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Abstract. For a simple digraph G of order n with vertex set {v1, v2, . . . , vn}, let d+i and d−i denote

the out-degree and in-degree of a vertex vi in G, respectively. Let D+(G) = diag(d+1 , d
+
2 , . . . , d

+
n ) and

D−(G) = diag(d−1 , d
−
2 , . . . , d

−
n ). In this paper we introduce S̃L(G) = D̃(G)−S(G) to be a new kind of

skew Laplacian matrix of G, where D̃(G) = D+(G)−D−(G) and S(G) is the skew-adjacency matrix

of G, and from which we define the skew Laplacian energy SLE(G) of G as the sum of the norms of all

the eigenvalues of S̃L(G). Some lower and upper bounds of the new skew Laplacian energy are derived

and the digraphs attaining these bounds are also determined.

1. Introduction

In chemistry, there is a close relation between the molecular orbital energy levels of π-electrons

in conjugated hydrocarbons and the eigenvalues of the corresponding molecular graphs. On these

grounds, in 1970s, Gutman [5] introduced the concept of the energy for a simple undirected graph G:

E(G) =
n∑

i=1
|λi|,

where λ1, λ2, . . . , λn are the eigenvalues of the adjacency matrix A(G) of G. Recall that A(G) = [aij ]

is the n × n matrix, where aij = 1 if vi and vj are adjacent, and aij = 0 otherwise. Due to its

applications in chemistry, this concept has attracted much attention and a series of related papers

have been published. We refer to [7, 10] for details.
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In spectral graph theory [4], the eigenvalues of several other matrices have been studied, of which

the Laplacian matrix plays an important role. Therefore, based on the definition of graph energy,

Gutman and Zhou [6] defined the Laplacian energy for a simple undirected graph G possessing n

vertices and m edges, which is given as follows:

LEg(G) =
n∑

i=1
|µi − 2m

n |,

where µ1, µ2, . . . , µn are the eigenvalues of the Laplacian matrix L(G) = D(G) − A(G) of G. Recall

that D(G) = diag(d1, d2, . . . , dn) is the diagonal matrix of the degrees of vertices. Some bounds were

derived from the definition in [6].

Theorem 1.1. [6] Let G be a simple undirected graph possessing n vertices, m edges and p components.

Assume that d1, d2, . . . , dn is the degree sequence of G. Then

(i) 2
√
M ≤ LEg(G) ≤

√
2Mn ;

(ii) LEg(G) ≤ 2m
n p+

√
(n− p)[2M − p(2mn )2];

(iii) If G has no isolated vertices, then LEg(G) ≤ 2M ,

where M = m+ 1
2

n∑
i=1

(di − 2m
n )2.

Moreover, Kragujevac [9] considered another definition for the Laplacian energy using the second

spectral moment, namely LEk(G) =
n∑

i=1
µ2i . And the author proved the following result.

Theorem 1.2. [9]

(i) For any undirected graph G on n vertices whose degrees are d1, d2, . . . , dn, LEk(G) =
n∑

i=1
di(di +

1);

(ii) For any connected undirected graph G on n ≥ 2 vertices, LEk(G) ≥ 6n− 8, where the equality

holds if and only if G is a path on n vertices.

Since there are situations when chemists use digraphs rather than undirected graphs, Adiga et al.

[1] first introduced the skew energy of a simple digraph. Let G be a simple digraph with vertex set

V (G) = {v1, v2, . . . , vn}. The skew-adjacency matrix of G is the n × n matrix S(G) = [sij ], where

sij = 1 if (vi, vj) is an arc of G, sij = −1 if (vj , vi) is an arc of G, and sij = 0 otherwise. Then the

skew energy of G is the sum of the norms of all eigenvalues of S(G), that is,

Es(G) =
n∑

i=1
|λi|,

where λ1, λ2, . . . , λn are the eigenvalues of the skew-adjacency matrix S(G), which are all pure imag-

inary numbers or 0 since S(G) is skew symmetric.

Similar to LEk(G), Adiga and Smitha [2] defined the skew Laplacian energy for a simple digraph

G as

SLEk(G) =

n∑
i=1

µ2i ,

where µ1, µ2, . . . , µn are the eigenvalues of the skew Laplacian matrix SL(G) = D(G) − S(G) of G.

In analogy with Theorem 1.1, the following results were obtained.
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Theorem 1.3. [2]

(i) For any simple digraph G on n vertices whose degrees are d1, d2, . . . , dn, SLEk(G) =
n∑

i=1
di(di−1);

(ii) For any connected simple digraph G on n ≥ 2 vertices, 2n− 4 ≤ SLEk(G) ≤ n(n− 1)(n− 2),

where the left equality holds if and only if G is the directed path on n vertices and the right equality

holds if and only if G is the complete digraph on n vertices.

Note that Theorem 1.3 shows that the skew Laplacian energy of a simple digraph defined in this

way is independent of its orientation, which does not reflect the adjacency of the digraph. Being aware

of this, later Adiga and Khoshbakht [3] gave another definition SLEg(G) =
n∑

i=1
|µi − 2m

n |, just like

LEg(G), and established some analogous bounds.

Theorem 1.4. [3] Let G be a simple digraph possessing n vertices and m edges. Assume that

d1, d2, . . . , dn is the degree sequence of G and µ1, µ2, . . . , µn are the eigenvalues of the skew Lapla-

cian matrix SL(G) = D(G)− S(G). Let γi = µi − 2m
n and |γ1| ≤ |γ2| ≤ . . . ≤ |γn| = k. Then

(i) 2
√
M ≤ SLEg(G) ≤

√
2M1n ;

(ii) SLEg(G) ≤ k +
√

(n− 1)(2M1 − k2);
(iii) If G has no isolated vertices, then SLEg(G) ≤ 2M1,

where M = −m+ 1
2

n∑
i=1

(di − 2m
n )2 and M1 = M + 2m = m+ 1

2

n∑
i=1

(di − 2m
n )2.

In 2010, Kissani and Mizoguchi [11] introduced a different Laplacian energy for directed graphs,

in which only the out-degrees of vertices are considered rather than both the out-degrees and in-

degrees. Let G be a digraph on n vertices. Suppose that µ1, µ2, . . . , µn are the eigenvalues of the

matrix L+(G) = D+(G)−A+(G), where D+(G) = diag(d+1 , d
+
2 , . . . , d

+
n ) is the diagonal matrix of the

out-degrees of vertices in G, and A+(G) = [aij ] is the n× n matrix, where aij = 1 if (vi, vj) is an arc

of G and 0 otherwise. Then the Laplacian energy of G defined in [11] is

LEm(G) =
n∑

i=1
µ2i .

By calculation, it is not hard to see that LEm(G) =
n∑

i=1
(d+i )2 for a simple digraph G, and LEm(G) =

n∑
i=1

d+i (d+i + 1) for a symmetric digraph G. Furthermore, in [11] the authors found some relations

between undirected and directed graphs of LEm and used the so-called minimization maximum out-

degree (MMO) algorithm to determine the digraphs with minimum Laplacian energy. The shortage

of this definition is that it does not make use of the in-adjacency information of a digraph.

In this paper, we will introduce a brand-new definition for the skew Laplacian energy of a simple

digraph and obtain some lower and upper bounds about it.

2. A New Skew Laplacian Energy of Simple Digraphs

We start with some notation and terminology which will be used in the sequel of this paper.
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Given a simple digraph G with vertex set V (G) = {v1, v2, . . . , vn}, let d+i and d−i denote the out-

degree and in-degree of a vertex vi in G, respectively. A(G), S(G), D(G), D+(G), A+(G) are defined as

above. Similar to D+(G), we define D−(G) = diag(d−1 , d
−
2 , . . . , d

−
n ), and D̃(G) = D+(G)−D−(G) =

diag(d+1 − d−1 , d
+
2 − d−2 , . . . , d

+
n − d−n ). Obviously, D(G) = D+(G) + D−(G). Moreover, similar to

A+(G), let A−(G) be the n × n matrix, where aij = 1 if (vj , vi) is an arc of G and 0 otherwise.

Clearly, A−(G) = (A+(G))T . It is easy to see that the adjacency matrix of the underlying undirected

graph GU of G satisfies A(GU ) = A+(G) + A−(G) and the skew-adjacency matrix of G satisfies

S(G) = A+(G) − A−(G). Note that the Laplacian matrix of the underlying undirected graph GU of

G can be written as

L(GU ) = D(GU )−A(GU )

= (D+(G) +D−(G))− (A+(G) +A−(G))

= (D+(G)−A+(G)) + (D−(G)−A−(G)).

Inspired by this, we define a new kind of skew Laplacian matrix S̃L(G) of G as

S̃L(G) = (D+(G)−A+(G))− (D−(G)−A−(G))

= (D+(G)−D−(G))− (A+(G)−A−(G))

= D̃(G)− S(G).

Let µ1, µ2, . . . , µn be the eigenvalues of the skew Laplacian matrix S̃L(G) = D̃(G) − S(G). Since

S̃L(G) is not symmetric, it does not give real eigenvalues always. However, we have the following two

propositions about the eigenvalues of S̃L(G):

Proposition 2.1.
n∑

i=1
µi =

n∑
i=1

(d+i − d
−
i ) = 0.

Proof. The relation is evident from
n∑

i=1
µi = trace(S̃L(G)). �

Proposition 2.2. 0 is an eigenvalue of S̃L(G) with multiplicity at least p, the number of components

of G.

Proof. Let σ
S̃L

(G) denote the set of eigenvalues of the skew Laplacian matrix S̃L(G). Assume that

C1, C2, . . . , Cp are all the components of G. Clearly, σ
S̃L

(G) =
p⋃

i=1
σ
S̃L

(Ci). So it suffices to prove that

0 ∈ σ
S̃L

(Ci) for 1 ≤ i ≤ n. Now we restrict our attention to the induced subgraph Ci. The sum of

each row in S̃L(Ci) is 0, thus 0 is an eigenvalue of S̃L(Ci) with eigenvector [1, 1, . . . , 1]T . �

Note that for the Laplacian matrix of an undirected graph, 0 is also an eigenvalue with eigenvector

[1, 1, . . . , 1]T .

Now we give the formal definition for a new kind of skew Laplacian energy.

Definition 2.3. Let G be a simple digraph on n vertices. Then the skew Laplacian energy of G is

defined as
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SLE(G) =
n∑

i=1
|µi|,

where µ1, µ2, . . . , µn are the eigenvalues of the skew Laplacian matrix S̃L(G) = D̃(G)− S(G) of G.

We illustrate the concept with computing the skew Laplacian energy of two digraphs.

Example 1 : Let P4 be a directed path on four vertices with the arc set {(1, 2)(2, 3)(3, 4)}. Then

S̃L(P4) =


1 −1 0 0

1 0 −1 0

0 1 0 −1

0 0 1 −1

.

The eigenvalues of S̃L(P4) are i
√

2, −i
√

2, 0, 0, and hence the skew Laplacian energy of P4 is 2
√

2.

Example 2 : Let C4 be a directed cycle on four vertices with the arc set {(1, 2)(2, 3)(3, 4)(4, 1)}.
Then

S̃L(C4) =


0 −1 0 1

1 0 −1 0

0 1 0 −1

−1 0 1 0

 .

The eigenvalues of S̃L(C4) are 2i, −2i, 0, 0, and hence the skew Laplacian energy of C4 is 4, which is

the same as the skew energy of C4. Actually, we have the following more general result:

Theorem 2.4. If G is an Eulerian digraph, then SLE(G) = Es(G).

Proof. Since G is Eulerian, the out-degree and the in-degree are equal for each vertex in G, and so

D̃ = 0, which results in S̃L(G) = −S(G), and consequently SLE(G) = Es(G). �

3. Some Lower and Upper Bounds for the New SLE(G)

This section is devoted to obtaining some lower and upper bounds for the skew Laplacian energy

SLE(G) and determining the digraphs attaining these bounds.

Theorem 3.1. Let G be a simple digraph possessing n vertices, m edges and p compenents. Assume

that d+i (d−i ) is the out-degree (in-degree) of a vertex vi in G. Then

2
√
|M | ≤ SLE(G) ≤

√
2M1(n− p),

where M = −m+ 1
2

n∑
i=1

(d+i − d
−
i )2 and M1 = M + 2m = m+ 1

2

n∑
i=1

(d+i − d
−
i )2. Moreover, these bounds

are sharp.

Proof. The proof is very similar to those of Theorems 1 and 4, but the extremal digraphs are determined

very differently. Let µ1, µ2, . . . , µn be the eigenvalues of the skew Laplacian matrix S̃L(G) = D̃(G)−
S(G), where D̃ = diag(d+1 − d

−
1 , d

+
2 − d

−
2 , . . . , d

+
n − d−n ) and S(G) = [sij ] is the skew-adjacency matrix

of G. Then from Proposition 1, we have
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n∑
i=1

µi =

n∑
i=1

(d+i − d
−
i ) = 0. (1)

Note that
∑
i<j

µiµj is equal to the sum of the determinants of all 2× 2 principle submatrices of S̃L(G),

which implies

∑
i<j

µiµj =
∑
i<j

det

(
d+i − d

−
i −sij

−sji d+j − d
−
j

)

=
∑
i<j

[(d+i − d
−
i )(d+j − d

−
j )− sijsji]

=
∑
i<j

[(d+i − d
−
i )(d+j − d

−
j ) + s2ij ]

=
∑
i<j

[(d+i − d
−
i )(d+j − d

−
j )] +m.

So ∑
i 6=j

µiµj = 2
∑
i<j

µiµj =
∑
i 6=j

[(d+i − d
−
i )(d+j − d

−
j )] + 2m. (2)

Combing (1) and (2), we get

n∑
i=1

µ2i = (
n∑

i=1

µi)
2 −

∑
i 6=j

µiµj

= [
n∑

i=1

(d+i − d
−
i )]2 − [

∑
i 6=j

(d+i − d
−
i )(d+j − d

−
j ) + 2m]

=
n∑

i=1

(d+i − d
−
i )2 − 2m

= 2M. (3)

Let S̃L(G) = [`ij ]. By Schur’s unitary triangularization theorem [8], there exists a unitary matrix U

such that U∗S̃L(G)U = T , where T = [tij ] is an upper triangular matrix with diagonal entries tii = µi,

i = 1, 2, . . . , n. Therefore

n∑
i,j=1

|`ij |2 =

n∑
i,j=1

|tij |2 ≥
n∑

i=1

|tii|2 =

n∑
i=1

|µi|2, (4)

that is,
n∑

i=1

|µi|2 ≤
n∑

i,j=1

|`ij |2 =

n∑
i=1

(d+i − d
−
i )2 + 2m = 2M1.
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Without loss of generality, assume that |µ1| ≥ |µ2| ≥ . . . ≥ |µn|. From Proposition 2, we know that

µn−i = 0 for i = 0, 1, . . . , p− 1. Applying Cauchy-Schwarz Inequality, it yields that

SLE(G) =
n∑

i=1

|µi| =
n−p∑
i=1

|µi| ≤

√√√√(n− p)
n−p∑
i=1

|µi|2 =

√√√√(n− p)
n∑

i=1

|µi|2 ≤
√

2M1(n− p). (5)

Now we turn to the proof of the left-hand inequality.

Since
n∑

i=1
µi = 0,

n∑
i=1

µ2i + 2
∑
i<j

µiµj = 0. Using (3), we get 2
∑
i<j

µiµj = −2M , which follows that

2|M | = 2|
∑
i<j

µiµj | ≤ 2
∑
i<j

|µi||µj |. (6)

Using (3) again,

2|M | = |
n∑

i=1

µ2i | ≤
n∑

i=1

|µi|2. (7)

From (6) and (7), we arrive at

SLE(G)2 = (
n∑

i=1
|µi|)2 =

n∑
i=1
|µi|2 + 2

∑
i<j
|µi||µj | ≥ 4|M |.

Consequently, SLE(G) ≥ 2
√
|M |.

We proceed with the discussion for the sharpness of these bounds.

Claim 1: SLE(G) = 2
√
|M | holds if and only if for each pair of µi1µj1 and µi2µj2 (i1 6= j1, i2 6= j2),

there exists a non-negative real number k such that µi1µj1 = kµi2µj2 ; and for each pair of µ2i1 and µ2i2 ,

there exists a non-negative real number ` such that µ2i1 = `µ2i2 .

Proof of Claim 1. It follows from (6) and (7) that the equality is attained if and only if |
∑
i<j

µiµj | =∑
i<j
|µi||µj | and |

n∑
i=1

µ2i | =
n∑

i=1
|µi|2. In other words, the equality holds if and only if for each pair of

µi1µj1 and µi2µj2 (i1 6= j1, i2 6= j2), there exists a non-negative real number k such that µi1µj1 =

kµi2µj2 ; and for each pair of µ2i1 and µ2i2 , there exists a non-negative real number ` such that µ2i1 = `µ2i2 ,

which proves Claim 1.

A question arises: do such graphs exist ? The answer is yes. Let G1 be an orientation of K2n,2n.

Assume that {X,Y } is the bipartition of G1. We divide X (Y ) into two disjoint sets X1, X2 (Y1, Y2)

such that |X1| = |X2| = |Y1| = |Y2| = n. The arc set is {(u1, v1)|u1 ∈ X1, v1 ∈ Y1}
⋃
{(u2, v2)|u2 ∈

X2, v2 ∈ Y2}
⋃
{(v1, u2)|u2 ∈ X2, v1 ∈ Y1}

⋃
{(v2, u1)|u1 ∈ X1, v2 ∈ Y2}; see Figure 1.

Note that d+i = d−i for each vertex vi in G1. So we get 2
√
|M | = 2

√
m = 4n, and the skew Laplacian

matrix of G1 is

S̃L(G1) = −S(G1) =


0 0 −J J

0 0 J −J
J −J 0 0

−J J 0 0

 ,

where J is the n× n matrix in which each entry is 1.
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X1

Y1

X2

Y2
G1 G2

Figure 1 The graph for Claim 1.

Then the skew Laplacian characteristic polynomial P
S̃L

(G1;x) = det(xI − S̃L(G1)) = x4n−2(x2 +

4n2), and the eigenvalues of S̃L(G1) are 2ni, −2ni, 0 with multiplicity 1, 1, 4n−2, respectively. Hence

the skew Laplacian energy of G1 is 4n, which implies that the lower bound is sharp.

Claim 2: SLE(G) =
√

2M1(n− p) holds if and only if (i) G is 0-regular or (ii) for each vi ∈ V (G),

d+i = d−i , and the eigenvalues of S̃L(G) are 0, ai,−ai (a > 0) with multiplicity p, n−p2 , n−p2 , respectively.

Proof of Claim 2. It is evident from (4) and (5) that the equality holds if and only if T = [tij ] is a

diagonal matrix and |µ1| = |µ2| = · · · = |µn−p|.
From Schur’s unitary triangularzation theorem [8], we know that T = [tij ] is a diagonal matrix if

and only if S̃L(G) is a normal matrix. That is

S̃L
∗
(G) · S̃L(G) = S̃L(G) · S̃L

∗
(G).

Since S̃L(G) = D̃(G)− S(G), S̃L
∗
(G) = D̃(G) + S(G), we have

(D̃(G) + S(G)) · (D̃(G)− S(G)) = (D̃(G)− S(G)) · (D̃(G) + S(G)).

By direct calculation, S(G) · D̃(G) = D̃(G) ·S(G). Comparing the element on the ith row and the jth

column of the matrices on both sides, we arrive at

sij(d
+
j − d

−
j ) = (d+i − d

−
i )sij .

If vi and vj are not adjacent (i.e., sij = 0 ), then it holds surely; if vi and vj are adjacent, then sij 6= 0,

and consequently d+i − d
−
i = d+j − d

−
j .

Now we are concerned with each component Ck (1 ≤ k ≤ p) of G. Since Ck is connected, any

two vertices u, w in Ck are connected by a path P : u = v0, v1, · · · , vt = w. Then d+(vi) − d−(vi) =

d+(vi+1)−d−(vi+1) for 0 ≤ i ≤ t−1, which implies that d+(u)−d−(u) = d+(w)−d−(w). It is easy to

see that
∑

v∈V (Ck)

[d+(v)− d−(v)] = 0. Therefore d+(v)− d−(v) = 0 for each vertex v in Ck. It follows

that d+i = d−i for vi ∈ V (G), i.e., D̃(G) = 0, S̃L(G) = −S(G), S̃L(Ck) = −S(Ck).

From Proposition 2, we know that 0 is an eigenvalue of S̃L(G) with multiplicity at least p, and 0 is

also an eigenvalue of S̃L(Ck)(k = 1, 2 · · · p) with multiplicity at least 1. We distinguish the following

two cases.

Case 1: |µ1| = |µ2| = · · · = |µn−p| = 0.

0 is the unique eigenvalue of S̃L(G) with multiplicity n, and consequently G is a 0-regular graph.
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Case 2: |µ1| = |µ2| = · · · = |µn−p| = a > 0.

That is, 0 is an eigenvalue of S̃L(G) with multiplicity exactly p, and the norms of all the other

n − p eigenvalues of S̃L(G) are equal to a. Since S̃L(G) = −S(G) is a skew-symmetric matrix, its

eigenvalues are 0 or pure imaginary numbers which appear in pairs. We conclude that the eigenvalues

of S̃L(G) are 0, ai,−ai (a ≥ 0) with multiplicity p, n−p2 , n−p2 , respectively. This proves Claim 2.

Next, we give an example to verify the existence of such graphs. Let G2 = αK3
⋃
βK1, where

α, β ∈ N and 3α + β = n; see Figure 1 for α = 2, β = 1. K3 is oriented with the arc set

{(1, 2), (2, 3), (3, 1)}. The eigenvalues of S̃L(G2) are
√

3i, −
√

3i, 0 with multiplicity α, α, α + β,

respectively. Hence SLE(G2) = 2
√

3α and
√

2M1[n− (α+ β)] =
√

4mα = 2
√

3α, which implies that

the upper bound is also sharp.

Combining all above, we complete our proof. �

Corollary 3.2. Let G be a simple digraph possessing p components C1, C2, . . . , Cp. If SLE(G) =√
2M1(n− p), then each component Ci is Eulerian with odd number of vertices.

Proof. If G is a 0-regular graph, each component of G is an isolated vertex, which obviously satisfies

the conclusion. Otherwise, from Claim 2 we know that d+i = d−i for each vi ∈ V (Ck), and hence Ck is

Eulerian. Furthermore, the eigenvalues of S̃L(G) are 0, ai,−ai (a > 0) with multiplicity p, n−p2 , n−p2 ,

respectively. It turns out that, for each component Ck, 0 is an eigenvalue of S̃L(Ck) with multiplicity

exactly one and all the other eigenvalues are ai,−ai, which appear in pairs. It follows that the number

of vertices in Ck is odd. �

Corollary 3.3. SLE(G) ≤
√

2M1n.

Corollary 3.4. If G has no isolated vertices, then SLE(G) ≤ 2M1.

Proof. If G has no isolated vertices, then n ≤ 2m. Therefore,

SLE(G) ≤
√

2M1n ≤ 2
√
M1m ≤ 2M1.

�

We may mention that the bounds in Theorem 3.1, Corollary 3.3 and Corollary 3.4 are in correspon-

dence with those in Theorem 1.1 and Theorem 1.4.

4. Concluding Remarks

Graph energy is one of the most active topics in chemical graph theory. There have appeared several

different definitions for the (skew) Laplacian energy of undirected graphs and directed graphs. Here

we would like to summarize them below:

1. The Laplacian energy of undirected graphs

For an undirected graph G, there are two kinds of Lapalcian energies LEk(G) =
n∑

i=1
µ2 and

LEg(G) =
n∑

i=1
|µi − 2m

n |, where µ1, µ2, . . . , µn are the eigenvalues of L(G) = D(G)−A(G).
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2. The Laplacian energy of directed graphs

For a directed graph G, there is one kind of Laplacian energy LEm(G) =
n∑

i=1
µ2, where µ1, µ2, . . . , µn

are the eigenvalues of L+(G) = D+(G)−A+(G).

3. The skew Laplacian energy of simple directed graphs

For a simple directed graph G, there are two kinds of skew Laplacian energies SLEk(G) =
n∑

i=1
µ2

and SLEg(G) =
n∑

i=1
|µi − 2m

n |, where µ1, µ2, . . . , µn are the eigenvalues of SL(G) = D(G)− S(G).

4. In this paper, we introduce a new kind of skew Laplacian matrix S̃L(G) = D̃(G) − S(G) =

(D+(G) − D−(G)) − (A+(G) − A−(G)), which is inspired by the popularly used Laplacian matrix

L(G) = D(G) − A(G) = (D+(G) + D−(G)) − (A+(G) + A−(G)). From the definition, we can see

that the matrix S̃L(G) fully reflects both the in-adjacency and the out-adjacency of a digraph G.

Moreover, it has some good properties such as trace(S̃L(G)) = 0, the sum of each row is 0, 0 is

an eigenvalue and (1, , 1, . . . , 1)T is an eigenvector, and so on. These properties make S̃L(G)) to be

regarded as a skew Laplacian matrix more reasonable. From the new skew Laplacian matrix, we

define a new skew Laplacian energy as SLE(G) =
n∑

i=1
|µi|, where µ1, µ2, . . . , µn are the eigenvalues of

S̃L(G) = D̃(G) − S(G). That new skew Laplacian energy is well defined can also be seen from the

following bounds, which should be compared with those in Theorem 1.1:

(i) 2
√
|M | ≤ SLE(G) ≤

√
2M1n;

(ii) SLE(G) ≤
√

2M1(n− p);
(iii) If G has no isolated vertices, then SLE(G) ≤ 2M1,

where M = −m+ 1
2

n∑
i=1

(d+i − d
−
i )2 and M1 = M + 2m = m+ 1

2

n∑
i=1

(d+i − d
−
i )2.
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