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Abstract. A set S of vertices in a graph G is a dominating set if every vertex of V − S is adjacent

to some vertex in S. The domination number γ(G) is the minimum cardinality of a dominating set in

G. The annihilation number a(G) is the largest integer k such that the sum of the first k terms of the

non-decreasing degree sequence of G is at most the number of edges in G. In this paper, we show that

for any tree T of order n ≥ 2, γ(T ) ≤ 3a(T )+2
4

, and we characterize the trees achieving this bound.

1. Introduction

In this paper, G is a simple graph with vertex set V = V (G) and edge set E = E(G). The order |V |
of G is denoted by n = n(G). For every vertex v ∈ V (G), the open neighborhood NG(v) = N(v) is the

set {u ∈ V (G) | uv ∈ E(G)} and the closed neighborhood of v is the set NG[v] = N [v] = N(v) ∪ {v}.
The degree of a vertex v ∈ V is degG(v) = deg(v) = |N(v)|. The minimum degree of a graph G is

denoted by δ = δ(G). We write Pn for a path of order n. For a subset S ⊆ V (G), we let∑
(S,G) =

∑
v∈S

degG(v).

A dominating set, abbreviated DS, of a graph G is a set S of vertices of G such that every vertex

in V (G)− S is adjacent to at least one vertex in S. The domination number of G, denoted by γ(G),

is the minimum cardinality of a DS of G. A DS of cardinality γ(G) is called a γ(G)-set. The concept

of domination in graphs, with its many variations, is now well studied in graph theory. The literature
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on the subject of domination parameters in graphs has been surveyed and detailed in the two books

[7, 8].

Let d1, d2, . . . , dn be the degree sequence of a graph G arranged in non-decreasing order, and so

d1 ≤ d2 ≤ . . . ≤ dn. The annihilation number of G, denoted a(G), is the largest integer k such that the

sum of the first k terms of the degree sequence is at most half the sum of the degrees in the sequence.

Equivalently, the annihilation number is the largest integer k such that the

k∑
i=1

di ≤
n∑

i=k+1

di.

It is clear from the definition that if G has m edges and annihilation number k, then
∑k

i=1 di ≤ m.

As an immediate consequence of the definition of the annihilation number, Larson and Pepper [10]

observed that for any graph G of order n,

(1.1) a(G) ≥ bn
2
c.

The annihilation number was introduced by Pepper in [12] and has been studied by several authors

(see for example [1, 2, 4, 5, 6, 9, 10, 13]). In [12] and [13], Pepper proved that the annihilation number

is an upper bound on the independence number of a graph and in [10] the case for equality of the

upper bound was characterized by Larson and Pepper. Since independence number is an upper bound

on domination number, we deduce that for any graph G, γ(G) ≤ a(G).

The relation between annihilation number and some graph parameters have been studied by several

authors. For instance, DeLaViña et al. presented an upper bound on 2-domination number in terms

of annihilation number for some classes of graphs [4], Aram et al. investigated the relation between

the Roman domination number and the annihilation number of trees [1], Desormeaux et al. proved

that for any tree T , a(T ) + 1 is an upper bound on the total domination number [6].

Our purpose in this paper is to establish an upper bound on the domination number of a tree in

terms of its annihilation number.

The domination and annihilation numbers are easy to compute for paths and we have the following

Observations.

Observation 1.1. For n ≥ 2,

γ(Pn) = dn
3
e.

Observation 1.2. For n ≥ 2,

a(Pn) =
⌈n

2

⌉
.

Proposition 1.3. For n ≥ 2, γ(Pn) ≤ 3a(T )+2
4 with equality if and only if n = 4.

Furthermore, γ(Pn) = 3a(T )+1
4 if and only if n = 2 or 10.
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2. Main results

A subdivision of an edge uv is obtained by removing the edge uv, adding a new vertex w, and adding

edges uw and wv. The subdivision graph S(G) is the graph obtained from G by subdividing each edge

of G. The subdivision star S(K1,t) for t ≥ 2, is called a healthy spider St. A wounded spider St is the

graph formed by subdividing at most t − 1 of the edges of a star K1,t for t ≥ 2. Note that stars are

wounded spiders. A spider is a healthy or wounded spider.

Proposition 2.1. If T is a spider different from P4, then γ(T ) ≤ 3a(T )+1
4 with equality if and only if

T is the wounded spider obtained from K1,4 by subdividing its exactly three edges.

Proof. Let T be a spider. If T = St is a healthy spider for some t ≥ 2, then obviously γ(T ) = t and

a(T ) = t+ b t2c, and hence γ(T ) < 3a(T )
4 .

Now let T be a wounded spider obtained from K1,t (t ≥ 2) by subdividing 0 ≤ s ≤ t − 1 edges. If

s = 0, then T is a star and we have γ(T ) = 1 and a(T ) = t. Hence γ(T ) < 3a(T )
4 . Suppose s > 0.

Since T 6= P4, we have s 6= 1 or t 6= 2. Then γ(T ) = 1 + s and a(T ) = s+ b s2c+ (t− s). If s = 3 and

t = 4, then clearly γ(T ) = 3a(T )+1
4 . Otherwise, it is easy to see that γ(T ) < 3a(T )+1

4 .

If T is the wounded spider obtained from K1,4 by subdividing its exactly three edges, then clearly

γ(T ) = 4 and a(T ) = 5. Hence γ(T ) = 3a(T )+1
4 , and the proof is complete. �

A leaf of a tree T is a vertex of degree 1, a support vertex is a vertex adjacent to a leaf and a

strong support vertex is a vertex adjacent to at least two leaves. A strong support vertex is said to be

end-strong support vertex if all its neighbors except one of them are leaves. For r, s ≥ 1, a double star

S(r, s) is a tree with exactly two vertices that are not leaves, with one adjacent to r leaves and the

other to s leaves. For a vertex v in a rooted tree T , let C(v) denote the set of children of v. Let D(v)

denote the set of descendants of v and D[v] = D(v)∪ {v}. The maximal subtree at v is the subtree of

T induced by D[v], and is denoted by Tv. In the sequel, we denote by T − Tv, the tree obtained from

a rooted tree T by deleting all vertices of D[v].

Theorem 2.2. If T is a tree of order n ≥ 2, then γ(T ) ≤ 3a(T )+2
4 .

Proof. The proof is by induction on n. The statement holds for all trees of order n ≤ 4. For the

inductive hypothesis, let n ≥ 5 and suppose that for every nontrivial tree T of order less than n the

result is true. Let T be a tree of order n. If T is a path, then the result follows by Proposition 1.3.

So, assume T is not a path. If diam(T ) = 2, then T is a star and it follows from Proposition 2.1 that

γ(T ) < 3a(T )
4 . If diam(T ) = 3, then T is a double star S(r, s). In this case, a(T ) = r + s ≥ 3 and

γ(T ) = 2. Hence γ(T ) < 3a(T )
4 . Thus, we may assume that diam(T ) ≥ 4.

In what follows, we will consider trees T ′ formed from T by removing a set of vertices. For such a

tree T ′ of order n′, let d′1, d
′
2, . . . , d

′
n′ be the non-decreasing degree sequence of T ′, and let S′ be a set

of vertices corresponding to the first a(T ′) terms in the degree sequence of T ′. In fact, if u1, u2, . . . , un′

are the vertices of T ′ such that deg(ui) = d′i for each i, then S′ = {u1, u2, . . . , ua(T ′)}. We denote the

size of T ′ by m′. We proceed further with a series of claims that we may assume satisfied by the tree.
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Claim 1. T has no end-strong support vertex.

Let T have a end-strong support vertex u and let u1, u2 be the two leaves adjacent to u and let

w be a vertex of T with maximum distance from u. Root T at w and let v be the parent of u.

Assume T ′ = T − Tu. Then obviously γ(T ) ≤ γ(T ′) + 1. If v 6∈ S′, then
∑

(S′, T ) =
∑

(S′, T ′) and

if v ∈ S′, then
∑

(S′, T ) =
∑

(S′, T ′) + 1. Thus,
∑

(S′, T ) − 1 ≤
∑

(S′, T ′) ≤ m′ = m − 3, and

hence
∑

(S′, T ) ≤ m − 2. Let S = S′ ∪ {u1, u2}. Then
∑

(S, T ) =
∑

(S′, T ) + 2 ≤ m implying that

a(T ) ≥ a(T ′) + 2. By inductive hypothesis, we obtain

γ(T ) ≤ γ(T ′) + 1 ≤ 3a(T ′) + 2

4
+ 1 ≤ 3(a(T )− 2) + 2

4
+ 1 =

3a(T )

4
,

as desired. (�)

Let v1v2 . . . vD be a diametral path in T and root T at vD. By Claim 1, we have deg(v2) = 2 and

all neighbors of v3, except v4, are leaves or support vertices of degree 2. Similarly, by rooting T at v1,

we may assume deg(vD−1) = 2 and all neighbors of vD−2, except vD−3, are leaves or support vertices

of degree 2. If diam(T ) = 4, then T is a spider and the result follows by Proposition 2.1. Assume

diam(T ) ≥ 5.

Claim 2. degT (v3) ≤ 3.

Let degT (v3) ≥ 4. First let v3 be adjacent to a support vertex, say w2, not in {v2, v4}. Suppose

w1 is the leaf adjacent to w2 and let T ′ = T − {v1, v2, w1, w2}. Then every dominating set of T ′

can be extended to a dominating set of T by adding v1, w1 and hence γ(T ) ≤ γ(T ′) + 2. Suppose

v3 6∈ S′. Then
∑

(S′, T ) =
∑

(S′, T ′). In this case, let S = S′ ∪ {v1, v2, w1}. Then
∑

(S, T ) =∑
(S′, T ) + degT (v1) + degT (v2) + degT (w1) ≤ m implying that a(T ) ≥ |S| = |S′|+ 3 = a(T ′) + 3. It

follows from inductive hypothesis that

γ(T ) ≤ γ(T ′) + 2 ≤ 3a(T ′) + 2

4
+ 2 ≤ 3(a(T )− 3) + 2

4
+ 2 <

3a(T ) + 2

4
.

Now assume v3 ∈ S′. Then
∑

(S′, T ) =
∑

(S′, T ′)+1. In this case, let S = (S′−{v3})∪{v1, v2, w1, w2}.
Since degT (w2) ≤ degT ′(v3), we have that

∑
(S, T ) =

∑
(S′, T ) − degT ′(v3) + degT (v1) + degT (v2) +

degT (w1) + degT (w2) ≤ m. Therefore, a(T ) ≥ |S| = |S′| + 3 = a(T ′) + 3 and the result follows as

above.

Now let all neighbors of v3, except v2, v4, are leaves. Assume T ′ = T −Tv3 . Then every dominating

set of T ′ can be extended to a domination set of T by adding v1, v3 and hence γ(T ) ≤ γ(T ′) + 2.

Suppose z1, z2 are two leaves adjacent to v3 and let S = S′ ∪{v1, z1, z2}. Then
∑

(S, T ) =
∑

(S′, T ) +

degT (v1) + degT (z1) + degT (z2) ≤ m implying that a(T ) ≥ |S| = |S′| + 3 = a(T ′) + 3 and the result

follows as above. (�)

Claim 3. degT (v3) = 2.

Assume degT (v3) = 3. First let v3 be adjacent to a support vertex x2 of degree 2, not in {v2, v4}.
Suppose x1 is the leaf adjacent to x2 and let T ′ = T −Tv3 . Then every γ(T ′)-set can be extended to a

dominating set of T by adding v2, x2 and hence γ(T ) ≤ γ(T ′)+2. If v4 6∈ S′, then
∑

(S′, T ) =
∑

(S′, T ′)

and if v4 ∈ S′, then
∑

(S′, T ) =
∑

(S′, T ′) + 1. Thus,
∑

(S′, T ) ≤
∑

(S′, T ′) + 1 ≤ m′ + 1 = m − 4.

Let S = S′ ∪ {v1, v2, x1}. Then
∑

(S, T ) =
∑

(S′, T ) + degT (v1) + degT (v2) + degT (x1) ≤ m implying
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that a(T ) ≥ |S| = |S′|+ 3 = a(T ′) + 3. It follows from inductive hypothesis that γ(T ) ≤ γ(T ′) + 2 ≤
3a(T ′)+2

4 + 2 ≤ 3(a(T )−3)+2
4 + 2 < 3a(T )+2

4 .

Now let v3 be adjacent to a leaf w. We consider the following cases.

Case 3.1. degT (v4) ≥ 4.

Let T ′ = T − Tv3 . Then every γ(T ′)-set can be extended to a dominating set of T by adding v2, v3.

Hence γ(T ) ≤ γ(T ′) + 2. Suppose that v4 6∈ S′. In this case, let S = S′ ∪ {v1, v2, w}. Then∑
(S, T ) =

∑
(S′, T ) + degT (v1) + degT (v2) + degT (w) =

∑
(S′, T ′) + 4 ≤ m′ + 4 = m, implying that

a(T ) ≥ a(T ′) + 3. By inductive hypothesis we have γ(T ) < 3a(T )+2
4 .

Now let v4 ∈ S′. Assume S = (S′−{v4})∪{v1, v2, v3, w}. Then
∑

(S, T ) =
∑

(S′, T ′)−degT ′(v4) +

degT (v1) + degT (v2) + degT (v3) + degT (w) ≤ m and hence a(T ) ≥ |S| = |S′| + 3 = a(T ′) + 3. By

inductive hypothesis, we obtain γ(T ) ≤ γ(T ′) + 2 ≤ 3a(T ′)+2
4 + 2 ≤ 3(a(T )−3)+2

4 + 2 < 3a(T )+2
4 .

Case 3.2. degT (v4) = 2.

Let T ′ = T−Tv4 . Then every γ(T ′)-set can be extended to a dominating set of T by adding v1, v3 and so

γ(T ) ≤ γ(T ′)+2. If v5 6∈ S′, then
∑

(S′, T ) =
∑

(S′, T ′) and if v5 ∈ S′, then
∑

(S′, T ) =
∑

(S′, T ′)+1.

Thus,
∑

(S′, T ) ≤
∑

(S′, T ′) + 1 ≤ m′ + 1 = m − 4. Let S = S′ ∪ {v1, v2, w}. Then
∑

(S, T ) =∑
(S′, T ) + degT (v1) + degT (v2) + degT (w) ≤ m implying that a(T ) ≥ |S| = |S′|+ 3 = a(T ′) + 3. By

inductive hypothesis, we obtain γ(T ) < 3a(T )+2
4 .

Case 3.3. degT (v4) = 3 and there exists a path v4z3z2z1 in T such that degT (z3) = 2, degT (z1) = 1

and z3 6∈ {v3, v5}.
By Claim 1, we have degT (z2) = 2. Let T ′ = T − Tz3 . Then every γ(T ′)-set can be extended to a

dominating set of T by adding z2 and so γ(T ) ≤ γ(T ′) + 1. Assume that v4 6∈ S′. In this case, let

S = S′ ∪ {z1, z2}. Then
∑

(S, T ) =
∑

(S′, T ) + degT (z1) + degT (z2) ≤ m′ + 3 = m, implying that

a(T ) ≥ |S| = |S′| + 2 = a(T ′) + 2. Applying inductive hypothesis we obtain γ(T ) ≤ γ(T ′) + 1 ≤
3a(T ′)+2

4 + 1 ≤ 3(a(T )−2)+2
4 + 1 ≤ 3a(T )

4 < 3a(T )+2
4 .

Now suppose v4 ∈ S′. In this case, let S = (S′−{v4})∪{z1, z2, z3}. Since degT (z3) ≤ degT ′(v4), we

have
∑

(S, T ) =
∑

(S′, T ′)−degT ′(v4)+degT (z1)+degT (z2)+degT (z3) ≤
∑

(S′, T ′)+3 ≤ m′+3 ≤ m.

Therefore, a(T ) ≥ |S| = |S′|+ 2 = a(T ′) + 2 and the result follows by inductive hypothesis as above.

Case 3.4. degT (v4) = 3 and there exists a path z4z3z2z1 in T such that v4z3 ∈ E(T ), all neighbors

of z3, except z2, v4, are leaves, deg(z1) = deg(z4) = 1 and z3 6∈ {v3, v5}.
By Claim 1, we may assume degT (z2) = 2. If degT (z3) ≥ 4, then the result follows as Claim 2. Thus,

we assume degT (z3) = 3. Let T ′ = T −Tv4 . Then every γ(T ′)-set can be extended to a dominating set

of T by adding z3, z1, v3, v1, implying that γ(T ) ≤ γ(T ′)+4. If v5 6∈ S′, then
∑

(S′, T ) =
∑

(S′, T ′) and

if v5 ∈ S′, then
∑

(S′, T ) =
∑

(S′, T ′) + 1. Thus,
∑

(S′, T ) ≤ m− 8. Let S = S′∪{v1, v2, w, z1, z2, z4}.
Then

∑
(S, T ) =

∑
(S′, T ) + 8 ≤ m implying that a(T ) ≥ |S| = a(T ′) + 6. By inductive hypothesis,

we have γ(T ) ≤ γ(T ′) + 4 ≤ 3a(T ′)+2
4 + 4 ≤ 3(a(T )−6)+2

4 + 4 ≤ 3a(T )
4 < 3a(T )+2

4 .

Case 3.5. deg(v4) = 3 and v4 is adjacent to a leaf, say w′.

Assume T ′ = T − Tv4 . Then every γ(T ′)-set can be extended to a dominating set of T by adding

v1, v3, v4 and so γ(T ) ≤ γ(T ′) + 3. As above, we have
∑

(S′, T ) ≤ m− 5. Let S = S′ ∪ {v1, v2, w, w′}.
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Then
∑

(S, T ) ≤ m and hence a(T ) ≥ |S| = a(T ′) + 4. Applying inductive hypothesis we obtain

γ(T ) ≤ γ(T ′) + 3 ≤ 3a(T ′)+2
4 + 3 ≤ 3(a(T )−4)+2

4 + 3 = 3a(T )+2
4 .

Case 3.6. deg(v4) = 3 and v4 is adjacent to a support vertex z2 6= v5.

By Claim 1, we may assume degT (z2) = 2. Let z1 be the leaf adjacent to z2 and let T ′ = T−Tv4 . Then

every γ(T ′)-set can be extended to a dominating set of T by adding z2, v1, v3 and so γ(T ) ≤ γ(T ′) + 3.

Clearly
∑

(S′, T ) ≤
∑

(S′, T ′) + 1 ≤ m′ + 1 = m − 6. Let S = S′ ∪ {v1, v2, w, z1}. Then
∑

(S, T ) =∑
(S′, T )+degT (v1)+degT (v2)+degT (w)+degT (z1) ≤ m and hence a(T ) ≥ |S| = |S′|+4 = a(T ′)+4.

Applying inductive hypothesis we obtain γ(T ) ≤ γ(T ′) + 3 ≤ 3a(T ′)+2
4 + 3 ≤ 3(a(T )−4)+2

4 + 3 = 3a(T )+2
4 .

(�)

Similarly, by rooting T at v1, we may assume that deg(vD−2) = 2.

We now return to the proof of theorem. If diam(T ) = 5 or 6 then T = P6 or P7, respectively, and

the result is immediate by Proposition 1.3. Let diam(T ) ≥ 7 and T ′ = T −{v1, v2, v3, vD, vD−1, vD−2}.
Then every γ(T ′)-set can be extended to a dominating set of T by adding v2, vD−1 and hence γ(T ) ≤
γ(T ′) + 2. Suppose S = S′ ∪ {v1, v2, vD}. Then

∑
(S, T ) ≤ m implying that a(T ) ≥ |S| = |S′| + 3 =

a(T ′)+3. Applying inductive hypothesis, we obtain γ(T ) ≤ γ(T ′)+2 ≤ 3a(T ′)+2
4 +2 ≤ 3(a(T )−3)+2

4 +2 <
3a(T )+2

4 . This completes the proof. �

Theorem 2.3. Let T be a tree of order n ≥ 2. Then γ(T ) = 3a(T )+2
4 if and only if T = P4.

Proof. If T = P4, then clearly γ(T ) = 3a(T )+2
4 .

Conversely, let γ(T ) = 3a(T )+2
4 . By Proposition 1.3, we have n ≥ 4. Suppose to the contrary that

T 6= P4. Among all trees with these properties, let T be chosen so that its order is minimum. Let

v1v2 . . . vD be a diametral path in T and root T at vD. By the proof of Theorem 2.2, we may assume

diam(T ) ≥ 5 and we need to consider two cases.

Case 1. deg(v2) = 2,deg(v3) = deg(v4) = 3, v3 is adjacent to a leaf w and v4 is adjacent to a leaf w′.

Let T ′ = T − Tv4 . By the Case 3.5, we have γ(T ) ≤ γ(T ′) + 3 and a(T ) ≥ a(T ′) + 4. It follows from

Theorem 2.2 that

(2.1) γ(T ) ≤ γ(T ′) + 3 ≤ 3a(T ′) + 2

4
+ 3 ≤ 3(a(T )− 4) + 2

4
+ 3 =

3a(T ) + 2

4
.

Since γ(T ) = 3a(T )+2
4 , the inequalities occurring in (2.1) become equalities. In particular, we have

γ(T ) = γ(T ′) + 3 and γ(T ′) = 3a(T ′)+2
4 . By the choice of T , we deduce that T ′ = P4. If v4 is

adjacent to a leaf of T ′ = P4, then clearly γ(T ) = γ(T ′) + 2 < γ(T ′) + 3, a contradiction. If v4 is

adjacent to a support vertex of T ′ = P4, then it is easy to see that γ(T ) = 5 and a(T ) = 7 and hence

γ(T ) = 5 < 3a(T )+2
4 , which is a contradiction.

Case 2. deg(v2) = 2,deg(v3) = deg(v4) = 3 and v3 is adjacent to a leaf w and v4 is adjacent to a

support vertex z2 of degree 2.

Assume T ′ = T − Tv4 . An argument similar to that described in Case 1, shows that T ′ = P4. It is

easy to see that γ(T ) = 5 and a(T ) = 7. Hence γ(T ) = 5 < 3a(T )+2
4 , a contradiction. This completes

the proof. �
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We conclude this paper with two open problems.

Problem 1. Characterize the trees T for which γ(T ) = 3a(T )+1
4 .

If G is a connected graph of order n with minimum degree at least three, then it is known ([14])

that γ(G) ≤ 3n
8 . Hence if G is a connected graph of order n with minimum degree at least 3, then it

follows from (1.1) that γ(G) ≤ 3a(T )+1
4 .

Cockayne, Ko and Shepherd [3] proved that if a connected graph G of order n, is K1,3-free and

K3oK1-free then γ(G) ≤ dn3 e. Using (1.1), we deduce that if G is a connected K1,3-free and K3oK1-

free graph of order n, then γ(G) ≤ 3a(T )+2
4 . Hence we propose the following conjecture.

Conjecture 2. For any connected graph G, γ(G) ≤ 3a(G)+2
4 .
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