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Abstract. We construct two classes of Gray maps, called type-I Gray map and type-II Gray map,

for a finite p-group G. Type-I Gray maps are constructed based on the existence of a Gray map for a

maximal subgroup H of G. When G is a semidirect product of two finite p-groups H and K, both H

and K admit Gray maps and the corresponding homomorphism ψ : H −→ Aut(K) is compatible with

the Gray map of K in a sense which we will explain, we construct type-II Gray maps for G. Finally,

we consider group codes over the dihedral group D8 of order 8 given by the set of their generators, and

derive a representation and an encoding procedure for such codes.

1. Introduction

The realization that many seemingly nonlinear binary codes are indeed Gray images of some ex-

tended cyclic codes over Z4, motivated the study of cyclic codes over rings rather than fields [1, 2].

After [1] and [2], many efforts have been made to obtain good binary codes from linear codes over

rings. However, only a few of them had success. Among them we may refer to [3], [4], [5] and [6].

In [3] a binary (64, 237, 12)-code has been constructed using Galois extensions of the ring Z4. In [4],

by introducing a Gray isometry for codes over finite chain rings, a ternary (36, 312, 15)-code has been

constructed from the Gray image of the Z9-lift of the ternary Golay code. In a similar way, a binary

(96, 237, 24)-code has been constructed from the Gray image of the Z8-lift of the binary Golay code in

[5]. In [6], originally by a heuristic computer search and then by a geometric construction based on

a hyperoval in the projective Hjelmslev plane over Z4, a new nonlinear binary code with parameters

(58, 27, 28), having twice as many codewords as the biggest linear binary codes of equal length and

MSC(2010): Primary: 94B25; Secondary: 05E15.

Keywords: Finite group, Code, Gray map, Isometry.

Received: 27 May 2012, Accepted: 13 April 2013.

17

Arc
hive

 of
 S

ID

www.SID.ir

http://www.combinatorics.ir
http://www.ui.ac.ir
www.sid.ir


18 Trans. Comb. 2 no. 1 (2013) 17-26 R. Sobhani

minimum distance, has been constructed. The code also improves the known lower bound on the

maximal size of binary block codes of that length and minimum distance.

In the code constructions of the above research papers, the key is the Gray isometry which acts as

a distance-invariant map and connects linear codes over Z4, Z9 and Z8 to binary or ternary codes.

In this regard, a weight function on the ring Zm, as a generalization of the Lee weight on Z4, was

given in [7]. Also for the case m = p2, a Gray map between spaces Znp2 and Zpnp , as a generalization

of the usual Gray map between Zn4 and Z2n
2 , was introduced there. After this work, for various kinds

of rings, some generalizations for the Gray map have been introduced in [4, 8–12].

Recall from coding theory that linear codes of length n over a finite commutative ring R with

identity are defined as submodules of Rn. When R = Zm, linear codes of length n over Zm become

subgroups of the abelian group Znm. Therefore, in a general manner, a code of length n over an

arbitrary group G is defined to be a subgroup of the group Gn.

Note that codes over general groups, treated as the Hamming spaces, were extensively studied in

[13]. It was shown there that codes over non-abelian groups have poor minimum Hamming distances

([13, Sections III and IV]). Also it was proved there that codes over abelian groups can not have

parameters better than those over elementary abelian groups ([13, Theorem 5]).

An interesting field of research may now be introducing Gray isometries for an arbitrary finite

p-group G and then searching for good codes from among Gray images of subgroups of Gn. In this

paper, we construct two classes of Gray maps, called type-I Gray map and type-II Gray map, for

an arbitrary finite p-group G. Type-I Gray maps are constructed based on the existence of a Gray

map for a maximal subgroup H of G while type-II Gray maps are constructed when G is a semidirect

product of two finite p-groups H and K, both H and K admit Gray maps, and the corresponding

homomorphism ψ : H −→ Aut(K) is compatible with the Gray map of K in a sense which we will

explain later. At the end, we consider group codes over the dihedral group D8 of order 8 given by the

set of their generators, and derive a representation and an encoding process for such codes.

The paper is organized as follows. In the next section, we present background information and

preliminaries. Section 3 is devoted to the construction of two types of Gray isometries for finite

p-groups. In Section 4, we deal with group codes over D8.

2. Preliminaries and Background

Let R be a finite commutative ring with identity. A code C of length n over R is a subset of Rn.

The code C is said to be linear if C is a submodule of Rn. For any two elements u = (u1, u2, . . . , un)

and v = (v1, v2, . . . , vn) of C, the Hamming distance between u and v, denoted by dH(u,v), is defined

to be the number of positions i for which ui 6= vi. Also the Hamming weight of u, denoted by wH(u),

is defined to be the number of positions for which ui 6= 0. The minimum distance of C, denoted by

d(C) or briefly d, is the minimum of the distances between different elements of C. If |C| = M and

d(C) = d then C is said to be a (n,M, d)-code over R. When R is a finite field and dimRC = k then C

is said to be an [n, k, d]-code. It is worth mentioning that when C is a linear code, then the minimum
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distance of C is equal to the minimum weight of nonzero elements of C. The latter is denoted by

wH(C).

A linear code over the ring Z4 is called a quaternary code. It is well-known that any quaternary

code is permutation-equivalent to a quaternary code C with generator matrix of the form

G =

(
Ik1 A B

0 2Ik2 2C

)
where A and C are Z2-matrices and B is a Z4-matrix. The code is then an abelian group of type 4k12k2

with 22k1+k2 codewords. In what follows we shall indicate this by saying that C has type (k1, k2).

3. Constructions for Gray Isometries

For a prime p, let G be an arbitrary finite p-group. We start the section with the definition of a

Gray map.

Definition 3.1. A map φ : G −→ Znp is said to be a Gray map, if the following properties hold:

1: The map dφ : G×G −→ N ∪ {0} defined by dφ(a, b) = wH(φ(ab−1)) is a distance on G.

2: For all a, b in G we have dφ(a, b) = dH(φ(a), φ(b)).

The following lemma can be easily proved and hence we omit its proof.

Lemma 3.2. Condition 1 in the definition of a Gray map, is equivalent to the following conditions:

a: For g ∈ G we have wH(φ(g)) = 0 if and only if g = id, where id stands for the identity of G.

b: For all g in G we have wH(φ(g)) = wH(φ(g−1)).

c: For all x, y in G we have wH(φ(xy)) ≤ wH(φ(x)) + wH(φ(y)).

�

Remark 3.3. It can be verified from the definition of a Gray map φ : G −→ Znp that φ is an

isometry between metric spaces (G, dφ) and (Znp , dH). Therefore a Gray map is sometimes called a

Gray isometry.

Remark 3.4. A metric d on a group G is said to be left (resp. right) invariant if

d(a, b) = d(ag, bg) (resp. d(a, b) = d(ga, gb))

for all a, b, g ∈ G. For a Gray map φ on a group G, the metric dφ is always a left invariant metric

on G. Clearly, when G is abelian, any left invariant metric d on G is also right invariant. However,

there are left invariant metrics on nonabelian groups, which are not right invariant.

If φ : G −→ Znp is a Gray isometry then for any g ∈ G, the Hamming weight of φ(g), i.e. wH(φ(g)),

is called the φ-weight of g and is denoted by wφ(g). Also for elements g and h in G, the Hamming

distance between φ(g) and φ(h), i.e. dH(φ(g), φ(h)), is called the φ-distance of g and h and is denoted

by dφ(g, h).
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3.1. Type-I Gray Maps. In this subsection, G is a finite p-group of order pm, H is a maximal

subgroup of G with [G : H] = p and G/H = 〈xH〉. In this part, we construct a Gray map for G,

called type-I Gray map, based on the existence of a Gray map for H. For i ∈ Zp, let us denote the all i

vector in Znp by i. Also we denote the usual concatenation of vectors in Znp by |. Suppose φ : H −→ Znp
is a Gray isometry and define the map φ̂ : G −→ Zpnp by φ̂(xih) = ηi(φ(h)), where ηi : Znp −→ Zpnp is

the map which sends v to (v|v + i|v + 2i| · · · |v + (p− 1)i).

Lemma 3.5. For any v ∈ Znp we have wH(η0(v)) = pwH(v) and wH(ηi(v)) = (p − 1)n for i 6= 0.

Specially wH(φ̂(xih)) = pwH(φ(h)) if i = 0 and wH(φ̂(xih)) = (p− 1)n if i 6= 0.

Proof. Let i 6= 0 and for 0 ≤ t ≤ p − 1 set Ev
t := {1 ≤ j ≤ n|vj = t}. We have n =

∑p−1
t=0 |Ev

t | and

|Ev
0 | = n− wH(v). On the other hand

wH(ηi(v)) = (n− |Ev
0 |) + (n− |Ev

−i|) + · · ·+ (n− |Ev
−(i(p−1))|)

= pn−
∑p−1

t=0 |Ev
it|

=

{
(p− 1)n, i 6= 0;

pwH(v), i = 0.

�

Lemma 3.6. For all g ∈ G we have wH(φ̂(g)) = wH(φ̂(g−1)).

Proof. Follows from previous lemma and the fact that g ∈ H if and only if g−1 ∈ H. �

Lemma 3.7. For all a, b ∈ G we have wH(φ̂(ab)) ≤ wH(φ̂(a)) + wH(φ̂(b)).

Proof. Assume that a = xih1, b = xjh2 and ab = xi+jh3 for some h1, h2, h3 ∈ H. If i + j 6= 0

then we have wH(φ̂(ab)) = (p − 1)n while wH(φ̂(a)) + wH(φ̂(b)) is equal to (p − 1)n + pwH(h1) or

(p−1)n+pwH(h2) or 2(p−1)n. In each of the above cases the claim is true. If i+ j = 0 then we have

i = j = 0 or i = −j are nonzero. In the first case, the claim is true due to the fact that φ is an isometry.

In the second case we have wH(φ̂(ab)) = pwH(φ(h3)) ≤ pn ≤ 2(p− 1)n = wH(φ̂(a)) + wH(φ̂(b)). The

proof is now completed. �

Theorem 3.8. With notation as above, the map φ̂ is a Gray isometry.

Proof. Clearly, Lemmas 3.2, 3.5, 3.6 and 3.7 imply that d
φ̂

: G×G −→ N ∪ {0} defined by d
φ̂
(a, b) =

wH(φ̂(ab−1)) is a distance on G. Now we must prove that d
φ̂
(a, b) = dH(φ̂(a), φ̂(b)) or equivalently

wH(φ̂(ab−1)) = wH(φ̂(a)− φ̂(b)). To see this, assume that a = xih1, b = xjh2. Since ab−1 ∈ H if and

only if a and b belong to the same coset of H and this is equivalent to i = j, according to Lemma 3.5

we have

wH(φ̂(ab−1)) =

{
(p− 1)n, i 6= j;

pwH(φ(h1h
−1
2 )), i = j.
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On the other hand

wH(φ̂(a)− φ̂(b)) = wH(φ̂(xih1)− φ̂(xjh2))

= wH(ηi(φ(h1))− ηj(φ(h2)))

= wH(ηi−j(φ(h1)− φ(h2)))

=

{
(p− 1)n, i 6= j;

pwH(φ(h1)− φ(h2)), i = j.

Since φ is a Gray isometry, we have wH(φ(h1h
−1
2 )) = wH(φ(h1) − φ(h2)) and the proof is now com-

pleted. �

Corollary 3.9. The group G admits a type-I Gray map φ : G −→ Zp
m−1

p .

Proof. Let {1} = G0 ≤ G1 ≤ · · · ≤ Gm = G be a sequence of subgroups of G where [Gi : Gi−1] = p.

We proceed by induction on m. If m = 1 then G has size p and hence is isomorphic to Zp. In this

case the identity map is the desired Gray map. Now if Gi, i ≥ 1, admits a Gray map φi : Gi −→ Zp
i−1

p

then by Theorem 3.8, Gi+1 also admits a Gray map φi+1 : Gi+1 −→ Zp
i

p . Therefore, Gm = G admits

the desired Gray map and the proof is completed. �

Example 3.10. Let G be the cyclic group of order 4, namely the group Z4 = {0, 1, 2, 3}. Assume

that H = {0, 2} ≤ G be the maximal subgroup of G which is isomorphic to Z2. Let φ0 : H −→ Z2

be the identity map which sends 0 to 0 and 2 to 1. Clearly φ0 is a Gray isometry. Set ψ1 := φ̂0.

We have φ1(0) = φ0(0)|φ0(0) = 00, φ1(2) = φ0(1)|φ0(1) = 11, φ1(1) = φ0(0)|(φ0(0) + 1) = 01 and

φ1(3) = φ0(1)|(φ(1) + 1) = 10. This is the well-known Gray map on Z4. Now let G be the cyclic

group of order 8, namely the group Z8 = {0, 1, 2, 3, 4, 5, 6, 7}. Assume that H = {0, 2, 4, 6} ≤ G be the

maximal subgroup of G which is isomorphic to Z4. Let φ1 : H −→ Z2
2 be the previously constructed

Gray map for Z4. Set φ2 := φ̂1. We have

φ2(0) = φ1(0)|φ1(0) = 0000,

φ2(2) = φ1(1)|φ1(1) = 0101,

φ2(4) = φ1(2)|φ1(2) = 1111,

φ2(6) = φ1(3)|φ1(3) = 1010,

φ2(1) = φ1(0)|(φ1(0) + 11) = 0011,

φ2(3) = φ1(1)|(φ1(1) + 11) = 0110,

φ2(5) = φ1(2)|(φ1(2) + 11) = 1100,

φ2(7) = φ1(3)|(φ1(3) + 11) = 1001.

If one construct a Gray map for Zpm by generalizing the method of this example, it can be verified

that this Gray map is an alternative for the one given in [9].

Example 3.11. Let G be the dihedral group D8 =
〈
ε, ρ|ε2 = ρ4 = 1, ερ = ρ3ε

〉
of size 8. Clearly

〈ρ〉 ∼= Z4 is a cyclic maximal subgroup of D8 equipped with the Gray map φ1 : Z4 −→ Z2
2 described
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in the previous example. Now we can construct a Gray map φ from D8 to Z4
2 as follows:

φ(1) = φ1(0)|φ1(0) = 0000,

φ(ρ) = φ1(1)|φ1(1) = 0101,

φ(ρ2) = φ1(2)|φ1(2) = 1111,

φ(ρ3) = φ1(3)|φ1(3) = 1010,

φ(ε) = φ1(0)|(φ1(0) + 11) = 0011,

φ(ερ) = φ1(1)|(φ1(1) + 11) = 0110,

φ(ερ2) = φ1(2)|(φ1(2) + 11) = 1100,

φ(ερ3) = φ1(3)|(φ1(3) + 11) = 1001.

3.2. Type-II Gray Maps. In this subsection we assume that G is a finite p-group of order pm

which is isomorphic to the semidirect product of two finite p-groups H and K of orders pa and pb

respectively, i.e. G = HnψK where ψ : H −→ Aut(K) is a group homomorphism. Let φ1 : H −→ Zn1
p

and φ2 : K −→ Zn2
p be Gray maps, where φ2 is compatible with ψ in the sense that for all h ∈ H we

have

wH(φ2(k)) = wH(φ2(ψh(k))),

then in the next theorem we show that φ : G −→ Zn1+n2
p with φ(hk) = (φ1(h), φ2(k)) is a Gray map

which we call type-II Gray map.

Theorem 3.12. With notation as above, if φ2 is compatible with ψ then the map φ is a Gray isometry.

Proof. First we show that conditions (a), (b) and (c) in Lemma 3.2 hold. Condition (a) is trivially

satisfied. For (b), assume hk ∈ G. We have

wH(φ((hk)−1)) = wH(φ((h−1ψh−1(k−1)))

= wH(φ1(h
−1)) + wH(φ2(ψh−1(k−1)))

= wH(φ1(h)) + wH(φ2(ψh−1(k)−1))

= wH(φ1(h)) + wH(φ2(ψh−1(k)))

= wH(φ1(h)) + wH(φ2(k))

= wH(φ(hk))

where, 5th equality follows from the fact that φ2 is compatible with ψ. With a similar proof, one can

check that Condition (c) of Lemma 3.2 and Condition (2) in the definition of a Gray map hold for φ.

Therefore φ is a Gray isometry and the proof is now completed. �

Example 3.13. Again, letG be the dihedral groupD8 =
〈
ε, ρ|ε2 = ρ4 = 1, ερ = ρ3ε

〉
of size 8. We have

D8
∼= Z2 nψ Z4, where ψ : Z2 −→ Aut(Z4) is a homomorphism which sends a ∈ Z2 to fa : Z4 −→ Z4

with fa(b) = (−1)ab for all b ∈ Z4. Consider the identity Gray map φ1 : Z2 −→ Z2 and the Gray map
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φ2 : Z4 −→ Z2
2 described in the example 3.10. Now we can construct a type-II Gray map θ from D8

to Z3
2 as follows:

θ(1) = φ1(0)|φ2(0) = 000,

θ(ρ) = φ1(0)|φ2(1) = 001,

θ(ρ2) = φ1(0)|φ2(2) = 011,

θ(ρ3) = φ1(0)|φ2(3) = 010,

θ(ε) = φ1(1)|φ2(0) = 100,

θ(ερ) = φ1(1)|φ2(1) = 101,

θ(ερ2) = φ1(1)|φ2(2) = 111,

θ(ερ3) = φ1(1)|φ2(3) = 110.

4. Group Codes over D8

By a group code of length n over a finite group G we mean a subgroup of Gn. In this section we

consider group codes over the dihedral group D8 which are given by the set of their generators, and

derive a representation and an encoding procedure for such codes.

For a = (a1, a2, · · · , an) ∈ Zn2 , let (−1)a be the vector of length n whose i-th entry is (−1)ai . Also

let ∗ denotes the componentwise multiplication of two vectors. Note that Dn
8
∼= Zn2 nψ Zn4 , where

ψ : Zn2 −→ Aut(Zn4 ) is a homomorphism given by ψ(a) = fa and fa : Zn4 −→ Zn4 is an automorphism

of Zn4 with the role fa(b) = (−1)a ∗ b. In what follows, we analyze the structure of subgroups of

Dn
8 . We identify an element of Dn

8 with its image in the group Zn2 nψ Zn4 . For example, the element

(ε, ερ2) ∈ D2
8 corresponds to the element (1, 1, 0, 2) of Z2

2 nψ Z2
4.

Let H = 〈(x1, y1), · · · , (xl, yl)〉 be a subgroup of Dn
8 , where xi ∈ Zn2 and yi ∈ Zn4 for 1 ≤ i ≤ n. We

put these generators of H in a matrix M , called a generator matrix of H, as follows:

M =


x1 y1

x2 y2
...

...

xl yl

 .

Since

(4.1) (xi, yi)(xj , yj) = (xi + xj , (−1)xj ∗ yi + yj),

we may perform row-column operations to obtain the following equivalent form for M :

M =

 Ik1 0 A B

0 Ik2 C 0

0 0 0 D

 ,

where A and C are binary matrices while B and D are quaternary matrices. The matrix D also can

be put in the form
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D =

(
Ik3 D1 D2

0 2Ik4 2D3

)
,

and therefore M can be written in the form

(4.2) M =


Ik1 0 A B1 B2 B3

0 Ik2 C 0 0 0

0 0 0 Ik3 D1 D2

0 0 0 0 2Ik4 2D3

 .

On the other hand, we have H ′ ≤ Z(H), where H ′ is the commutator subgroup of H and Z(H) is

the center of H. Hence we have H ′ = 〈[(xi, yi), (xj , yj)] | 1 ≤ i < j ≤ l〉. Setting H2 = {h2 | h ∈ H}
we have H ′H2 = Fratt(H) ≤ 2Zn4 , where Fratt(H) is the Frattini subgroup of H. We may now assume

that Fratt(H) is contained in the quaternary code generated by D, since otherwise we may add it to

D and then write down D in its standard form. The form of M which is given in 4.2, is referred to as

the standard form of M .

The next theorem now describes the structure of H, when M has been written in the standard

form. Note that for t ∈ Z4 and a row v of M , by t.v we mean vt where the multiplication is that

given in 4.1.

Theorem 4.1. Let H be a group code of length n over D8 with a generator matrix M in the standard

form given by 4.2. Then we have |H| = 4k32(k1+k2+k4). Moreover, any codeword in H is of the form

vM where v = (r, s, t,u), r ∈ Zk12 , s ∈ Zk22 , t ∈ Zk34 and u ∈ Zk42 .

Proof. The proof follows from the following facts:

1) for any two rows u and v of M we have uv = [u,v]vu, where [u,v] stands for the commutator

of two group elements u and v.

2) H ′ ≤ Z(H).

3) Fratt(H) = H ′H2 is a subgroup of the quaternary code generated by D.

�

Example 4.2. Let H be the subgroup of D4
8 with the set of generators

M = {(ε, ερ, ρ, ρ3), (ερ2, ερ3, ρ3, ρ), (ρ, ρ, ρ, ρ), (1, ρ2, 1, ρ2)}.

In the matrix representation we have

M =


1 1 0 0 0 1 1 3

1 1 0 0 2 3 3 1

0 0 0 0 1 1 1 1

0 0 0 0 0 2 0 2
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It can be easily verified that the standard for of M is shore

M =


1 1 0 0 0 1 1 3

0 0 0 0 1 1 1 1

0 0 0 0 0 2 0 2

0 0 0 0 0 0 2 2

 .

Hence we have |H| = 25. Let φ and θ be type-I and type-II Gray maps for D8. It can be seen that

φ(H) is a binary (16, 25, 8) code while θ(C) is a binary (12, 25, 4) code.
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