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Abstract. Let G = (V,E) be a connected graph. The eccentric connectivity index of G, ξc(G),

is defined as ξc(G) =
∑

v∈V (G) deg(v)ec(v), where deg(v) is the degree of a vertex v and ec(v) is

its eccentricity. The eccentric distance sum of G is defined as ξd(G) =
∑

v∈V (G) ec(v)D(v), where

D(v) =
∑

u∈V (G) d(u, v). In this paper, we calculate the eccentric connectivity index and eccentric

distance sum of generalized hierarchical product of graphs. Moreover, we present the exact formulae

for the eccentric connectivity index of F -sum graphs in terms of some invariants of the factors.

1. Introduction

Let G be a simple connected graph with vertex set V (G) and edge set E(G). For vertices u, v ∈ V (G)

the distance dG(u, v) between u and v is defined as the length of a shortest path connecting u and v

in G. The eccentricity ec(v) of v is the maximum distance from v to any other vertex. We use deg(v)

to denote the degree of v. The total eccentricity of a graph G is defined as ζ(G) =
∑

v∈V (G) ec(v) [5].

In general, a topological index, sometimes also known as a graph-theoretic index, is a numerical

invariant of a graph. There are several topological indices having been defined such as Wiener index,

Zagreb index and PI-index etc. Recently, a lot of results on the eccentric connectivity index and

eccentric distance sum have been obtained and some of them have been applied as means for modeling

chemical, pharmaceutical and other properties of molecules, for details see [10, 13, 19, 20].
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The eccentric connectivity index(ECI) of a graph G, denoted by ξc(G), is defined as ξc(G) =∑
v∈V (G) deg(v)ec(v). In [19], the eccentric connectivity index has been studied and used for math-

ematical models of chemical and biological activities, and the exact lower and upper bounds are

obtained in [17]. In [1], the author achieved the ECI of nanotubes and nanotori and in [7] the ECI of

hexagonal belts and chains are studied. Moreover, in [12] the ECI of chemical trees are determined.

For the complete development on the study of the ECI of graphs, see the comprehensive survey [13].

The eccentric distance sum(EDS) of a graph G is defined as ξd(G) =
∑

v∈V (G) ec(v)D(v), where

D(v) =
∑

u∈V (G) d(u, v), it can also be defined alternatively as ξd(G) =
∑
{u,v}⊆V (G)(ec(u)+ec(v))d(u, v)

([14]). For the recent survey on EDS see [11, 21]. The Wiener index W (G) of a graph G is one of

the most studied indices, it is defined as the sum of all distance between unordered pairs of vertices,

i.e., W (G) =
∑
{u,v}⊆V (G) d(u, v). For further results on the Wiener index see [6] and the references

therein. In [10, 19], the relationships between the ECI and Wiener index are investigated.

In [2, 3], as an extension of the Cartesian product of graphs, the authors introduce the generalized

hierarchical product of graphs, and in [9] F -sum graphs are introduced. By definition, Cartesian

product is a special case of the generalized hierarchical product and some well-known properties of

the Cartesian product are inherited by the generalized hierarchical product. Moreover, the F -sum

products are also special cases of the generalized hierarchical product, and therefore the results on

the generalized hierarchical product can be used to obtain some properties of the F -sum products.

In fact, in Section 3, we shall use the formula on ECI of generalized hierarchical product to deduce

the ECI of F -sum graphs. In this paper we compute the ECI and EDS of generalized hierarchical

product of graphs. Also as an application, we compute the ECI of the F -sum graphs by presenting

exact formulae for the ECI of the F -sum graphs in terms of some invariants of the factors.

2. ECI and EDS of generalized hierarchical product of graphs

Definition 2.1. Let G and H be two graphs with nonempty vertex subset U ⊆ V (G). Then the

generalized hierarchical product G(U) u H is the graph with the vertex set V (G) × V (H) and two

vertices (u, v) and (u′, v′) adjoined by an edge under the following condition:

(u, v) ∼ (u′, v′)⇐⇒

u = u′ ∈ U and v ∼ v′ in H or

v = v′ and u ∼ u′ in G.

From the definition, it is obvious that

degG(U)uH(u, v) =

degG(u) + degH(v) u ∈ U

degG(u) u ∈ V (G) \ U.

For ∅ 6= U ⊆ V (G), a path between vertices u, v ∈ V (G) through U is a uv-path in G containing

some vertex z ∈ U(vertex z could be the vertex u or v). The distance between u and v through U ,

denoted by dG(U)(u, v), is the length of a shortest path between u and v through U . Note that, if
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one of the vertices u and v belongs to U , then dG(U)(u, v) = dG(u, v), see [8]. Similar to the distance

through U , we define the following invariants related to U in G:

ecG(U)(u) = maxv∈V (G) dG(U)(u, v) (see [3])

W (G(U)) =
∑
{u,v}⊆V (G) dG(U)(u, v) (see [8])

ζ(G(U)) =
∑

v∈V (G) ecG(U)(v)

ξc(G(U)) =
∑

v∈V (G) degG(v)ecG(U)(v)

ξd(G(U)) =
∑
{u,v}⊆V (G)(ecG(U)(u) + ecG(U)(v))dG(U)(u, v)

ε(G(U)) =
∑

ui∈U ecG(U)(ui) .

Theorem 2.2. [3] Let G and H be graphs and U ⊆ V (G). Then

(a) dG(U)uH((u, v), (u′, v′)) =

dG(U)(u, u
′) + dH(v, v′) v 6= v′

dG(u, u′) v = v′

(b) ecG(U)uH(u, v) = ecG(U)(u) + ecH(v).

Now we give our first theorem of this section.

Theorem 2.3. Let G and H be two connected graphs and U ⊆ V (G). Then we have

ξc(G(U) uH) = |V (H)|ξc(G(U)) + 2|E(G)|ζ(H) + 2|E(H)|ε(G(U)) + |U |ξc(H) .

Proof. Set V (G) = {u1, u2, ..., un}, V (H) = {v1, v2, ..., vm}. Then

ξc(G(U) uH) =
n∑

i=1

m∑
j=1

degG(U)uH(ui, vj)ecG(U)uH(ui, vj)

=
∑
ui∈U

m∑
j=1

degG(U)uH(ui, vj)ecG(U)uH(ui, vj)

+
∑

ui∈V (G)\U

m∑
j=1

degG(U)uH(ui, vj)ecG(U)uH(ui, vj)

=
∑
ui∈U

m∑
j=1

(degG(ui) + degH(vj))(ecG(U)(ui) + ecH(vj))

+
∑

ui∈V (G)\U

m∑
j=1

degG(ui)(ecG(U)(ui) + ecH(vj))

= |V (H)|
∑
ui∈U

degG(ui)ecG(U)(ui) +
∑
ui∈U

degG(ui)ζ(H)

+ 2|E(H)|
∑
ui∈U

ecG(U)(ui) + |U |ξc(H)

+ |V (H)|
∑

ui∈V (G)\U

degG(ui)ecG(U)(ui) +
∑

ui∈V (G)\U

degG(ui) · ζ(H)

= |V (H)|ξc(G(U)) + 2|E(G)|ζ(H) + 2|E(H)|ε(G(U)) + |U |ξc(H).
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Corollary 2.4. Let G and H be two connected graphs. Then

ξc(G�H) = |V (H)|ξc(G) + 2|E(G)|ζ(H) + 2|E(H)|ζ(G) + |V (G)|ξc(H).

Theorem 2.5. Let G and H be graphs with U ⊆ V (G) . Then

ξd(G(U) u H) = |V (H)|2ξd(G(U)) + |V (G)|2ξd(H) + 2|V (G)|ζ(G(U)) ·W (H) + 2|V (H)| · ζ(H) ·
W (G(U))

Proof. Set V (G) = {u1, u2, ..., un}, V (H) = {v1, v2, ..., vm} and ∅ 6= U ⊆ V (G). Then

ξd(G(U) uH) =
∑

(ui,vj),(uk,vl)∈V (G(U)uH)

(ecG(U)uH(ui, vj) + ecG(U)uH(uk, vl))

· dG(U)uH((ui, vj), (uk, vl))

=
∑

ui,uk∈V (G)

∑
vj ,vl∈V (H)(j 6=l)

(ecG(U)(ui) + ecH(vj) + ecG(U)(uk)

+ ecH(vl))(dG(U)(ui, uk) + dH(vj , vl)) +
∑

ui,uk∈V (G)

∑
vj ,vl∈V (H)(j=l)

(ecG(U)(ui) + ecH(vj) + ecG(U)(uk) + ecH(vl))dG(U)(ui, uk)

=
∑

ui,uk∈V (G)

∑
vj ,vl∈V (H)(j 6=l)

(ecG(U)(ui) + ec(G(U))(uk))dG(U)(ui, uk)

+
∑

ui,uk∈V (G)

∑
vj ,vl∈V (H)(j 6=l)

(ecH(vj) + ecH(vl))dH(vj , vl)

+
∑

ui,uk∈V (G)

∑
vj ,vl∈V (H)(j 6=l)

(ecG(U)(ui) + ecG(U)(uk))dH(vj , vl)

+
∑

ui,uk∈V (G)

∑
vj ,vl∈V (H)(j 6=l)

(ecH(vj) + ecH(vl))dG(U)(ui, uk)

+
∑

ui,uk∈V (G)

∑
vj ,vl∈V (H)(j=l)

(ecG(U)(ui) + ecG(U)(uk))dG(U)(ui, uk)

+
∑

ui,uk∈V (G)

∑
vj ,vl∈V (H)(j=l)

(ecH(vj) + ecH(vl))dG(U)(ui, uk)

= |V (H)|2ξd(G(U)) + |V (G)|2ξd(H) + 2|V (G)|ζ(G(U)) ·W (H)

+ 2|V (H)| · ζ(H) ·W (G(U).

�

Corollary 2.6. ([14])

ξd(G�H) = |V (H)|2 · ξd(G) + |V (G)|2 · ξd(H) + 2|V (G)|ζ(G) ·W (H) + 2|V (H)|ζ(H) ·W (G).

Example 1. Let Pn(n ≥ 1) and Cn(n ≥ 3) be a path and a cycle of order n, respectively.

ξc(Pn) =

1
2(3n2 − 6n+ 4), n is even,

3
2(n− 1)2, n is odd.

and ξc(Cn) =

n2, n is even,

n(n− 1), n is odd.
,
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ζ(Pn) =

3
4n

2 − 1
2n, n is even,

3
4n

2 − 1
2n−

1
4 , n is odd.

and ζ(Cn) =

1
2n

2, n is even,

1
2n(n− 1), n is odd.

Then using the above results, one can obtain the following:

(1)ξc(Pm�Pn) =



3m2n+ 3mn2 − 3
2n

2 − 3
2m

2 − 8mn+ 3n+ 3m, m , n are even

3m2n+ 3mn2 − 3
2n

2 − 3
2m

2 − 8mn+ 2n+ 2m+ 1, m , n are odd

3m2n+ 3mn2 − 3
2n

2 − 3
2m

2 − 8mn+ 3n+ 2m+ 1
2 , m is even , n is odd

3m2n+ 3mn2 − 3
2n

2 − 3
2m

2 − 8mn+ 2n+ 3m+ 1
2 , m is odd , n is even.

(2)ξc(Cm�Cn) =



2m2n+ 2mn2, m , n are even

2m2n+ 2mn2 − 4mn, m , n are odd

2m2n+ 2mn2 − 2mn, m is even , n is odd

2m2n+ 2mn2 − 2mn, m is odd , n is even.

(3)ξc(Pm�Cn) =



3m2n+ 2mn2 − n2 − 4mn+ 2n, m , n are even

3m2n+ 2mn2 − n2 − 5mn+ 2n, m , n are odd

3m2n+ 2mn2 − n2 − 6mn+ 3n, m is even , n is odd

3m2n+ 2mn2 − n2 − 4mn+ n, m is odd , n is even.

3. ECI of F -sum graphs

First we recall some notation ([8, 9]). Let G be a connected graph.

(a)S(G) is obtained from G by replacing each edge of G by a path of length two.

(b)R(G) is obtained from G by adding a new vertex corresponding to each edge of G, then joining

each new vertex to the end vertices of the corresponding edge.

(c)Q(G) is obtained from G by inserting a new vertex into each edge of G, then joining with edges

those pairs of new vertices on adjacent edges of G.

(d)T (G) has its vertices the edges and vertices of G. Adjacency in T (G) is defined as adjacency or

incidence for the corresponding elements of G, T (G) is also called the total graph of G.

Definition 3.1. Let F be one of the symbols S,R,Q or T . The F -sum G +F H of G and H is a

graph with vertex set V (G +F H) = (V (G) ∪ E(G)) × V (H) and two vertices (u1, v1) and (u2, v2) of

G+F H are adjacent if and only if [ u1 = u2 and v1 ∼ v2 in H] or [v1 = v2 and u1 ∼ u2 in F (G)].

Note that if we set U = V (G) ⊆ V (F (G)) , then G+F H = F (G)(U) uH. So by using Theorem 2.3,

we have more easier way to compute the ECI of G+F H.

In [9], F -sum graphs are introduced and the Wiener indices of the resulting graphs is studied. For

the explicit expressions for the vertex PI indices of four sums of two graphs see [15]. In [16], the
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authors determine the hyper and reverse Wiener indices of the F -sum graphs, and subject to some

condition, they present some exact expressions for the reverse Wiener indices of the F -sum graphs.

Among the results of F -sums, in this paper we will use the following one, where L(G) is the line graph

of G.

Theorem 3.2. [8] Let G = (V1, E1) and H = (V2, E2) be two connected graphs. Suppose that U =

V (G) ⊆ V (F (G)), F ∈ {S,R,Q, T}. Then

W (F (G)(U)) = W (F (G)) + |E1|, F = S,R

W (F (G)(U)) = W (F (G)) +W (L(G)) + |E1|+ |E1|2, F = Q,T .

Lemma 3.3. Let F ∈ {S,R,Q, T} and let G+F H = F (G)(U) uH, where U = V (G). Then

(a) |V (F (G))| = |V (G)|+ |E(G)|, |E(S(G))| = 2|E(G)|, |E(R(G))| = 3|E(G)|, |E(Q(G))| = 2|E(G)|+
|E(L(G))|, |E(T (G))| = 3|E(G)|+ |E(L(G))|.

(b) For every vertex v ∈ U , we have

degS(G)(v) = degQ(G)(v) = degG(v), degR(G)(v) = degT (G)(v) = 2degG(v),

ecS(G)(U)(v) = 2ecG(v), ecR(G)(U)(v) = ecT (G)(U)(v) = ecQ(G)(U)(v)− 1 = ecG(v) .

(c) For every vertex v ∈ V (F (G)) \ U , we have

degS(G)(v) = degR(G)(v) = 2, degQ(G)(v) = degT (G)(v) = degL(G)(v) + 2,

ecS(G)(U)(v) = 2ecL(G)(v) + 1, ecR(G)(U)(v) = ecQ(G)(U)(v) = ecT (G)(U)(v) = ecL(G)(v) + 1.

Theorem 3.4. Let G(n ≥ 2) and H be two connected graphs. Then

(1)ξc(G+SH) = 2|V (H)|[ξc(G)+2ζ(L(G))+ |E(G)|]+4|E(G)|ζ(H)+4|E(H)|ζ(G)+ |V (G)|ξc(H),

(2)ξc(G+RH) = 2|V (H)|[ξc(G)+2ζ(L(G))+ |E(G)|]+6|E(G)|ζ(H)+2|E(H)|ζ(G)+ |V (G)|ξc(H),

(3)ξc(G +Q H) = |V (H)|[ξc(G) + 2ζ(L(G)) + 4|E(G)| + ξc(L(G)) + 2|E(L(G))|] + 2(2|E(G)| +
|E(L(G))|)ζ(H) + 2|E(H)| · (ζ(G) + |V (G)|) + |V (G)|ξc(H),

(4)ξc(G +T H) = |V (H)|[2ξc(G) + 2ζ(L(G)) + 2|E(G)| + ξc(L(G)) + 2|E(L(G))|] + 2(3|E(G)| +
|E(L(G))|)ζ(H) + 2|E(H)|ζ(G) + |V (G)|ξc(H).

Proof. Let U = V (G) ⊆ V (F (G)) . (1) By using the facts in lemma 3.3, we obtain

ξc(S(G)(U)) =
∑

v∈V (S(G))

degS(G)(v)ecS(G)(U)(v)

=
∑
v∈U

degS(G)(v)ecS(G)(U)(v) +
∑

v∈V (S(G))\U

degS(G)(v)ecS(G)(U)(v)

= 2
∑
v∈U

degG(v)ecG(v) +
∑

v∈V (S(G))\U

2 · ecS(G)(U)(v)

= 2ξc(G) + 2
∑

v∈V (L(G))

(2ecL(G)(v) + 1)

= 2ξc(G) + 4ζ(L(G)) + 2|E(G)|.
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ε(S(G)(U)) =
∑

u∈U ecS(G)(U)(u) =
∑

u∈V (G) 2 · ecG(u) = 2ζ(G).

Combining these with Theorem 2.3, we obtain the desired result.

(2) Still using the Lemma 3.3, we can achieve that

ξc(R(G)(U)) =
∑

v∈V (R(G))

degR(G)(v)ecR(G)(U)(v)

=
∑
v∈U

degR(G)(v)ecR(G)(U)(v) +
∑

v∈V (R(G))\U

degR(G)(v)ecR(G)(U)(v)

= 2
∑
v∈U

degG(v)ecG(v) +
∑

v∈V (R(G))\U

2 · ecR(G)(U)(v)

= 2ξc(G) + 2
∑

v∈V (L(G))

(ecL(G)(v) + 1)

= 2(ξc(G) + ζ(L(G)) + |E(G)|).

ε(R(G)(U)) =
∑

u∈U ecR(G)(U)(u) =
∑

u∈V (G) ecG(u) = ζ(G).

Using these with Theorem 2.3, we obtain the desired result.

(3)Now let F = Q , and combining with Lemma 3.3, we have

ξc(Q(G)(U)) =
∑

v∈V (Q(G))

degQ(G)(v)ecQ(G)(U)(v)

=
∑
v∈U

degQ(G)(v)ecQ(G)(U)(v) +
∑

v∈V (Q(G))\U

degQ(G)(v)ecQ(G)(U)(v)

=
∑
v∈U

degG(v)(ecG(v) + 1) +
∑

v∈V (Q(G))\U

degQ(G)(v)ecQ(G)(U)(v)

= ξc(G) + 2|E(G)|+
∑

v∈V (L(G))

(deg(L(G))(v) + 2)(ecL(G)(v) + 1)

= ξc(G) + 4|E(G)|+ ξc(L(G)) + 2|E(L(G))|+ 2ζ(L(G)).

Also, ε(Q(G)(U)) =
∑

u∈U ecQ(G)(U)(u) =
∑

u∈V (G)(ecG(u) + 1) = ζ(G) + |V (G)|.
Again by Theorem 2.3, we can obtain the desired result.

(4) Still considering the facts in Lemma 3.3, then we have

ξc(T (G)(U)) =
∑

v∈V (T (G))

degT (G)(v)ecT (G)(U)(v)

=
∑
v∈U

degT (G)(v)ecT (G)(U)(v) +
∑

v∈V (T (G))\U

degT (G)(v)ecT (G)(U)(v)

=
∑
v∈U

2 · degG(v)ecG(v) +
∑

v∈V (L(G))

(degL(G)(v) + 2)(ecL(G)(V ) + 1)

= 2ξc(G) + 2|E(G)|+ ξc(L(G)) + 2|E(L(G))|+ 2ζ(L(G)).

Moreover, ε(T (G)(U)) =
∑

u∈U ecT (G)(U)(u) =
∑

u∈V (G) ecG(u) = ζ(G).

Combining these results with Theorem 2.3, we can obtain the desired result.
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Example 2. If G = S(Cn(U) u P2(n ≥ 3),the zig-zag polyhex nanotube TUHC6 , then

ξc(G) =

10n2 + 14n n is even,

10n2 + 4n n is odd.

Example 3.([7])Let Ln be a hexagonal chain with n hexagonal (Ln = Pn+1 +S P2, n ≥ 2). Then

ξc(Ln) =

15n2 + 14n+ 2 n is even,

15n2 + 14n+ 3 n is odd.

4. Concluding remark

In this paper, we compute the ECI and EDS of the generalized hierarchical product of graphs,

and then using the obtained results we get the ECI of the F -sum graphs. As the applications, we

deduce the ECI of the grids Pm�Pn, the torus Cm�Cn, the zig-zag polyhex nanotube TUHC6 and the

hexagonal chain Ln. Actually, by using the result on the EDS of the generalized hierarchical product

of graphs, it is also possible to give some formulae for the EDS of the F -sum graphs, but it turns out

that the formulae would be much more complicated and the deduction process is very tedious, for this

reason we omit it.
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