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Abstract. In this paper, the type-II matrices on (negative) Latin square graphs are considered and

it is proved that, under certain conditions, the Nomura algebras of such type-II matrices are trivial.

In addition, we construct type-II matrices on doubly regular tournaments and show that the Nomura

algebras of such matrices are also trivial.

1. Introduction

In [3], Chan and Hosoya have considered the type-II matrices in the Bose-Mesner algebra of confer-

ence graphs and have proved that the Nomura algebras of such matrices are trivial when n > 9. In this

paper, we show that the Nomura algebras obtained from some of the (negative) Latin square graphs

are trivial. Moreover, we determine the type-II matrices attached to doubly regular tournaments.

Then we show that the Nomura algebras obtained from these type-II matrices are trivial.

In the rest of the section, we remind some concepts and notations about type-II matrices, strongly

regular graphs and association schemes.

1.1. Type-II matrices. In this subsection, we drive some notations and concepts in the type-II

matrices and the Nomura algebras according to [2]. Let In and J denote the identity matrix of order

n and the matrix of order n whose entries are all 1, respectively. Denote by Mn(C) the set of n × n
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complex matrices. Let W = (wij) be an n× n complex matrix whose entries are all nonzero. We can

define an associated n× n matrix by W (−) = (w−1
ij ). An n× n complex matrix W is called type-II if

WW (−)t = nI.

As an example, the matrix I+xJ of order n ≥ 2 is a type-II where x is one of the roots of nx2+nx+1 =

0, i. e., x = 1
2(2− n±

√
n2 − 4n). Such a matrix is called the Potts model.

Let X be a nonempty finite set with |X| = n. Let W = (wij) be a complex matrix whose rows and

columns are indexed by X and whose entries are all nonzero. For each u, v = 1, . . . , n, we define a

column vector euv whose i-th entry is

euv(i) =
wiu
wiv

.

The Nomura algebra of W is defined by

NW = {M ∈Mn(C) | euv is an eigenvector of M, ∀u, v ∈ X}.

From [2, Corollary 4.1] it follows that the Nomura algebra of any type-II matrix is the Bose-Mesner

algebra of a commutative association scheme. Since NW contains I it is nonempty. The Nomura

algebra NW is said to be trivial if dimNW = 2. For M ∈ NW , we define the matrix of eigenvalues of

M denoted by ΘW (M) to be an n × n matrix whose (u, v)-th entry is equal to the eigenvalue of W

on euv.

The following lemma determines whether or not two eigenvectors euv’s belong to the same eigenspace

of NW .

Lemma 1.1. [2, Lemma 3.2] Let et
uveuz 6= 0. Then (ΘW (M))vu = (ΘW (M))uz where M ∈ NW .

The following lemma gives a sufficient condition for the Nomura algebra of a type-II matrix being

trivial.

Lemma 1.2. Let W be a type-II matrix. If et
uveuz 6= 0 for any distinct u, v ∈ X and for all z 6= u,

then NW is trivial.

Proof. By Lemma 1.1 we see that (ΘW (M))vu = (ΘW (M))uz for any matrix M from NW . Put

λ := (ΘW (M))vu. Then evu and euz belong to the same eigenspace denoted by Eλ for all z 6= u. Put

Vλ := {euz | z 6= u}. Clearly, Vλ ⊆ Eλ. From the definition of W we conclude that all vectors in Vλ are

in 1⊥. From [2, Lemma 2.1] it follows that Vλ is the set of n− 1 linearly independent vectors. Hence,

dim(Eλ) is either n− 1 or n. If dim(Eλ) = n− 1 then the Hermitian space Cn has the form

1⊕ Eλ.

Thus, the Bose-Mesner algebra NW has only two principle idempotents which implies that its rank is

equal to 2.

If dim(Eλ) = n, then each vector in Cn is an eigenvector of M , especially (1, 0, 0, . . . , 0)t. This

implies that M = λIn. Hence, NW = {In} which implies that n = 1. �
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Theorem 1.3. [2, Theorem 6.4] Suppose W is a type-II matrix of the form J + (t− 1)A, where A is

the incidence matrix of a symmetric (n, k, λ)− BIBD and

t =
1

2(k − λ)

(
2(k − λ)− n±

√
n(n− 4(k − λ))

)
.(1.1)

If n > 3 and t 6= −1, then the Nomura algebra of W is trivial.

1.2. Strongly regular graphs. A strongly regular graph Γ with parameters (n, k, λ, µ) is a simple

graph on n vertices which is regular with valency k such that if the vertices α and β are adjacent then

there are exactly λ vertices adjacent to both α and β and otherwise µ there are. It is known that if Γ

is connected then it has three distinct eigenvalues k, θ and τ . The strongly regular graph Γ is called

(positive) Latin square (resp. negative Latin square) if

n = m2, k = g(m− ε), λ = εm+ g2 − 3εg, µ = g(g − ε)

for some positive integers m and g where ε = 1 (resp. ε = −1). For such a graph θ = m − g and

τ = −g (resp. θ = g and τ = g −m).

In [2, Section 8], Chan and Godsil constructed the type-II matrices on the strongly regular graphs.

Moreover, they showed that if Γ is formally self-dual then there are at most six type-II matrices, up

to equivalence, in the Bose-Mesner algebra of Γ. In this paper, we consider one of the six cases and

investigate its Nomura algebras. So we assume that Γ is a (negative) Latin square graph. Let A1 be

the adjacency matrix of Γ and let A2 be its complement adjacency matrix. Again in [2, Section 8], it

was shown that a matrix W := I + xA1 + yA2 is type-II if

(1.2)
x =

1

2τ

(
θ2 − τ2 + 2θ + ε1

√
(θ − τ)(θ − τ + 2)(θ + τ)(θ + τ + 2)

)
and

y =
1

2(θ + 1)

(
θ2 − τ2 + 2(θ + 1) + ε2

√
(θ − τ)(θ − τ + 2)(θ + τ)(θ + τ + 2)

)
,

or

(1.3)
x =

1

2θ

(
τ2 − θ2 + 2τ + ε3

√
(θ − τ)(θ − τ − 2)(θ + τ)(θ + τ + 2)

)
and

y =
1

2(τ + 1)

(
τ2 − θ2 + 2(τ + 1) + ε4

√
(θ − τ)(θ − τ − 2)(θ + τ)(θ + τ + 2)

)
,

where εi = ±1 for each i. We show that the Nomura algebras obtained from such a matrix are trivial

when m − 2 - λ(g − 1), λ(g − 2) and m ≥ 3g with g > 2. We shall assume that ε = εi = εi+1 = ±1

in (1.2) and (1.3) for i = 1, 3 and prove the main theorem. Substituting θ = m − g and τ = −g into

(1.2), we can write x and y in terms of m and g as follows.

x =
e+ ε

√
c

2g
, y =

gx− 1

g −m− 1
,(1.4)

where e = 2mg−m2 +2g−2m and c = m(m+2)(m−2g)(m−2g+2). Similarly, (1.3) can be written

as the form

x =
e′ + ε

√
c′

2(g −m)
, y =

(g −m)x− 1

g − 1
,(1.5)
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where e′ = −2mg + m2 + 2g and c′ = m(m − 2)(m − 2g)(m − 2g + 2). In (1.4) and (1.5), if we set

m = 2g − 1 then we see that x and y are complex and so Γ is a conference graph whose Nomura

algebras investigated in [3], otherwise they are real. Therefore, the type-II matrices constructed on

(negative) Latin square graphs are real when m ≥ 3g.

Our main result is as follows:

Theorem 1.4. Suppose that W = I + xA1 + yA2 is a type-II matrix attached to a Latin square graph

where x and y satisfy (1.4) or (1.5). Let m ≥ 3g and m − 2 - λ(g − 1), λ(g − 2) where g > 2. Then

NW is trivial.

1.3. Association schemes. Let X be a nonempty finite set. Define ∆(X) := {(x, x) | x ∈ X}.
For each subset R of X × X, we define by Rt the set of all pairs (x, y) with (y, x) ∈ R. Let R =

{R0, R1, . . . , Rd} be a partition of X × X and put R0 := ∆(X). Then X = (X,R) is called an

association scheme of class d if it satisfies the following conditions (a) Rt
i ∈ R for each Ri ∈ R; we

denote Rt
i by Ri′ , (b) for each Ri, Rj , Rk ∈ R there exists a number pkij called the intersection number

such that |Ri(x)∩Rj′(y)| = pkij for all (x, y) ∈ Rk where R(x) := {y ∈ X | (x, y) ∈ R}. An association

scheme is called symmetric if Ri = Ri′ , for all i.

It is known that each of the basis relations Ri is associated with a matrix Ai called the adjacency

matrix. A subalgebra of Mn(C) spanned by B = {I = A0, A1, . . . , Ad} is called the Bose-Mesner

algebra of an association scheme if it satisfies the following conditions (a) Ai′ ∈ B for each Ai ∈ B, (b)

the sum of the elements of B is J , (c) B is a basis for a (d+ 1)-dimensional semisimple subalgebra of

Mn(C) whose structure constants are nonnegative.

Let X be an association scheme of class d with the basis relations Ri’s and the primitive idempotents

Ei’s. Then from [1, (3.6) and (3.8)] we have

Ai =

d∑
j=0

pi(j)Ej , Ei =
1

n

d∑
j=0

qi(j)Aj .

The matrices P = (pi(j)) and Q = (qi(j)) are called the first and the second eigenmatrices of X ,

respectively, in which j and i denote row and column, respectively. An association scheme is said to

be formally self-dual if P = Q for some ordering of the primitive idempotents if necessary.

Association schemes of class 2 arise in connection with some combinatorial structures. The basis

relations of a symmetric association scheme of class 2 are the edge sets of complementary strongly

regular graphs. Conversely, each of the edge set of a strongly regular graph and the edge set of its

complement forms a symmetric association scheme of class 2. The Bose-Mesner algebra of a strongly

regular graph Γ is formally self-dual if and only if n = (θ − τ)2 if and only if Γ is a conference graph,

a Latin square graph, or a negative Latin square graph, see [4].

A doubly regular tournament is a loopless directed graph of order 2k + 1 and of valency k whose

adjacency matrix A satisfies A + At + I = J and A2 = k−1
2 A + k+1

2 At. It follows that k must be an

odd number. This definition follows that A is the adjacency matrix of a doubly regular tournament
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if and only if so is At. It is known that the subalgebra of spanned by {I, A,At} is the Bose-Mesner

algebra of a nonsymmetric association scheme of class 2. Conversely, any nonsymmetric association

scheme of class 2 arises from a doubly regular tournament. It is easy to show that the Bose-Mesner

algebra of a doubly regular tournament is formally self-dual.

2. Nomura algebras

2.1. The Nomura algebras constructed on some of the Latin square graphs. In this sub-

section, we follow the notations in subsection 1.2 and show that under certain conditions the Nomura

algebras of the type-II matrices attached to (negative) Latin square graphs are trivial. To do so, we

first show that c and c′ cannot be perfect squares when m ≥ 3g.

Lemma 2.1. If m ≥ 3g, then c and c′ both cannot be perfect squares.

Proof. Since m ≥ 3g, we have m > 3g−1. Then m = 3g+ i−1 for some positive integer i. Therefore,

we have
c = m(m+ 2)(m− 2g)(m− 2g + 2)

= (3g + i− 1)(3g + i+ 1)(g + i− 1)(g + i+ 1)

=
(
(3g + i)2 − 1

)(
(g + i)2 − 1

)
and

c′ = m(m− 2)(m− 2g)(m− 2g + 2)

= (3g + i− 1)(3g + i− 3)(g + i− 1)(g + i+ 1)

=
(
(3g + i− 2)2 − 1

)(
(g + i)2 − 1

)
.

Let X1 = 3g+ i,X2 = 3g+ i−2 and Y = g+ i. Then c = (X2
1 −1)(Y 2−1) and c′ = (X2

2 −1)(Y 2−1).

Let X ∈ {X1, X2}. We show that

(XY − 2)2 < (X2 − 1)(Y 2 − 1) < (XY − 1)2.(2.1)

It implies that since XY − 1 and XY − 2 are consecutive natural numbers, (X2 − 1)(Y 2 − 1) is not

perfect square and hence c and c′ are not both perfect squares. We have

(X2 − 1)(Y 2 − 1) < (XY − 1)2 ⇐⇒ 0 < (X − Y )2.

Since X 6= Y , the last inequality is always true. Then the right-hand side of (2.1) is also true. On the

other hand,

(XY − 2)2 < (X2 − 1)(Y 2 − 1) ⇐⇒ 0 < 4XY −X2 − Y 2 − 3.

Let T = 4XY − X2 − Y 2 − 3. If X = X1, then T = 2g2 + 12ig + 2i2 − 3 and if X = X2, then

T = 2g2 +4g+8ig+2i2−4i−7. Clearly, in each case T > 0 and hence (XY −2)2 < (X2−1)(Y 2−1).

This shows that c and c′ both lie between the squares of two consecutive integers. Therefore, they

cannot be perfect squares. �

Let W = (wst) be a matrix with entries {1, x, y} whose rows and columns are indexed by the set

X. Set Λ = {u, v, z} be a subset of X with |Λ| = 3. Define Ωuvz = {s ∈ X | wus = wvs = wzs = x}.
Similarly, for instance, if we replace u by ū, then we may define the subset Ωūvz of X as the elements
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s in X such that wus = y and wvs = wzs = x. Therefore, by the similar way one can define Ωuv̄z, Ωuvz̄

or Ωūv̄z and so on. Also, we define Ωs to be the set of elements t of X such that wst = x.

The proof of Theorem 1.4. Let wij denote the (i, j)-th entry of W . Suppose that Γ is a Latin

square graph with parameters

n = m2, k = g(m− 1), λ = g2 − 3g +m, µ = g(g − 1)

for some positive integers m and g. By definition of euv’s, we have

euv(t)euz(t) =
w2
tu

wtvwtz

for each t ∈ X and then we have

euv(t)euz(t) =



1 if t ∈ Ωuvz ∪ Ωūv̄z̄

xy−1 if t ∈ Ωuv̄z ∪ Ωuvz̄

yx−1 if t ∈ Ωūv̄z ∪ Ωūvz̄

x2y−2 if t ∈ Ωuv̄z̄

y2x−2 if t ∈ Ωūvz

for each t ∈ X \ Λ. Since W is symmetric and the entries on its main diagonal are 1, the Hermitian

product of the vectors euv and euz can be written as the following form

et
uveuz =

∑
t∈X

euv(t)euz(t)

= (wuvwuz)
−1 + (w2

uv + w2
uz)w

−1
vz + |Ωuvz ∪ Ωūv̄z̄|+ |Ωuv̄z ∪ Ωuvz̄|xy−1 +(2.2)

|Ωūv̄z ∪ Ωūvz̄|yx−1 + |Ωuv̄z̄|x2y−2 + |Ωūvz|y2x−2.

Let û ∈ {u, ū}, v̂ ∈ {v, v̄}, ẑ ∈ {z, z̄} and s, t ∈ Λ. Define Λt = {h ∈ Λ | wht = x} and Λst = {h ∈ Λ |
wht = whs = x}. By the definitions of Ωt’s and Ωûv̂ẑ’s we have the following sets.

Ωu =
⋃̂
v,ẑ

Ωuv̂ẑ ∪ Λu, Ωu ∩ Ωv =
⋃̂
z

Ωuvẑ ∪ Λuv, X =
⋃
û,v̂,ẑ

Ωûv̂ẑ ∪ Λ,

Ωv =
⋃̂
u,ẑ

Ωûvẑ ∪ Λv, Ωu ∩ Ωz =
⋃̂
v

Ωuv̂z ∪ Λuz,

Ωz =
⋃̂
u,v̂

Ωûv̂z ∪ Λz, Ωv ∩ Ωz =
⋃̂
u

Ωûvz ∪ Λvz.

By definition, |Ωs ∩ Ωt| is equal to λ if wst = x and µ otherwise. Then we have

∑̂
v,ẑ

|Ωuv̂ẑ|+ |Λu| = k,
∑̂
z

|Ωuvẑ|+ |Λuv| ∈ {λ, µ},
∑

û,v̂,ẑ

|Ωûv̂ẑ| = n− 3,

∑̂
u,ẑ

|Ωûvẑ|+ |Λv| = k,
∑̂
v

|Ωuv̂z|+ |Λuz| ∈ {λ, µ},

∑̂
u,v̂

|Ωûv̂z|+ |Λz| = k,
∑̂
u

|Ωûvz|+ |Λvz| ∈ {λ, µ}.

(2.3)
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There are eight distinct cases to consider depending on whether wst is x or y. In each case, we

calculate et
uveuz. This calculation shows that if x and y satisfy (1.4) and (1.5), et

uveuz can be written

in the form a+ εb
√
c and a′+ εb′

√
c′, respectively for some real numbers a, a′, b and b′. It follows from

Lemma 2.1 that to show that et
uveuz is nonzero it is sufficient to prove that one of a, a′, b and b′ is

nonzero. In what follows, we describe a method of computing et
uveuz for one case. The other cases

are done similarly. By hypothesis, m = 3g + i for some nonnegative integer i. Also, let |Ωuvz| = f .

Suppose first that wuv = wuz = wvz = x. Then |Ωs ∩ Ωt| = λ for all s, t ∈ Λ. Also, we have

Λu = {v, z},Λv = {u, z},Λz = {u, v},Λuv = {z},Λvz = {u} and Λuz = {v}. We substitute these back

into (2.3) and solve it to obtain

|Ωūvz| = |Ωuv̄z| = |Ωuvz̄| = λ− f − 1, |Ωūv̄z̄| = n+ 3(λ− k)− f,

|Ωuv̄z̄| = |Ωūvz̄| = |Ωūv̄z| = k − 2λ+ f.

Substituting into (2.2), it follows that

et
uveuz = x−2 + 2x+ n− 3(k − λ) + (λ− f − 1)(2xy−1 + y2x−2)+

(k − 2λ+ f)(2yx−1 + x2y−2).

We substitute x and y from (1.4) and (1.5) into the equation above and get

a =
mc

2g2(m− g + 1)
, a′ =

mc′

2(m− g)2(g − 1)
.

Clearly, a, a′ 6= 0. Similarly, if wuv = wuz = x and wvz = y, then

et
uveuz = x−2 + 2x2y−1 + n− 3k + 2λ+ µ+ 2(λ− f)xy−1 + (µ− f − 1)y2x−2+

2(k − λ− µ+ f)yx−1 + (k − 2λ+ f − 2)x2y−2.

It follows that

a =
m(m− g + 2)c

2g2(m− g + 1)2
, a′ =

m(g − 2)c′

2(m− g)2(g − 1)2
.

Clearly, a, a′ 6= 0. If wuv = wvz = x and wuz = y or wuv = y and wuz = wvz = x, we have

et
uveuz = x−1y−1 + y2x−1 + x+ n− 3k + 2λ+ µ+ (2k − 3λ− µ+ 2f − 2)yx−1+

(λ+ µ− 2f − 1)xy−1 + (k − λ− µ+ f)x2y−2 + (λ− f)y2x−2.

It implies that

b =
m(m2 + 3mg2 −m2g − 5mg − 2f −mf + 2m− g3 + 5g2 − 6g)

g2(m− g + 1)2
,

b′ =
m(g3 − 5g2 +mg −mf − 2m+ 6g + 2f)

(m− g)2(g − 1)2
.

If b = 0, then f = −5mg+m2g−3mg2−m2+6g−5g2+g3−2m
m+2 . We substitute m = 3g + i into the last equality

to obtain f = g3+g2+3ig2−ig−2i+i2g−i2
−3g−i−2 . Let d denote the numerator of this fraction. Since g > 1, we

see that 3g2 > g + 2. Then

d = g3 + g2 + 3ig2 − ig − 2i+ i2g − i2

= g3 + g2 + i (3g2 − g − 2)︸ ︷︷ ︸
>0

+i2 (g − 1)︸ ︷︷ ︸
>0

.
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This shows that d > 0 and so f < 0, a contradiction. Hence, b 6= 0. If b′ = 0, then f = λ(g−2)
m−2 . This

contradicts the hypothesis that m − 2 - λ(g − 2). Thus, b′ 6= 0. If wuv = x and wuz = wvz = y or

wuv = wvz = y and wuz = x, then

et
uveuz = x−1y−1 + x2y−1 + y + n− 3k + λ+ 2µ− 1 + (λ+ µ− 2f)xy−1+

(2k − λ− 3µ+ 2f − 1)yx−1 + (k − λ− µ+ f − 1)x2y−2 + (µ− f)y2x−2.

From this we deduce that

b =
m(4g2 −mf − g3 + 3mg2 − 3mg −m2g − 3g − 2f)

g2(m− g + 1)2
,

b′ =
m(g3 − 4g2 −m−mf + 3g +mg + 2f)

(m− g)2(g − 1)2
.

If b = 0, then f = −g(m2−3mg+3m+g2−4g+3)
m+2 . Substituting m = 3g + i into the last equality, we get

f = −g(i2+g2+5g+3i+3ig+3)
3g+i+2 < 0 which is a contradiction and hence b 6= 0. If b′ = 0, then f = λ(g−1)

m−2

which contradicts the hypothesis of the theorem. If wvz = x and wuv = wuz = y, then

et
uveuz = y−2 + 2y2x−1 + n− 3k + λ+ 2µ− 1 + 2(µ− f)xy−1 + (λ− f)y2x−2+

2(k − λ− µ+ f − 1)yx−1 + (k − 2µ+ f)x2y−2.

It follows that

a =
m(g + 1)c

2g2(m− g + 1)2
, a′ =

m(m− g − 1)c′

2(m− g)2(g − 1)2
.

Clearly, a, a′ 6= 0. If wuv = wuz = wvz = y, then

et
uveuz = y−2 + 2y + n− 3k + 3µ− 3 + (µ− f)(2xy−1 + y2x−2)+

(k − 2µ+ f)(2yx−1 + x2y−2).

It implies that

a =
mc

2g(m− g + 1)2
, a′ =

mc′

2(m− g)(g − 1)2
.

It follows that a, a′ 6= 0. In each case, we see that one of a, a′, b and b′ is nonzero and so et
uveuz 6= 0

by Lemma 2.1. Now from Lemma 1.2 we imply that NW is trivial. This completes the proof of the

theorem. �

From the proof of Theorem 1.4, we conclude that if x and y only satisfy (1.4) we can eliminate

the hypotheses m − 2 - λ(g − 1), λ(g − 2) and g > 2 from the theorem. Therefore, we can state the

following corollary.

Corollary 2.2. Suppose that W = I+xA1 + yA2 is a type-II matrix attached to a Latin square graph

where x and y satisfy (1.4). If m ≥ 3g, then NW is trivial.

The following corollary is a consequence of Theorem 1.4 for negative Latin square graphs.

Corollary 2.3. Let W = I +xA1 + yA2 be a type-II matrix attached to a negative Latin square graph

and let m ≥ 3g. If x and y satisfy (1.5) or x and y satisfy (1.4) with m+ 2 - λ(g + 1), λ(g + 2), then

NW is trivial.
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Proof. Let Γ be a negative Latin square graph with parameters(
m2, g(m+ 1), g2 + 3g −m, g(g + 1)

)
for some positive integers m and g. It is known that by replacing m and g by their opposites, the

parameters of a negative Latin square graph obtain from a (positive) Latin square graph. Therefore,

by replacing m and g by their opposites and substituting into (1.4) and (1.5), we can express (1.2) and

(1.3) in terms of m and g for a negative Latin square graph. It follows that (1.2) (resp. (1.3)) for a

negative Latin square graph when ε = ±1 is the same (1.5) (resp. (1.4)) which we compute for a Latin

square graph when ε = ∓1. This means that to show that et
uveuz 6= 0, it is sufficient to replace m and

g by their opposites in a, a′, b and b′ given in the proof of Theorem 1.4 and using a similar argument it

can be shown that a, a′, b or b′ are nonzero in each case. Note that, using techniques similar to those

used in the proof of Lemma 2.1 we can show that c and c′ both cannot be perfect squares by replacing

m and g by their opposites when m ≥ 3g. This completes the proof of the corollary. �

2.2. The Nomura algebras constructed on doubly regular tournaments. In this subsection,

we first determine type-II matrices attached to nonsymmetric association schemes of class 2. Then,

we show that the Nomura algebras of these type-II matrices are trivial.

Theorem 2.4. Let A be the adjacency matrix of a doubly regular tournament on n vertices with

valency k. Suppose that

W = I + xA+ y(J − I −A).

Then W is a type-II matrix if and only if one of the following holds:

(1) x = y = 1
2(2− n±

√
n2 − 4n) and W is the Potts model,

(2) x = 1, y = −k ± i
√

2k + 1

k + 1
,

(3) x = −k ± i
√

2k + 1

k + 1
, y = 1.

Proof. We first note that the eigenvalues of a doubly regular tournament Γ are k, α and α, where

α = 1
2(−1 + i

√
2k + 1). Using the first eigenmatrix of Γ, we see that WW (−)t = nI is equivalent to(

1 + xp1(j) + yp2(j)
)(

1 + x−1p1(j′) + y−1p2(j′)
)

= n for all j = 0, 1 and 2. Then,

(1 + kx+ ky)(1 + kx−1 + ky−1) = n,

(1 + αx+ αy)(1 + αx−1 + αy−1) = n,

(1 + αx+ αy)(1 + αx−1 + αy−1) = n,

where n = 2k + 1. Using Maple, these equations may be solved for x and y in terms of k to obtain

one of the following cases that may arise.

(1) x and y are one of the roots of z2 + (2k − 1)z + 1 = 0, that is, x, y ∈ {1
2(1 − 2k −

√
4k2 − 4k − 3), 1

2(1 − 2k +
√

4k2 − 4k − 3)}. If x 6= y, then W is not type-II and so x = y.

Using n = 2k + 1, we can express x and y in terms of n, i. e., x = y = 1
2(2− n±

√
n2 − 4n).

(2) x = 1 and y is one of the roots of (1 + k)z2 + 2kz + 1 + k = 0, i. e., y = −k±i
√

2k+1
k+1 .

Arc
hive

 of
 S

ID

www.SID.ir

www.sid.ir


10 Trans. Comb. 2 no. 3 (2013) 1-11 A. Hosseini and A. Rahnamai Barghi

(3) y = 1 and x is one of the roots of (1 + k)z2 + 2kz + 1 + k = 0, i. e., x = −k±i
√

2k+1
k+1 .

This completes the proof. �

Theorem 2.5. Let W be a type-II matrix attached to doubly regular tournaments obtained in Theorem

2.4 with k > 1. Then NW is trivial.

Proof. Let x and y satisfy case (1) of Theorem 2.4. It is well known that the Nomura algebra of a

Potts model of order n ≥ 5 is trivial. Let x and y satisfy two other cases of Theorem 2.4 and let

λ ≥ 1. In [5], it has been proved that there exists a doubly regular tournament of order 4λ+ 3 if and

only if there exists a skew Hadamard matrix of order 4λ + 4. On the other hand, in [6], it has been

proved that there exists a Hadamard matrix of order 4λ + 4 if and only if there exists a symmetric

(4λ + 3, 2λ + 1, λ) − BIBD. Therefore, the adjacency matrix of a doubly regular tournament is the

incidence matrix of a symmetric (4λ+3, 2λ+1, λ)−BIBD and so n = 2k+1 and λ = k−1
2 . Substituting

into (1.1), we see that t = −k±i
√

2k+1
k+1 . If x and y satisfy case (2) of Theorem 2.4, then we have

W = I + xA+ y(J − I −A)

= I +A+ t(J − I −A)

= J + (t− 1)At.

If x and y satisfy case (3) of Theorem 2.4, then we have

W = I + xA+ y(J − I −A)

= I + tA+ (J − I −A)

= J + (t− 1)A.

Therefore, in each case we see that the conditions of Theorem 2.4 satisfies the hypotheses of Theorem

1.3 and so NW is trivial. �
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