = 36(n−4)2 = Π1(T8) = Π1(T9),

Π1(T10) = 64(n− 4)2 = Π1(T11) = Π1(T12) and Π1(T13) = 25(n− 5)2. So we only need to show that

if T ∈ Tn \ {T1, T2, . . . , T13}, then Π1(T ) > Π1(T13).

Clearly, T1 is the unique tree with ∆ = n− 1, T2 is the unique tree with ∆ = n− 2, T3, T4, T5 are

all trees with ∆ = n − 3, T6, . . . , T12 are all trees with ∆ = n − 4. Since T ∈ Tn \ {T1, T2, . . . , T13},
then ∆(T ) ≤ n− 5.

Let (a) = (d1, d2, . . . , dn) be the degree sequence of T . Since the degree sequence of T13 is (b) =

(n− 5, 5, 1, . . . , 1), it is easy to see that (a) ≺ (b), because T13 is the unique tree with (b) as its degree

sequence. Thus, Π1(T13) < Π1(T ) follows from Corollary 2.2.

Theorem 3.3. Let T ∈ Tn \ {T1, T2, . . . , T6, T13} and n ≥ 23. Then Π2(T1) > Π2(T2) > Π2(T3) >

Π2(T4) = Π2(T5) > Π2(T6) > Π2(T7) = Π2(T8) = Π2(T9) > Π2(T10) = Π2(T11) = Π2(T12) >

Π2(T13) > Π2(T ).

Proof: By an elementary computation, we have Π2(T1) = nn, Π2(T2) = 4(n − 2)n−2, Π2(T3) =

27(n − 3)n−3, Π2(T4) = 16(n − 3)n−3 = Π2(T5), Π2(T6) = 256(n − 4)n−4, Π2(T7) = 108(n − 4)n−4 =
www.SID.ir
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Π2(T8) = Π2(T9), Π2(T10) = 64(n− 4)n−4 = Π2(T11) = Π2(T12) and Π2(T13) = 3125(n− 5)n−5. So we

only need to show that if T ∈ Tn \ {T1, T2, . . . , T13}, then Π2(T ) > Π2(T13).

Clearly, T1 is the unique tree with ∆ = n− 1, T2 is the unique tree with ∆ = n− 2, T3, T4, T5 are

all trees with ∆ = n − 3, T6, . . . , T12 are all trees with ∆ = n − 4. Since T ∈ Tn \ {T1, T2, . . . , T13},
then ∆(T ) ≤ n− 5.

Let a = (d1, d2, . . . , dn) be the degree sequence of T . Since the degree sequence of T13 is b =

(n − 5, 5, 1, . . . , 1), it is easy to see that a ≺ b, because T13 is the unique tree with b as its degree

sequence. Thus, Π2(T13) > Π2(T ) follows from Corollary 2.2.

3.2. Unicyclic graphs. Let U1, U2, . . . , U16 be the unicyclic graphs as shown in Fig. 2. Then we

have the next result.

�
�

J
JJ







@
@
q
q pp
p q

q
q

U1
�
�

@
@
�
��
A
AA
qq

q pp
p q qq

U2
�
�

A
A
A
AA q
q
@
@





J
JJ
qq

q pp
p q q

U3
�
�

qq
@
@
q
q pp
p q q

U4

�
�

@
@
�
��
A
AA
qq

q pp
p q �

�
q qq

U5
�
�

@
@




 qJ
JJ
q qq

q pp
p q q

U6
�
�

qq
@
@ qq
q pp
p q q

U7
�
�

@
@

q q��q
q
q pp
p q q

U8

�
�

A
A
A
AA q
q
@
@






�
��
q

J
JJ
qq

q pp
p q q

U9
�
�






J
JJ
q

@
@ qq
q pp
p q q

U10
�
�

A
A
A
AA q
q
@
@





J
JJ
q
q

q
q pp
p q q

U11
�
�

@
@
�
��
A
AA
qq

q pp
p q q qq

U12

�
�

A
A
A
AA q
q
@
@

q qq
q pp
p q q

U13
�
�

A
A
A
A q
�
�
�
�q
qq

@
@





J
JJ
qq

q pp
p q q

U14
�
�

B
BB
@
@

��
q
@@qq
�
��

q
q pp
p q q
U15

�
�

�
�
�
�
�
�

q
q q

@
@





J
JJ
qq

q pp
p q q

U16

Fig. 2. The unicyclic graphs U1, ..., U16. The picture taken from [7]

Theorem 3.4. Let G ∈ Un \ {U1, U2, . . . , U12} and n ≥ 13. Then Π1(U1) < Π1(U2) < Π1(U5) <

Π1(U3) = Π1(U4) < Π1(U6) < Π1(U7) = Π1(U8) = Π1(U9) = Π1(U10) = Π1(U11) = Π1(U12) < Π1(G).

Proof: By an elementary computation, we have Π1(U1) = 16(n−1)2, Π1(U2) = 36(n−2)2, Π1(U3) =

64(n − 2)2 = Π1(U4), Π1(U5) = 64(n − 3)2, Π1(U6) = 81(n − 3)2, Π1(U7) = 144(n − 3)2 = Π1(U8) =

Π1(U9) = Π1(U10) = Π1(U11) = Π1(U12), and Π1(U13) = 256(n−3)2 = Π1(U14) = Π1(U15) = Π1(U16).

So we only need to prove that if G ∈ Un \ {U1, U2, . . . , U16}, then Π1(G) > Π1(U12).
www.SID.ir
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It is easy to check that U1 is the unique unicyclic graph with ∆ = n− 1, U2, U3, U4 are all unicyclic

graphs with ∆ = n − 2, and U5, U6, . . . , U16 are all unicyclic graphs with ∆ = n − 3. If G ∈ Un \
{U1, U2, . . . , U16}, then ∆(G) ≤ n − 4. Suppose that degree sequence of G is (a) = (d1, d2, . . . , dn).

Since G ∈ Un, then G has only exactly one cycle. This implies that n − 4 ≥ d1 ≥ d2 ≥ d3 ≥ 2. Let

(b) = (n− 4, 5, 2, 1, . . . , 1). Then (a) � (b). By Corollary 2.2, we can conclude that

Π1(G) ≥ (n− 4)2 × 52 × 22 = 200(n− 4)2 > 144(n− 3)2 = Π1(U12).

This completes the proof.

Theorem 3.5. Let G ∈ Un \ {U1, U2, . . . , U16} and n ≥ 22. Then Π2(U1) > Π2(U2) > Π2(U3) =

Π2(U4) > Π2(U5) > Π2(U6) > Π2(U7) = Π2(U8) = Π2(U9) = Π2(U10) = Π2(U11) = Π2(U12) >

Π2(U13) = Π2(U14) = Π2(U15) = Π2(U16) > Π2(G).

Proof: By an elementary computation, we have Π2(U1) = 16(n − 1)n−1, Π2(U2) = 108(n − 2)n−2,

Π2(U3) = 64(n − 2)n−2 = Π2(U4), Π2(U5) = 1024(n − 3)n−3, Π2(U6) = 729(n − 3)n−3, Π2(U7) =

432(n− 3)n−3 = Π2(U8) = Π2(U9) = Π2(U10) = Π2(U11) = Π2(U12), and Π2(U13) = 256(n− 3)n−3 =

Π2(U14) = Π2(U15) = Π2(U16).

Next we only need to show that if G ∈ Un \ {U1, U2, . . . , U16}, then Π2(G) > Π2(U12).

It is easy to check that U1 is the unique unicyclic graph with ∆ = n− 1, U2, U3, U4 are all unicyclic

graphs with ∆ = n − 2, and U5, U6, . . . , U16 are all unicyclic graphs with ∆ = n − 3. If G ∈ Un \
{U1, U2, . . . , U16}, then ∆(G) ≤ n − 4. Suppose that degree sequence of G is a = (d1, d2, . . . , dn).

Since G ∈ Un, then G has only exactly one cycle. This implies that n − 4 ≥ d1 ≥ d2 ≥ d3 ≥ 2. Let

b = (n− 4, 5, 2, 1, . . . , 1). Then a � b. By Corollary 2.2, we can conclude that

Π2(G) ≤ (n− 4)n−4 × 55 × 22 = 12500(n− 4)n−4 < 256(n− 3)n−3 = Π2(U16).

This completes the proof.

3.3. Bicyclic graphs. Let B1, B2, . . . , B11 be the bicyclic graphs as shown in Fig. 3. Then we have

the next result.

Theorem 3.6. Let G ∈ Bn \ {B1, B2, . . . , B5} and n ≥ 12. Then Π1(B1) < Π1(B3) < Π1(B2) <

Π1(B4) = Π1(B5) < Π1(G).
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Fig. 3. The bicyclic graphs B1,..., B11.The picture taken from [7]

Proof: By an elementary computation, we have Π1(B1) = 144(n − 1)2, Π1(B2) = 256(n − 1)2,

Π1(B3) = 256(n − 2)2, Π1(B4) = 324(n − 2)2 = Π1(B5), Π1(B6) = 576(n − 2)2 = Π1(B7) =

Π1(B8) = Π1(B9) and Π1(B10) = 1024(n − 2)2 = Π1(B11). So we only need to prove that if

G ∈ Bn \ {B1, B2, . . . , B11}, then Π1(G) > Π1(B5)

It is easy to check that B1, B2 are all bicyclic graphs with ∆ = n − 1, B3, . . . , B11 are all bicyclic

graphs with ∆ = n − 2. If G ∈ Bn \ {B1, B2, . . . , B11}, then ∆(G) = n − 3. Suppose the degree

sequence of G is (a) = (d1, d2, d3, . . . , dn). Since G ∈ Bn, then n − 3 ≥ d1 ≥ d2 ≥ d3 ≥ d4 ≥ 2. Let

(b) = (n− 3, 5, 2, 2, 1, . . . , 1). Then (a) � (b). By Corollary 2.2, we can conclude that

Π1(G) ≥ (n− 3)2 × 25× 4× 4 = 400(n− 3)2 > 324(n− 1)2 = Π1(B5).

This completes the proof.

Theorem 3.7. Let G ∈ Bn \ {B1, B2, . . . , B11} and n ≥ 21. Then Π2(B1) > Π2(B2) > Π2(B3) >

Π2(B4) = Π2(B5) > Π2(B6) = Π2(B7) = Π2(B8) = Π2(B9) > Π2(B1) = Π2(B1) > Π2(G).

Proof: By an elementary computation, we have Π2(B1) = 432(n − 1)n−1, Π2(B2) = 256(n − 1)n−1,

Π2(B3) = 4096(n− 2)n−2, Π2(B4) = 2916(n− 2)n−2 = Π2(B5), Π2(B6) = 1728(n− 2)n−2 = Π2(B7) =

Π2(B8) = Π2(B9) and Π2(B10) = 1024(n − 2)n−2 = Π2(B11). So we only need to prove that if

G ∈ Bn \ {B1, B2, . . . , B11}, then Π2(G) > Π2(B5)

It is easy to check that B1, B2 are all bicyclic graphs with ∆ = n − 1, B3, . . . , B11 are all bicyclic

graphs with ∆ = n − 2. If G ∈ Bn \ {B1, B2, . . . , B11}, then ∆(G) = n − 3. Suppose the degree

sequence of G is a = (d1, d2, d3, . . . , dn). Since G ∈ Bn, then n − 3 ≥ d1 ≥ d2 ≥ d3 ≥ d4 ≥ 2. Let

b = (n− 3, 5, 2, 2, 1, . . . , 1). Then a � (b). By Corollary 2.2, we can conclude that

Π2(G) ≤ (n− 3)n−3 × 55 × 22 × 22 = 50000(n− 3)n−3 < 1024(n− 2)n−2 = Π2(B11).
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This completes the proof.

Theorem 3.8. Let H be class of connected bicyclic graphs with (3, 3, 2, . . . , 2) as theirs degree sequence.

If G ∈ Bn \ {H}, then for each H ∈ H we have Π1(H) > Π1(G) and Π2(H) < Π2(G).

Proof: The claim follows since the degree sequence (3, 3, 2, . . . , 2) is minimal in the class of Bn.

Acknowledgments

The author would like to thank Professor Muhuo Liu for all his help, particularly in Figures 1., 2. and

3.

References

[1] J. Braun, A. Kerber, M. Meringer and C. Rucker, Similarity of molecular descriptors: The equivalence of Zagreb

indices and walk counts, MATCH Commun. Math. Comput. Chem., 54 (2005) 163–176.
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