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Abstract. The Hosoya index and the Merrifield-Simmons index are two types of graph invariants

used in mathematical chemistry. In this paper, we give some formulas to compute these indices for

some classes of corona product and link of two graphs. Furthermore, we obtain exact formulas of

Hosoya and Merrifield-Simmons indices for the set of bicyclic graphs, caterpillars and dual star.

1. Introduction

In this paper, we follow the standard notation in graph theory in [1]. Let G = (V,E) be a simple

connected graph of order n and size m. Two distinct edges in a graph G are independent if they are not

incident with a common vertex in G. A set of pairwise independent edges in G is called a matching. A

k-matching of G is a set of k mutually independent edges. In theoretical chemistry molecular structure

descriptors are used for modeling physico-chemical, phar-macologic, toxicologic, biological and other

properties of chemical compounds. For detailed information on the chemical applications, we refer

to [1, 2, 6, 7, 17]. The Hosoya index also known as the Z-index, of a graph is the total number of

matchings in it. This graph invariant was introduced by Haruo Hosoya in 1971 [9]. Let m(G, k) be

the number of its k-matchings and m(G, 0) = 1 for any graph G. Then Z(G) is defined as follows:

Z(G) =

bn
2
c∑

k=0

m(G, k).

Some papers related to this index can be found in [10, 11, 18, 20].
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Two vertices of G are said to be independent if they are not adjacent in G. The Merrifield-Simmons

index of G, denoted by i(G), is defined as the number of subsets of the vertex set, in which any two

vertices are non adjacent, that is the number of independent vertex set of G [15]. The Merrifield-

Simmons index is one of the most popular topological indices in chemistry, which was extensively

studied in a monograph [14]. There have been many papers studying the Merrifield-Simmons index,

for example see [12, 13, 21, 22].

The cyclomatic number of a connected graph G is defined as c(G) = m − n + 1. A graph G with

c(G) = k is called a k cyclic graph, for c(G) = 2, we named G as a bicyclic graph. Let B(n) be the

set of all bicyclic graphs with n vertices. For any graph G ∈ B(n), there are two fundamental cycles

Cp and Cq in G. Cp,q,l is the set of G ∈ B(n) in which the two cycles in G are linked by a path of

length l > 0.

If E′ ⊆ E and W ⊆ V , then G − E′ and G −W denote the subgraphs of G obtained by deleting

the edges of E′ and the vertices of W , respectively. For the neighborhood of a vertex v in a graph G,

the notation NG(v) is used which is defined as NG(v) = {u|uv ∈ E(G)}, and NG[v] = NG(v) ∪ {v}.
For given graphs G and H, their corona product, G ◦H is obtained by taking |V (G)| copies of H and

joining each vertex of the i-th copy with vertex ui ∈ V (G). Suppose G and H are two graphs with

disjoint vertex sets. For given vertices y ∈ V (G) and z ∈ V (H) a link of G and H by vertices y and

z is defined as the graph (G ∼ H)(y, z) obtained by joining y and z by an edge in the union of these

graphs [5]. The join G + H of graphs G and H is the graph union G ∪H together with all the edges

joining V (G) and V (H).

The complement of a graph G is a graph H on the same vertices such that two vertices of H are

adjacent if and only if they are not adjacent in G. The graph H is usually denoted by Ḡ. A caterpillar

or caterpillar tree is a tree in which all the vertices of the caterpillar are within distance 1 of a central

path. It is easy the corona product of the path Pn and the empty graph K̄p is a class of caterpillars.

We denote this graph by ca(n, p).

Fibonacci numbers are terms of the sequence defined in a quite simple recursive fashion. We define

Fibonacci numbers: F0 = 0, F1 = 1, and for n ≥ 2, Fn = Fn−1 + Fn−2.

Throughout this paper, Cn, Kn, Pn and Sn denote the cycle, complete, path and star graphs on n

vertices respectively. Our other notations are standard and taken mainly from [4, 8, 17].

In [3, 19], the Hosoya and Merrifield-Simmons index of corona product of a path and a cycle with

the graph K2 were computed. In [16], these indices were computed for Pn ◦K1, Pn ◦K̄i and Cn ◦K̄i. In

this paper we generalize the previous results. In fact we compute these indices for Pn ◦G and Cn ◦G,

where G is an arbitrary graph.

2. Hosoya Index

In this section, we give some formulas for Hosoya index of some classes of corona product and link

of two graphs. Furthermore, we obtain exact formula for the set of bicyclic graphs, caterpillars and

dual star graphs. We state the following Lemmas:
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Lemma 2.1. [7] Let G = (V (G), E(G)) be a graph. Then

i) If G1, G2, . . . , Gm are the components of the graph G, then Z(G) = umi=1Z(Gi).

ii) If e = xy ∈ E(G), then Z(G) = Z(G− e) + Z(G− {x, y}) .

iii) If x ∈ V (G), then Z(G) = Z(G− {x}) +
∑

y∈NG(x) Z(G− {x, y}).
iv) Z(Sn) = n; Z(Pn) = Fn+1 for any n > 0; Z(Cn) = Fn−1 + Fn+1 for any n ≥ 3.

Lemma 2.2. [7] Let G = (V (G), E(G)) be a graph. Then

i) If G1, G2, . . . , Gm are the components of the graph G, then i(G) = umk=1i(Gk).

ii) If e = xy ∈ E(G), then i(G) = i(G− {x, y}) + i(G−NG[x]) + i(G−NG[y]) .

iii) If x ∈ V (G), then i(G) = i(G− {x}) + i(G−NG[x]).

iv) i(Sn) = 2n−1; i(Pn) = Fn+2 for any n > 0; i(Cn) = Fn−1 + Fn+1 for any n ≥ 3.

Let G be a graph. We denote the corona product of the path Pn = v1v2 . . . vn and the graph G, by

Gn, i.e., Gn = Pn ◦G.

Theorem 2.3. Let G be a graph. Then

Z(Gn) =
k1(k1 − r2) + k2√

k2
1 + 4k2

(
k1 +

√
k2

1 + 4k2

2
)n−1

+
k1(r1 − k1)− k2√

k2
1 + 4k2

(
k1 −

√
k2

1 + 4k2

2
)n−1,

where k1 = Z(G) +
∑

x∈V (G) Z(G− x), k2 = Z2(G) and r1 =
k1+
√

k21+4k2
2 , r2 =

k1−
√

k21+4k2
2 .

Proof. By Lemma 2.1, parts (ii) and (iii), we have

Z(Gn) = Z(Gn − v1v2) + Z(Gn − {v1, v2})

= Z(G + v1)Z(Gn−1) + Z2(G)Z(Gn−2)

=

Z(G) +
∑

x∈NG+v1
(v1)

Z((G + v1)− {v1, x})

Z(Gn−1) + Z2(G)Z(Gn−2)

=

Z(G) +
∑

x∈V (G)

Z(G− x)

Z(Gn−1) + Z2(G)Z(Gn−2).

In order to solve the recursive formula, let k1 = Z(G) +
∑

x∈V (G) Z(G− x) and k2 = Z2(G). Thus

the characteristic equation is r2 − k1r− k2 = 0. Since the roots of this equation are r1 =
k1+
√

k21+4k2
2 ,

r2 =
k1−
√

k21+4k2
2 , we have:

Z(Gn) = c1r
n
1 + c2r

n
2 . (n ≥ 3)
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By using Lemma 2.1, parts (ii) and (iii), one can see that Z(G1) = k1 and Z(G2) = k2
1 + k2. Thus we

have the following equation


Z(Gn) = c1r

n
1 + c2r

n
2

Z(G1) = k1

Z(G2) = k2
1 + k2

.(2.1)

By using the initial conditions, we have c1 = k1(r2−r1)−k1(k1−r1)−k2
r1(r2−r1) and c2 = k1(k1−r1)+k2

r2(r2−r1) . So by

substitution r1, r2, c1 and c2 in the equation (2.1), we have:

Z(Gn) =
k1(k1 − r2) + k2√

k2
1 + 4k2

(
k1 +

√
k2

1 + 4k2

2
)n−1

+
k1(r1 − k1)− k2√

k2
1 + 4k2

(
k1 −

√
k2

1 + 4k2

2
)n−1.

�

In the next corollary, we substitute the graph G, by the graph K2 in Theorem 2.3. In [3], the

following corollary was proved in [3; Theorem 1], but we conclude it from Theorem 2.3.

Corollary 2.4.

Z(Pn ◦K2) =
2 +
√

2

4
(2 + 2

√
2)n +

2−
√

2

4
(2− 2

√
2)n.

Corollary 2.5. For the caterpillar ca(n, p), we have:

Z(ca(n, p)) =
(p + 1)(p + 1− r2) + 1√

p2 + 2p + 5
(
(p + 1) +

√
p2 + 2p + 5

2
)n−1

+
(p + 1)(r1 − p− 1)− 1√

p2 + 2p + 5
(
(p + 1)−

√
p2 + 2p + 5

2
)n−1,

where r1 =
1+p+
√

p2+2p+5
2 and r2 =

1+p−
√

p2+2p+5
2 .

Proof. The proof is straightforward from Theorem 2.3 and these facts that k1 = Z(K̄p)+
∑

x∈V (G) Z(K̄p−
x) = p + 1 and k2 = Z2(K̄p) = 1. �

Let G be a graph and Cn be the cycle Cn : v1v2 . . . vnv1. We denote the graph Cn ◦ G by G′n. In

the next theorem, we give an exact formula for the Hosoya index of the graph G′n.
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Theorem 2.6. Let G be a graph. Then

Z(G′n) =
k1(k1 − r2) + k2√

k2
1 + 4k2

(
k1 +

√
k2

1 + 4k2

2
)n−1

+
k1(r1 − k1)− k2√

k2
1 + 4k2

(
k1 −

√
k2

1 + 4k2

2
)n−1

+
k2k1(k1 − r2) + k2

2√
k2

1 + 4k2

(
k1 +

√
k2

1 + 4k2

2
)n−3

+
k1k2(r1 − k1)− k2

2√
k2

1 + 4k2

(
k1 −

√
k2

1 + 4k2

2
)n−3

where k1 = Z(G) +
∑

x∈V (G) Z(G− x), k2 = Z2(G) and r1 =
k1+
√

k21+4k2
2 , r2 =

k1−
√

k21+4k2
2 .

Proof. By Lemma 2.1, parts (ii) and (iii), we have

Z(G′n) = Z(G′n − v1v2) + Z(G′n − {v1, v2})

= Z(Pn ◦G) + Z2(G)Z(Pn−2 ◦G)

= Z(Gn) + Z2(G)Z(Gn−2)

=
k1(k1 − r2) + k2√

k2
1 + 4k2

(
k1 +

√
k2

1 + 4k2

2
)n−1

+
k1(r1 − k1)− k2√

k2
1 + 4k2

(
k1 −

√
k2

1 + 4k2

2
)n−1

+
k1k2(k1 − r2) + k2

2√
k2

1 + 4k2

(
k1 +

√
k2

1 + 4k2

2
)n−3

+
k1k2(r1 − k1)− k2

2√
k2

1 + 4k2

(
k1 −

√
k2

1 + 4k2

2
)n−3.

�

The Hosoya index of Cn ◦K2 was computed in [3; Theorem 2]. Now we use from Theorem 2.6 as a

corollary to find a formula for the Hosoya index of Cn ◦K2.

Corollary 2.7.

Z(Cn ◦K2) = 2n[(1 +
√

2)n + (1−
√

2)n].

Proof. By Theorem 2.6, we have
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Z(Cn ◦K2) =
2 +
√

2

4
(2 + 2

√
2)n +

2−
√

2

4
(2− 2

√
2)n

+ 4[
2 +
√

2

4
(2 + 2

√
2)n−2 +

2−
√

2

4
(2− 2

√
2)n−2]

= 2n[
2 +
√

2

4
(1 +

√
2)n +

2−
√

2

4
(1−

√
2)n

+
2 +
√

2

4
(1 +

√
2)n−2 +

2−
√

2

4
(1−

√
2)n−2]

= 2n[(1 +
√

2)n + (1−
√

2)n].

�

In continue we state the Hosoya index of the link of two graphs G1 and G2 by terms of Hosoya

index of G1 and Hosoya index of G2.

Theorem 2.8. Let G1 and G2 be two graphs and G = (G1 ∼ G2)(u1, v1). Then

Z(G) = Z(G1)Z(G2) + Z(G1 − {u1})Z(G2 − {v1}).

Proof. By Lemma 2.1, part (i) and (ii), we have:

Z(G) = Z(G− u1v1) + Z(G− {u1, v1})

= Z(G1)Z(G2) + Z(G1 − {u1} ∪G2 − {v1})

= Z(G1)Z(G2) + Z(G1 − {u1})Z(G2 − {v1}).

�

Corollary 2.9. Let G = Cn,m,1 be the link of two cycles Cn and Cm. Then

Z(G) = Fn−1Fm−1 + Fn−1Fm+1 + Fn+1Fm−1

+ Fn+1Fm+1 + Fn−2Fm−2.

Proof. By Theorem 2.8 and Lemma 2.1(iv), we have

Z(G) = Z(Cn)Z(Cm) + Z(Pn−1)Z(Pm−1)

= (Fn−1 + Fn+1)(Fm−1 + Fm+1) + Fn−2Fm−2

= Fn−1Fm−1 + Fn−1Fm+1 + Fn+1Fm−1

+ Fn+1Fm+1 + Fn−2Fm−2.

�

In the next theorem, we use from Theorem 2.8 to determine the Hosoya index of double star graph

Sn,m.
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Corollary 2.10.

Z(Sn,m) = nm + 1.

Proof. The proof is straightforward from Theorem 2.8. �

3. Merrifield-Simmons Index

In this section, we obtain some results for Merrifield-Simmons index similar to the Hosoya index.

Theorem 3.1. Let G be a graph. Then

i(Gn) =
k(k + 2− r)√

k2 + 4k
(
k +
√
k2 + 4k

2
)n−1 +

k(r − k − 2)√
k2 + 4k

(
k −
√
k2 + 4k

2
)n−1,

where k = i(G) and r = k+
√
k2+4k
2 .

Proof. By Lemma 2.2, part (iii), we have

i(Gn) = i(Gn − {v1}) + i(Gn −NG[v1])

= i(G)i(Gn−1) + i(G)i(Gn−2)

= i(G)[i(Gn−1) + i(Gn−2)].

In order to calculate i(Gn), we give k = i(G). The characteristic equation is r2 − kr − k = 0. The

roots of this equation are r1 = k+
√
k2+4k
2 and r2 = k−

√
k2+4k
2 . We know that the general solution of

this equation is i(Gn) = c1r
n
1 + c2r

n
2 (n ≥ 3). By Lemma 2.2, parts (ii) and (iii), one can see i(G1) = k

and i(G2) = k2 + 2k. Thus 
i(Gn) = c1r

n
1 + c2r

n
2

i(G1) = k

i(G2) = k2 + 2k

.

Now by substituting the initial conditions in the equation i(Gn) = c1r
n
1 +c2r

n
2 , it is easy to see that c1 =

k(r1−k−2)
r1(r2−r1) and c2 = k(k+2−r1)

r2(r2−r1) . So we have i(Gn) = k(k+2−r1)√
k2+4k

(k+
√
k2+4k
2 )n−1 + k(r1−k−2)√

k2+4k
(k−
√
k2+4k
2 )n−1.

�

We can see that if in Theorem 3.1, we substitute the graph G by K2, we obtain to i(Pn ◦K2) which

was computed in [19] as a theorem.

Corollary 3.2.

i(Pn ◦K2) =
21 + 5

√
21

42
(
3 +
√

21

2
)n +

21− 5
√

21

42
(
3−
√

21

2
)n.

Also if we give G = K̄p in Theorem 3.1, we have the following corollary.
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Corollary 3.3. For the caterpillar ca(n, p), we have:

i(ca(n, p)) =

(
2p+1(2p−1 − 2p−2 + 1)√

22p + 2p+2
− 2p−1

)(
2p +

√
22p + 2p+2

2

)n−1

+

(
2p+1(2p−2 − 2p−1 − 1)√

22p + 2p+2
+ 2p−1

)(
2p −

√
22p + 2p+2

2

)n−1

.

Theorem 3.4. Let G be a graph. Then

i(G′n) =
k2(k + 2− r)√

k2 + 4k
(
k +
√
k2 + 4k

2
)n−2

+
k2(r − k − 2)√

k2 + 4k
(
k −
√
k2 + 4k

2
)n−2

+
k3(k + 2− r)√

k2 + 4k
(
k +
√
k2 + 4k

2
)n−4

+
k3(r − k − 2)√

k2 + 4k
(
k −
√
k2 + 4k

2
)n−4,

where k = i(G) and r = k+
√
k2+4k
2 .

Proof. By Lemma 2.2, part (iii), we have

i(G′n) = i(G′n − {v1}) + i(G′n −NG[v1])

= i(G)i(Pn−1 ◦G) + i2(G)i(Pn−3 ◦G)

=
k2(k + 2− r1)√

k2 + 4k
(
k +
√
k2 + 4k

2
)n−2

+
k2(r1 − k − 2)√

k2 + 4k
(
k −
√
k2 + 4k

2
)n−2

+
k3(k + 2− r1)√

k2 + 4k
(
k +
√
k2 + 4k

2
)n−4

+
k3(r1 − k − 2)√

k2 + 4k
(
k −
√
k2 + 4k

2
)n−4.

�

The Merrifield-Simmons index of Cn ◦ K2 was computed in [19] as a theorem. Now we use from

Theorem 3.4 as a corollary to find a formula for the Merrifield-Simmons index of Cn ◦K2.

Corollary 3.5.

i(Cn ◦K2) =
21 + 5

√
21

14
(
3 +
√

21

2
)n−1 +

21− 5
√

21

14
(
3−
√

21

2
)n−1

+
63 + 15

√
21

14
(
3 +
√

21

2
)n−3 +

63− 15
√

21

14
(
3−
√

21

2
)n−3.
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