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ON SCHEMES ORIGINATED FROM FERRERO PAIRS

H. MOSHTAGH AND A. RAHNAMAI BARGHI∗

Communicated by Alireza Abdollahi

Abstract. The Frobenius complement of a given Frobenius group acts on its kernel. The scheme

which is arisen from the orbitals of this action is called Ferrero pair scheme. In this paper, we show

that the fibers of a Ferrero pair scheme consist of exactly one singleton fiber and every two fibers with

more than one point have the same cardinality. Moreover, it is shown that the restriction of a Ferrero

pair scheme on each fiber is isomorphic to a regular scheme. Finally, we prove that for any prime p,

there exists a Ferrero pair p-scheme, and if p > 2, then the Ferrero pair p-schemes of the same rank

are all isomorphic.

1. Introduction

Assume that N is a finite group and H is a fixed point free automorphism group on N , and so H is

a subgroup of Aut(N) acting semiregularly on N . The pair (N,H) is called Ferrero pair. The orbitals

of the action of H on N , denoted by Inv(H,N), generate a scheme called the Ferrero pair scheme.

In [1], a new design from the Ferrero pair is constructed and it is shown that if f is a design

isomorphism between two Ferrero pairs (N1, H1) and (N2, H2), then fH1f
−1 = H2. We prove an

analog of this statement for Ferrero pair schemes. We also show that the restriction of a Ferrero

pair scheme on each fiber is isomorphic to a regular scheme and a Ferrero pair scheme has thin thin

residue. In other words, thin residue of a Ferrero pair scheme is a closed subset of its thin radical. In

addition, we derive some necessary conditions under which the isomorphism between two Ferrero pair

schemes induces an isomorphism between their groups. Moreover, the Ferrero pair scheme Inv(H,N)

is a direct sum of two regular schemes if and only if H n N is a 2-transitive Frobenius group. It is
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already known that p-schemes of the same rank are not isomorphic. Finally, we are going to show

that if p is an odd prime, then the Ferrero pair p-schemes of the same rank are all isomorphic.

Let Inv(H,N) be a Ferrero pair scheme. Then the semidirect product H nN is a Frobenius group

with the complement H n 〈1N 〉 and the kernel 〈idN 〉 n N . It is well-known that the complement of

a Frobenius group acts fixed point free on its kernel. Therefore, there is a one-to-one correspondence

between the set of all Frobenius groups and the set of all Ferrero pairs.

Let us fix the notations which we will use throughout the paper. We assume that V is a nonempty

finite set, R is a set of binary relations on V , and R ∈ R. We write

• R∗ to denote the set of all unions of elements of R;

• ∆(V ) to denote the set of all pairs (v, v) with v ∈ V ;

• Rt to denote the set of all pairs (u, v) with (v, u) ∈ R;

• R(u) to denote the set of all elements v ∈ V with (u, v) ∈ R;

• RX,Y to denote the set of all nonempty relations R ∩ (X × Y ) with R ∈ R and X,Y ⊆ V . In

particular, RX = {R ∈ R : R ⊂ X ×X}.

Now we recall the definitions and concepts related to permutation groups and schemes which will

be used in this paper. For more details, see [3, 5, 10].

Let G ≤ Sym(V ) be a permutation group and let V m (m > 1) denote the Cartesian product of m

copies of V . Then G acts on V in a natural way, namely,

(v1, . . . , vm)g = (vg1 , . . . , v
g
m) for all vi ∈ V and g ∈ G.

The above action partitions V m into mutually disjoint classes, and each class is called an m-orbit of

G on V . The set of all m-orbits of G is denoted by Orbm(G). Moreover, we set Orb1(G) = Orb(G).

The 2-orbits of G on V are called the orbitals of G.

Let R be a set of binary relations on V . The set of all permutations of V that preserve each

relation of R forms a group called the automorphism group of R, and it is denoted by Aut(R). For

any permutation group G on V , the group Aut(Orbm(G)), denoted by G(m), is called the m-closure of

G. It is easy to see that G ≤ G(m). We say that G is m-closed if G(m) = G. A base of a permutation

group G is a set of points whose pointwise stabilizer is trivial. The minimum cardinality of a base of

the group G is called the base number of G and it is denoted by b(G). It is not difficult to check that

G is (b(G) + 1)-closed.

A coherent configuration or a scheme C = (V,R) consists of a finite set V and a partition R
of V 2 such that R is closed with respect to transposition, R∗ contains the diagonal ∆(V ) and the

number cTR,S = |{v ∈ V : (u, v) ∈ R, (v, w) ∈ S}| does not depend on the choice of (u,w) ∈ T for

all R,S, T ∈ R. We refer to V and the elements of R as the set of points and the basis relations,

respectively. The numbers |V | and |R| are called the order and the rank of C, respectively. Any set

X ⊆ V with ∆(X) ∈ R is called a fiber of C and the set of all fibers of C and the set of all fibers of C
with more than one point are denoted by Fib(C) and Fib(C), respectively. Any fiber with exactly one

point is called a singleton fiber and clearly, the set of points is the disjoint union of fibers. If X is a

union of fibers, then the restriction of C to X is defined as the scheme CX = (X,RX).
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A nonempty subset U of R is called closed if the set {T ∈ R : cTRt,S 6= 0, R, S ∈ U} is contained in

U . An element R of R is called thin if the set {T ∈ R : cTRt,R 6= 0} contains exactly one element. The

set Oϑ(C) of all thin relations of C is called the thin radical of C. One can see that Oϑ(C) is closed and

contains ∆(X) for each X ∈ Fib(C). Let Oϑ(C) be the smallest closed subset of R that contains RRt

for any R ∈ R. Then Oϑ(C) is called the thin residue of C. For arbitrary prime number p, the scheme

C is called a p-scheme if the cardinality of each basis relation of C is a power of p. The algebraic

properties of p-schemes were studied in [8].

In the following example, we see that how a class of schemes are obtained from a permutation group.

Example 1.1. Let G ≤ Sym(V ) be a permutation group. Then G acts on V 2 in a natural way.

It is well-known that (V,Orb2(G)) is a scheme and it is denoted by Inv(G,V ). Also, we have

Fib(Inv(G,V )) = Orb(G).

A scheme obtained from a permutation group is called Schurian. The Schurian schemes of a regular

permutation group and Inv(idV , V ) are called regular and trivial schemes, respectively.

Let C = (V,R) be a scheme and U = {u1, . . . , um} be a subset of V . Let R(U) be the set of the basis

relations of the smallest scheme on V which contains R and Ri = {(ui, ui)} for i = 1, . . . ,m. Then the

scheme C(U) = (V,R(U)) is called an m-point extension of C. Obviously, this extension is nontrivial

if and only if {ui} 6∈ Fib(C) for at least one i. The base number b(C) of a scheme C is the minimal

integer m such that the m-point extension of C is trivial. The base number of a trivial scheme is 0 as

well as the base number of a scheme with rank 2 is deg(C)− 1.

Let C = (V,R) be a scheme. A point v ∈ V is called regular if |Rt(v)| ≤ 1 for all R ∈ R. If the set

of all regular points of C is nonempty, then C is called 1-regular. One can see that the set of all regular

points of any scheme is a union of fibers. It is shown in [4, Theorem 9.3] that any 1-regular scheme is

Schurian. For each given regular point v ∈ V , the scheme C(v) is trivial. So the base number of any

1-regular scheme is at most 1.

Let C1 = (V1,R1) and C2 = (V2,R2) be two schemes. The direct sum of C1 and C2 is the scheme

C1 � C2 = (V,R), where V is a disjoint union of the sets V1 and V2 and R is the union of the sets R1,

R2 and the set of all relations X1 ×X2 and X2 ×X1 with Xi ∈ Fib(Ci) (i = 1, 2).

Two given schemes C1 = (V1,R1) and C2 = (V2,R2) are called similar if

cTR,S = cT
ϕ

Rϕ,Sϕ , for all R,S, T ∈ C1,

where R
ϕ7−→ Rϕ is a bijection from R1 to R2. Two schemes C1 = (V1,R1) and C2 = (V2,R2) are

said to be isomorphic if there exists a bijection f : V1 → V2 such that Rf1 = R2, where Rf1 = {Rf ∈
R2 : R ∈ R1} and Rf = {(uf , vf ) : (u, v) ∈ R}. The bijection f is called an isomorphism from C1
to C2. The set of all isomorphisms from C1 to C2 is denoted by Iso(C1, C2). The set Iso(C) = Iso(C, C)
is obviously a permutation group on V . Also, every f ∈ Iso(C1, C2) induces a bijection from Fib(C1)

onto Fib(C2) such that Fib(C1)f = Fib(C2). The group Aut(R) is called the automorphism group of

the scheme C and is denoted by Aut(C). Obviously, Aut(C) is a normal subgroup of Iso(C).
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2. Ferrero pair schemes

Let C = (V,R) be a scheme satisfying the following conditions:

(∗) The set Fib(C) contains exactly one singleton subset Z = {z} of V and all of the nonsingleton

fibers have the same cardinality. Also, for each X,Y ∈ Fib(C), X × Z and Z × Y are basis

relations of C. Moreover, if |R(z)| = |Rt(z)| = 0, then R is a thin relation, where R ∈ R.

Lemma 2.1. Let C = (V,R) be a scheme satisfying (∗). Then C is a Schurian scheme.

Proof. It follows from (∗) that |Rt(v)| ≤ 1 for all v ∈ V \ Z and R ∈ R. Therefore, C is a 1-regular

scheme and so b(C) ≤ 1. By applying [4, Theorem 9.3], C is a Schurian scheme and consequently, there

exists a group G ≤ Sym(V ) such that C = Inv(G,V ). This completes the proof. �

Theorem 2.2. Let C = Inv(H,N) be a Ferrero pair scheme and let R be the set of all orbitals of H

on N . Then the following statements hold:

(1) (|H|, |N |) = 1 and |H| divides |N | − 1.

(2) Fib(C) contains exactly one singleton fiber and all of its nonsingleton fibers have the same

cardinality. Moreover, |R| = 1 or |R| = |H| for all R ∈ R.

(3) C satisfies (∗).
(4) CX is a thin scheme and |RX,Y | = |H| for all X,Y ∈ Fib(C).
(5) Oϑ(C) ⊂ Oϑ(C).

Proof. It is well-known that if HnN is a Frobenius group, then (|H|, |N |) = 1 and |H| divides |N |−1

(see [6, Lemma 16.6]).

Since Fib(C) = Orb(H), it follows that Z = {1N} is the only fiber of cardinality 1 and other fibers

have cardinality |H|. Obviously, H acts fixed point free on its orbitals of length greater than one,

because otherwise there exist R ∈ R and h ∈ H such that (x, y) ∈ R and (x, y)h = (x, y), which

contradicts to the fact that H acts fixed point free on N∗ = N \ {1N}. Thus, we obtain the equality

|R| = |H| for R 6= ∆(Z), which proves statement (2).

To prove statement (3), suppose that R ∈ R and let 1N ∈ R(x) for some x ∈ N∗. Then

R = {(xh, 1N ) : h ∈ H} = X × Z,

where X ∈ Fib(C) and x ∈ X. Similarly, if 1N ∈ Rt(x), then R = Z × Y for a unique Y ∈ Fib(C).
Now suppose that R ∈ R and R ⊆ X ×Y for some X,Y ∈ Fib(C). If |R(u)| > 1 for some u ∈ X, then

there exist x, y ∈ Y and h ∈ H such that {x, y} ⊆ R(u) and (u, x)h = (u, y). So the element h ∈ H
has the fixed point u, which is a contradiction. Hence |R(u)| = 1. Similarly, |Rt(u)| = 1 for all u ∈ X,

which shows that R is thin and so C satisfies (∗).
Next, suppose that X,Y ∈ Fib(C) and R ⊆ X × Y . Then, the statement (2) implies that

|H| = |Y | =
∑

R∈RX,Y

|R(u)| =
∑

R∈RX,Y

1 = |RX,Y |

for all u ∈ X, which proves statement (4).
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Finally, let R ∈ RX,Y for some X,Y ∈ Fib(C). Clearly, RRt equals to |X|∆(X) if X = Z and ∆(X)

if X 6= Z. Furthermore, it is straightforward to verify that

Oϑ(C) = {∆(X) : X ∈ Fib(C)} ⊂ Oϑ(C).

Hence the proof of the theorem is complete. �

One may deduce the following remark from Lemma 2.1 and Theorem 2.2. This remark implies that

the Ferrero pair schemes of the same rank are all similar.

Remark 2.3. Let C = Inv(H,N) be a Ferrero pair scheme and consider the cyclic permutation

iX ∈ Sym(X) of length |X| = |H|. Let G be the following permutation group:

G = 〈
∏

X∈Fib(C)

iX〉 ≤ Sym(N).

In fact, G is a permutation group of order |H| which is generated by a product of disjoint cycles of

length |H|. Obviously, Inv(G,N) satisfies (∗). So for each Ferrero pair scheme C, there exists a cyclic

permutation group G such that Inv(G,N) is similar to C. Now, it is straightforward to show that the

base number of G is at most 1. Since the permutation group G is (b(G) + 1)-closed, we conclude that

G is 2-closed. In other words, Aut(Inv(G,N)) = G.

Theorem 2.4. Let Inv(H,N) be a Ferrero pair scheme and K be a finite group acting on N with

Inv(H,N) = Inv(K,N). Then Inv(K,N) is a Ferrero pair scheme and |H| = |K|.

Proof. Let C = Inv(H,N). First we show that Aut(C) acts fixed point free on N . Suppose on the

contrary that xg = x for some g ∈ Aut(C) \ {idN} and x ∈ N∗ = N \ {1N}. Let y be an arbitrary

element in N∗. Then there exists a unique orbital R of C which contains (x, y). According to the

choice of g, we have (xg, yg) = (x, yg) ∈ R, and so there exists h ∈ H such that (x, y)h = (x, yg). Since

H acts fixed point free on N , so h = 1N . Hence, yg = y. Then g is a trivial element of Aut(C) which

contradicts the choice of g ∈ Aut(C) \ {idN}. By the hypothesis, one can see that

K ≤ K(2) = Aut(Inv(K,N)) = Aut(C),

which implies that K acts fixed point free on N . Hence C′ = Inv(K,N) is a Ferrero pair scheme.

Clearly, Fib(C) and Fib(C′) have the same cardinality, say d. Since H and K act fixed point free on

N , it follows that 1 + (d− 1)|H| = |N | = 1 + (d− 1)|K| and therefore, |H| = |K|. �

Corollary 2.5. Suppose that H and K are finite groups satisfying the hypotheses of Theorem 2.4. If

Aut(Inv(H,N)) = H, then K ∼= H.

Proof. Since Aut(Inv(H,N)) = H, therefore, K ≤ Aut(Inv(K,N)) = Aut(Inv(H,N)) = H. To

complete the proof, we note that |H| = |K|, by Theorem 2.4. �

Theorem 2.6. Let Inv(H,N) be a Ferrero pair scheme and K be a group acting fixed point free on

N . Suppose that H and K satisfy one of the following conditions:

(1) H is a p-group for p > 2;
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(2) H is a square free order group;

(3) H nN and K nN are isomorphic.

If Inv(H,N) = Inv(K,N), then K ∼= H.

Proof. Since Inv(H,N) is a Ferrero pair scheme, it follows that H n N is a Frobenius group with

complement H and kernel N . By considering [7, Theorem 18.1], we observe that for each odd prime

p, the Sylow p-subgroups of H are cyclic. Also, if H is square free order acting on N , then by [9,

Theorem 6.1.11], H is cyclic. Hence if (1) or (2) holds, H is 2-closed and so Aut(Inv(H,N)) = H.

Moreover, by Corollary 2.5, K ∼= H.

If (3) holds, then we know that H nN ∼= K nN if and only if there exists g ∈ Aut(N) such that

K = Hg and the proof of the theorem is complete. �

Remark 2.7. Let C be a Ferrero pair scheme satisfying (1) or (2) of Theorem 2.6. Then C is

isomorphic to the scheme Inv(G,N) introduced in Remark 2.3. Let p be a prime number. Then by [8,

Corollary 1.2], Inv(H,N) is a p-scheme if and only if H is a p-group. In particular, for p > 2, the

Ferrero pair scheme Inv(H,N) is a p-scheme if and only if H is a cyclic p-group.

The following example shows that the condition p > 2 is necessary in Theorem 2.6.

Example 2.8. We know that there are two nonisomorphic Frobenius groups of order 72. Let G

be a Frobenius group of order 72. Then G is a semidirect product of the elementary abelian group

N = C3 × C3 of order 9 and a group H of order 8 acting fixed point free on N \ {1N}. The group H

is cyclic or quaternion. Now consider the following permutation subgroups of S9:

H = 〈(2 4 5 8 3 7 9 6)〉, K = 〈(2 4 3 7)(5 6 9 8), (2 9 3 5)(4 6 7 8)〉,

N = 〈(1 2 3)(4 5 6)(7 8 9), (1 9 5)(2 7 6)(3 8 4)〉.

Then H and K act on N by conjugation and it is straightforward to show that H ∼= C8 and K ∼= Q8,

where Q8 is the quaternion group of order 8. Now it is easy to see that Inv(C8, N) = Inv(Q8, N),

whereas C8 6∼= Q8.

Theorem 2.9. For each prime number p, there exists a Ferrero pair p-scheme. Also, if p > 2, then

the Ferrero pair p-schemes of the same rank are all isomorphic.

Proof. Let p be a prime number and H be a cyclic group of order pn for some positive integer n.

From [2, Corollary 3.3], we can construct a Frobenius group with Frobenius complement H. Now by

Remark 2.7, the Ferrero pair scheme corresponding to this Frobenius group is a p-scheme.

Next, let p be an odd prime and C1 = Inv(H1, N1) and C2 = Inv(H2, N2) be two Ferrero pair

p-schemes with the same rank. Suppose that X1 ∈ Fib(C1) and X2 ∈ Fib(C2). Then by Theorem 2.2,

|RXi | = |Hi| and the restriction of Ci to Xi is a thin scheme for i = 1, 2. Hence |H1| = |H2|, since

otherwise C1 and C2 have different ranks which contradicts the hypothesis of the theorem. Since H1

and H2 are the complements of the Frobenius groups H1 nN1 and H2 nN2, respectively, it follows by

[7, Theorem 18.1] that they are cyclic groups. Therefore, H1 and H2 are isomorphic to each other and

this isomorphism induces an isomorphism from C1 to C2. Consequently, C1 is isomorphic to C2. �
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Lemma 2.10. Let C = Inv(H,N) be a Ferrero pair scheme and C1 and C2 be regular schemes of order

1 and |H|, respectively. Then C = C1 � C2 if and only if H nN is a 2-transitive Frobenius group.

Proof. Let G ≤ Sym(V ) be a Frobenius group with complement H and kernel K. Then G is a

transitive permutation group in which any two-point stabilizer is trivial. On the other hand, H = Gx

for some x ∈ V . Now assume that G = H n N is a 2-transitive Frobenius group. Since H acts

transitively on V \ {x}, it follows that |H| = |V | − 1. Then equality |N | = |G : H| = |G : Gx| = |V |
shows that |H| = |N | − 1. This implies that C = Inv(H,N) has two fibers, say Fib(C) = {1N , X}.
Then Theorem 2.1 implies that CX is similar to a regular scheme of order |X| = |H|. Also, the other

basis relations of C are R0 = {(1N , 1N )}, R1 = 1N ×X = {(1N , x) : x ∈ X}, and Rt1. Hence C is a

direct sum of two regular schemes of orders 1 and |H|.
Conversely, if C is a direct sum of a regular scheme of order 1 and a regular scheme of order |H|, then

Fib(C) consists of exactly two fibers such that one of them is singleton, and the other one has cardinality

|H|. Thus, we obtain the equality |N | = 1 + |H| and this implies that |G| = |H||N | = |H| + |H|2.

Now, we assume that g is an element of G \ H. Then H and HgH are disjoint double cosets of G.

Since H is a Frobenius complement, we get H ∩Hg = {1H}. Therefore, we obtain

|H|+ |HgH| = |H|+ |H||Hg|
|H ∩Hg|

= |H|+ |H|2 = |G|,

which yields G = H ∪HgH. From [7, Proposition 3.7], G is 2-transitive if and only if G = H ∪HgH
for every g ∈ G \H. This completes the proof. �

Theorem 2.11. Let C = Inv(H,N) and C′ = Inv(K,N) be two Ferrero pair schemes and let f ∈
Iso(C, C′). Then Kf = fKf−1 = H.

Proof. Let x ∈ N . Then X = xH is an orbit containing x. Since X ∈ Fib(C), it follows that

Xf ∈ Fib(C′) = Orb(K). Also, (xf )K ∩ Xf 6= ∅ and so we have Xf = (xf )K . On the other hand,

(xH)f = (xf )K , which means that the permutation actions of fKf−1 and H on N are equivalent.

This completes the proof. �

Remark 2.12. Let C = Inv(H,N) be a Ferrero pair scheme and let f ∈ Iso(C). Then for each

x ∈ N \ {1N}, there exists a unique λx ∈ H depending on x such that (xh)f = (xf )λx. Also, the set

Iso(C) is obviously a permutation group on N and so f−1 ∈ Iso(C). Now by Theorem 2.11, f−1hf ∈ H.

Hence

(xf )λx = (xh)f = (xf )f
−1hf .

Finally, since H acts fixed point free on N , it follows that λx = f−1hf . Consequently, λx is indepen-

dent of x.
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